International Journal of Medical Sciences

Impact factor

17 November 2018

ISSN 1449-1907 News feeds of published articles

Manuscript login | Account

open access Global reach, higher impact

Journal of Genomics in PubMed Central. Submit manuscript now...


Journal of Cancer

International Journal of Biological Sciences

Journal of Genomics

Journal of Bone and Joint Infection (JBJI)


Journal of Biomedicine


PubMed Central Indexed in Journal Impact Factor

Int J Med Sci 2016; 13(12):984-991. doi:10.7150/ijms.16072

Research Paper

Pulsed radiofrequency attenuates diabetic neuropathic pain and suppresses formalin-evoked spinal glutamate release in rats

Yu-Hsin Huang1*, Shao-Yun Hou1*, Jen-Kun Cheng2, Chih-Hsien Wu1, Chung-Ren Lin1,✉

1. Department of Anesthesiology, Chang Gung Memorial Hospital-Kaohsiung Medical Centre, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
2. Department of Anesthesiology, MacKay Memorial Hospital, Taipei, Taiwan.
*Y. H. Huang and S. Y. Sou contributed equally to this project and should be considered co-first authors.


BACKGROUND: Pulsed radiofrequency (PRF) has been used to treat chronic pain for years, but its effectiveness and mechanism in treating diabetic neuropathic pain are still unexplored. The aim of this study was to elucidate the modulation of diabetic neuropathic pain induced by streptozotocin and the release of spinal excitatory amino acids by PRF.

METHODS: Diabetes was induced by intraperitoneal administration of streptozotocin. Pulsed radiofrequency was applied to L5 and L6 dorsal roots at 42 °C for 2 min. The responses of all of the groups to thermal, mechanical and cold stimuli were measured for a period of 6 d after this process. Seven days after PRF treatment, intrathecal microdialysis was used to examine the effect of pulsed radiofrequency on the formalin-evoked spinal release of excitatory amino acids and concurrent behaviour responses from diabetic rats.

RESULTS: Three weeks after intraperitoneal streptozotocin treatment and before PRF application, mechanical, thermal and cold hypersensitivity occurred. Application of PRF significantly alleviated hyperglycaemia-induced mechanical, thermal and cold hypersensitivity and also attenuated the increase in formalin-evoked CSF glutamate concentration, compared with sham treated diabetic rats.

CONCLUSION: It may be concluded that PRF has an analgesic effect on neuropathic pain by suppressing the nociception-induced release of excitatory neurotransmitters. PRF may provide a novel promising therapeutic approach for managing diabetic neuropathic pain.

Keywords: diabetes, neuropathic pain, pulsed radiofrequency, glutamate, microdialysis.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See for full terms and conditions.
How to cite this article:
Huang YH, Hou SY, Cheng JK, Wu CH, Lin CR. Pulsed radiofrequency attenuates diabetic neuropathic pain and suppresses formalin-evoked spinal glutamate release in rats. Int J Med Sci 2016; 13(12):984-991. doi:10.7150/ijms.16072. Available from