International Journal of Medical Sciences

Impact factor
2.399

18 December 2017

ISSN 1449-1907 News feeds of published articles

My Manuscript | My Account

Journal of Biomedicinenew

Theranostics

Journal of Cancer

Oncomedicine

International Journal of Biological Sciences

Journal of Genomics

Journal of Bone and Joint Infection (JBJI)

Nanotheranostics

PubMed Central Indexed in Journal Impact Factor

Int J Med Sci 2014; 11(12):1228-1233. doi:10.7150/ijms.10008

Short Research Communication

Detection of Platelet-Monocyte Aggregates by the ADAM® Image Cytometer

Bo Kyeung Jung1#, Chi Hyun Cho1#, Kyung Chul Moon1, Dae sung Hur2, Jeong-Ah Yoon1, Soo-Young Yoon1 ✉

1. Department of Laboratory Medicine, College of Medicine, Korea University Guro Hospital, Seoul 152-703, South Korea
2. Nanoentek Incorp., Seoul, Korea
# These authors contributed equally to this study.

Abstract

Background: Inappropriate platelet activation is known to be associated with various thrombotic disorders. Platelet-monocyte aggregates (PMAs), whose formation is mediated by platelet surface P-selectin (CD62P), can be used as a reliable marker to detect platelet activation. Previous studies have generally detected PMAs through flow cytometry-based approaches. Recently, the ADAM® image cytometer (Nanoentek Inc., Seoul, Korea) was developed for image-based cellular analysis. In this study, we detected PMAs with the ADAM® cytometer, evaluated the reproducibility of the measurements made by the ADAM® cytometer, and compared the abilities of the ADAM® cytometer and a flow cytometric assay to detect PMAs.

Methods: Whole blood samples were collected from patients. Within 5 minutes of collection, anticoagulated whole blood samples were fixed in 10% paraformaldehyde and 5% glyoxal. Nineteen clinical specimens were collected; each was analyzed three times with the ADAM® cytometer in order to assess the reproducibility of its measurements. To compare the ability of the ADAM® cytometer with that of a flow cytometer to detect PMAs, each cytometer was used for 23 clinical samples and the correlation of the measurements was determined.

Results: The PMA measurements made by the ADAM® cytometer showed good reproducibility (CV < 10% for all specimens). Moreover, the PMA measurements made by the ADAM® cytometer exhibited a high correlation with those made by a flow cytometric assay (R = 0.944).

Conclusions: The ADAM® cytometer is a suitable alternative method to the flow cytometry-based assays. Since the ADAM cytometer does not need specialized instrument knowledge or software proficiency (unlike flow cytometry), the ADAM® cytometer can be used as a rapid and reliable POCT device to measure platelet activation in peripheral blood. This, in turn, will provide valuable information regarding patient propensities to thrombotic diseases.

Keywords: image cytometer, ADAM®, platelet-monocyte aggregates, platelet activation

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See http://ivyspring.com/terms for full terms and conditions.
How to cite this article:
Jung BK, Cho CH, Moon KC, sung Hur D, Yoon JA, Yoon SY. Detection of Platelet-Monocyte Aggregates by the ADAM® Image Cytometer. Int J Med Sci 2014; 11(12):1228-1233. doi:10.7150/ijms.10008. Available from http://www.medsci.org/v11p1228.htm