Int J Med Sci 2014; 11(7):742-747. doi:10.7150/ijms.7167 This issue Cite

Short Research Communication

Cyanidin 3-O-Glucoside Reduces Helicobacter pylori VacA-Induced Cell Death of Gastric KATO III Cells through Inhibition of the SecA Pathway

Sa-Hyun Kim1*, Hyunjun Woo2*, Min Park2, Ki-Jong Rhee2, Cheol Moon1, Dongsup Lee3, Woo Duck Seo4✉, Jong Bae Kim2✉

1. Department of Clinical Laboratory Science, Semyung University, Jaecheon 390-711, Republic of Korea;
2. Department of Biomedical Laboratory Science, College of Health Science, Yonsei University, Wonju 220-710, Republic of Korea;
3. Department of Clinical Laboratory Science, Hyegeon College, Hongseong 350-702, Republic of Korea;
4. Department of Functional Crops, National Institute of Crop Science, Rural Development Administration, Miryang 627-803, Republic of Korea.
* These investigators contributed equally to this study.

Citation:
Kim SH, Woo H, Park M, Rhee KJ, Moon C, Lee D, Seo WD, Kim JB. Cyanidin 3-O-Glucoside Reduces Helicobacter pylori VacA-Induced Cell Death of Gastric KATO III Cells through Inhibition of the SecA Pathway. Int J Med Sci 2014; 11(7):742-747. doi:10.7150/ijms.7167. https://www.medsci.org/v11p0742.htm
Other styles

File import instruction

Abstract

Two key virulence factors of Helicobacter pylori are the secreted virulent proteins of vacuolating toxin A (VacA) and cytotoxin associated protein A (CagA) which lead to damages of gastric epithelial cells. We previously identified that the cyanidin 3-O-glucoside (C3G) inhibits the secretion of both VacA and CagA. In the current report, we show that C3G inhibits VacA secretion in a dose-dependent manner by inhibiting secretion system subunit protein A (SecA) synthesis. As SecA is involved in translocation of bacterial proteins, we predicted that inhibition of the SecA pathway by C3G should decrease H. pylori-induced cell death. To test this hypothesis, the human gastric cell line KATO III cells were co-cultured with H. pylori 60190 (VacA+/CagA+) and C3G. We found that C3G treatment caused a decrease in activation of the pro-apoptotic proteins caspase-3/-8 in H. pylori-infected cells leading to a decrease in cell death. Our data suggest that consumption of foods containing anthocyanin may be beneficial in reducing cell damage due to H. pylori infection.

Keywords: H. pylori, cyanidin 3-O-glucoside, VacA secretion


Citation styles

APA
Kim, S.H., Woo, H., Park, M., Rhee, K.J., Moon, C., Lee, D., Seo, W.D., Kim, J.B. (2014). Cyanidin 3-O-Glucoside Reduces Helicobacter pylori VacA-Induced Cell Death of Gastric KATO III Cells through Inhibition of the SecA Pathway. International Journal of Medical Sciences, 11(7), 742-747. https://doi.org/10.7150/ijms.7167.

ACS
Kim, S.H.; Woo, H.; Park, M.; Rhee, K.J.; Moon, C.; Lee, D.; Seo, W.D.; Kim, J.B. Cyanidin 3-O-Glucoside Reduces Helicobacter pylori VacA-Induced Cell Death of Gastric KATO III Cells through Inhibition of the SecA Pathway. Int. J. Med. Sci. 2014, 11 (7), 742-747. DOI: 10.7150/ijms.7167.

NLM
Kim SH, Woo H, Park M, Rhee KJ, Moon C, Lee D, Seo WD, Kim JB. Cyanidin 3-O-Glucoside Reduces Helicobacter pylori VacA-Induced Cell Death of Gastric KATO III Cells through Inhibition of the SecA Pathway. Int J Med Sci 2014; 11(7):742-747. doi:10.7150/ijms.7167. https://www.medsci.org/v11p0742.htm

CSE
Kim SH, Woo H, Park M, Rhee KJ, Moon C, Lee D, Seo WD, Kim JB. 2014. Cyanidin 3-O-Glucoside Reduces Helicobacter pylori VacA-Induced Cell Death of Gastric KATO III Cells through Inhibition of the SecA Pathway. Int J Med Sci. 11(7):742-747.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See http://ivyspring.com/terms for full terms and conditions.
Popup Image