International Journal of Medical Sciences

Impact factor
2.399

23 October 2017

ISSN 1449-1907 News feeds of published articles

My Manuscript | My Account

Journal of Genomics now in PubMed/PubMed Central. Submit manuscript...

Journal of Biomedicinenew

Theranostics

Journal of Cancer

Oncomedicine

International Journal of Biological Sciences

Journal of Genomics

Journal of Bone and Joint Infection (JBJI)

Nanotheranostics

PubMed Central Indexed in Journal Impact Factor

Int J Med Sci 2014; 11(5):461-465. doi:10.7150/ijms.7967

Research Paper

Commonality of Drug-associated Adverse Events Detected by 4 Commonly Used Data Mining Algorithms

Toshiyuki Sakaeda1✉, Kaori Kadoyama1, Keiko Minami1, Yasushi Okuno2✉

1. Center for Integrative Education in Pharmacy and Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan;
2. Department of Systems Biosciences for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.

Abstract

Objectives: Data mining algorithms have been developed for the quantitative detection of drug-associated adverse events (signals) from a large database on spontaneously reported adverse events. In the present study, the commonality of signals detected by 4 commonly used data mining algorithms was examined.

Methods: A total of 2,231,029 reports were retrieved from the public release of the US Food and Drug Administration Adverse Event Reporting System database between 2004 and 2009. The deletion of duplicated submissions and revision of arbitrary drug names resulted in a reduction in the number of reports to 1,644,220. Associations with adverse events were analyzed for 16 unrelated drugs, using the proportional reporting ratio (PRR), reporting odds ratio (ROR), information component (IC), and empirical Bayes geometric mean (EBGM).

Results: All EBGM-based signals were included in the PRR-based signals as well as IC- or ROR-based ones, and PRR- and IC-based signals were included in ROR-based ones. The PRR scores of PRR-based signals were significantly larger for 15 of 16 drugs when adverse events were also detected as signals by the EBGM method, as were the IC scores of IC-based signals for all drugs; however, no such effect was observed in the ROR scores of ROR-based signals.

Conclusions: The EBGM method was the most conservative among the 4 methods examined, which suggested its better suitability for pharmacoepidemiological studies. Further examinations should be performed on the reproducibility of clinical observations, especially for EBGM-based signals.

Keywords: adverse event, Adverse Event Reporting System, FAERS, database, data mining, signal, signal detection, proportional reporting ratio, reporting odds ratio, information component, empirical Bayes geometric mean.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See http://ivyspring.com/terms for full terms and conditions.
How to cite this article:
Sakaeda T, Kadoyama K, Minami K, Okuno Y. Commonality of Drug-associated Adverse Events Detected by 4 Commonly Used Data Mining Algorithms. Int J Med Sci 2014; 11(5):461-465. doi:10.7150/ijms.7967. Available from http://www.medsci.org/v11p0461.htm