Int J Med Sci 2015; 12(11):914-925. doi:10.7150/ijms.11957 This issue Cite

Research Paper

Bisphenol A, Dichlorodiphenyltrichloroethane (DDT) and Vinclozolin Affect ex-vivo Uterine Contraction in Rats via Uterotonin (Prostaglandin F2α, Acetylcholine and Oxytocin) Related Pathways

Naguib Salleh1✉, Nelli Giribabu12, Angeline Oh Mei Feng, Kyaimon Myint1 ✉

1. Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia;
2. Department of Biomedical Science, Faculty of Health and Life Sciences, Management and Science University, Shah Alam, 40100 Selangor Darul Ehsan, Malaysia.

Citation:
Salleh N, Giribabu N, Feng AOM, Myint K. Bisphenol A, Dichlorodiphenyltrichloroethane (DDT) and Vinclozolin Affect ex-vivo Uterine Contraction in Rats via Uterotonin (Prostaglandin F2α, Acetylcholine and Oxytocin) Related Pathways. Int J Med Sci 2015; 12(11):914-925. doi:10.7150/ijms.11957. https://www.medsci.org/v12p0914.htm
Other styles

File import instruction

Abstract

Bisphenol-A (BPA), dichrolodiphenyltrichloroethane (DDT) and vinclozolin were found able to induce abnormal uterine contraction. The mechanisms involved remains unclear. We hypothesized that the effect of these compounds were mediated via the uterotonin pathways. Therefore, in this study, effects of BPA, vinclozolin and DDT-only and in combination with uterotonins (PGF-2α, acetylcholine and oxytocin) on the force and pattern of uterine contraction were observed. Methods: Uteri were harvested from intact adult female rats 24 hours after a single injection (1 mg/kg/b.w) of estrogen to synchronize their oestrous cycle. The uterine horns were subjected for ex-vivo contraction studies in an organ bath connected to Powerlab data acquisition system. Different doses of BPA, vinclozolin and DDT were added into the bathing solution and changes in the pattern and strength of uterine contraction were recorded. Further, increasing doses of uterotonins were concomitantly administered with these compounds and changes in the force and pattern of contraction were observed. Results: In the absence of uterotonins, uterine contractile force decreased with increasing doses of BPA and DDT. However, vinclozolin induced sharp increase in the contractile forces which then gradually decrease. Administration of BPA, DDT and vinclozolin alone reduced the force of uterine contraction following stimulation of contraction by uterotonins. However, BPA, vinclozolin or DDT effects were relieved upon co-administration with uterotonins at increasing doses. Conclusions: The antagonizing effect of uterotonins on BPA, vinclozolin and DDT actions could explain the mechanism underlying the adverse effect of these compounds on uterine contraction.

Keywords: bisphenol A, vinclozolin, DDT, uterine contractility, uterotonins.


Citation styles

APA
Salleh, N., Giribabu, N., Feng, A.O.M., Myint, K. (2015). Bisphenol A, Dichlorodiphenyltrichloroethane (DDT) and Vinclozolin Affect ex-vivo Uterine Contraction in Rats via Uterotonin (Prostaglandin F2α, Acetylcholine and Oxytocin) Related Pathways. International Journal of Medical Sciences, 12(11), 914-925. https://doi.org/10.7150/ijms.11957.

ACS
Salleh, N.; Giribabu, N.; Feng, A.O.M.; Myint, K. Bisphenol A, Dichlorodiphenyltrichloroethane (DDT) and Vinclozolin Affect ex-vivo Uterine Contraction in Rats via Uterotonin (Prostaglandin F2α, Acetylcholine and Oxytocin) Related Pathways. Int. J. Med. Sci. 2015, 12 (11), 914-925. DOI: 10.7150/ijms.11957.

NLM
Salleh N, Giribabu N, Feng AOM, Myint K. Bisphenol A, Dichlorodiphenyltrichloroethane (DDT) and Vinclozolin Affect ex-vivo Uterine Contraction in Rats via Uterotonin (Prostaglandin F2α, Acetylcholine and Oxytocin) Related Pathways. Int J Med Sci 2015; 12(11):914-925. doi:10.7150/ijms.11957. https://www.medsci.org/v12p0914.htm

CSE
Salleh N, Giribabu N, Feng AOM, Myint K. 2015. Bisphenol A, Dichlorodiphenyltrichloroethane (DDT) and Vinclozolin Affect ex-vivo Uterine Contraction in Rats via Uterotonin (Prostaglandin F2α, Acetylcholine and Oxytocin) Related Pathways. Int J Med Sci. 12(11):914-925.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See http://ivyspring.com/terms for full terms and conditions.
Popup Image