International Journal of Medical Sciences

Impact factor
2.399

17 October 2017

ISSN 1449-1907 News feeds of published articles

My Manuscript | My Account

Journal of Genomics now in PubMed/PubMed Central. Submit manuscript...

Journal of Biomedicinenew

Theranostics

Journal of Cancer

Oncomedicine

International Journal of Biological Sciences

Journal of Genomics

Journal of Bone and Joint Infection (JBJI)

Nanotheranostics

PubMed Central Indexed in Journal Impact Factor

Int J Med Sci 2015; 12(3):288-294. doi:10.7150/ijms.10527

Research Paper

FDG-PET and NeuN-GFAP Immunohistochemistry of Hippocampus at Different Phases of the Pilocarpine Model of Temporal Lobe Epilepsy

Liang Zhang1, Yi Guo1, Haitao Hu1, Jing Wang2, Zhirong Liu1, Feng Gao1 ✉

1. Department of Neurology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China;
2. Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China.

Abstract

Purpose: Hippocampal glucose hypometabolism has been implicated in the pathogenesis of temporal lobe epilepsy (TLE). However, the underlying pathophysiological basis for this hypometabolism remains elusive. The aim of this study was to investigate the relationship between hippocampal hypometabolism and the histological changes seen in rats after systemic pilocarpine treatment.

Methods: 18F-fluorodeoxyglucose (FDG) small-animal positron emission tomography (microPET) was performed on day zero (untreated), day seven (latent) and day sixty (chronic phase) after the initial status epilepticus. The microPET imaging data were correlated with the immunoreactivity of neuron-specific nuclear protein (NeuN) and glial fibrillary acidic protein (GFAP) in the hippocampus at each time point.

Results: 18F-FDG-microPET images showed the hippocampus presented with persistent hypometabolism during epileptogenesis and partly recovered in the chronic phase. Hippocampal glucose uptake defects correlate with NeuN immunoreactivity in the latent phase and GFAP immunoreactivity in the chronic phase.

Conclusions: Severe glucose hypometabolism in the hippocampus during the latent phase correlates with neuronal cell loss. The partial recovery of hippocampal glucose uptake in the chronic phase may be due to astrogliosis.

Keywords: Temporal lobe epilepsy, Pilocarpine, Neurons, Astrocytes, Glucose uptake, microPET.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See http://ivyspring.com/terms for full terms and conditions.
How to cite this article:
Zhang L, Guo Y, Hu H, Wang J, Liu Z, Gao F. FDG-PET and NeuN-GFAP Immunohistochemistry of Hippocampus at Different Phases of the Pilocarpine Model of Temporal Lobe Epilepsy. Int J Med Sci 2015; 12(3):288-294. doi:10.7150/ijms.10527. Available from http://www.medsci.org/v12p0288.htm