International Journal of Medical Sciences

Impact factor

16 December 2018

ISSN 1449-1907 News feeds of published articles

Manuscript login | Account

open access Global reach, higher impact

Journal of Genomics in PubMed Central. Submit manuscript now...


Journal of Cancer

International Journal of Biological Sciences

Journal of Genomics



Journal of Biomedicine

PubMed Central Indexed in Journal Impact Factor

Int J Med Sci 2015; 12(5):397-406. doi:10.7150/ijms.10929

Research Paper

Efficient Inhibition of Ovarian Cancer by Gelonin Toxin Gene Delivered by Biodegradable Cationic Heparin-polyethyleneimine Nanogels

Yu Bai1, Maling Gou2, Tao Yi1, Li Yang2, Lili Liu1, Xiaojuan Lin1, Dan Su1, Yuquan Wei2, Xia Zhao1 ✉

1. Department of Gynecology and Obstetrics, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
2. State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China


The use of toxins for cancer therapy has great promise. Gelonin, a potent plant toxin, causes cell death by inactivating the 60S ribosomal subunit. Recently, we developed a novel gene delivery system using biodegradable cationic heparin-polyethyleneimine (HPEI) nanogels. In the current study, the antitumor activity of a recombinant plasmid expressing gelonin (pGelonin) on human ovarian cancer was assessed. The application of HPEI nanogels, was also evaluated. Gelonin-cDNA was cloned into the pVAX1 plasmid vector and transfected into SKOV3 human ovarian cancer cells using biodegradable cationic HPEI nanogels. The expression of gelonin in vitro and in vivo was confirmed using RT-PCR and western blot analysis. Cell viability and apoptosis were examined using an MTT assay and flow cytometric analysis. For the in vivo study, an SKOV3 intraperitoneal ovarian carcinomatosis model was established, and nude mice were randomly assigned into four groups receiving i.p. administration of pGelonin/HPEI complexes, pVAX/HPEI complexes, HPEI alone and 5% glucose solution. The tumor weight was monitored, and a TUNEL assay and Ki-67 immunohistochemistry were performed to evaluate apoptosis and cell proliferation in the tumor tissue sections, respectively. Gelonin was efficiently expressed in SKOV3 cancer cells in vitro and in vivo using pGelonin incorporated with HPEI nanogels. The pGelonin/HPEI complexes inhibited cell viability and induced apoptosis in the cell culture. Treatment for intraperitoneal carcinomatosis with pGelonin/HPEI complexes reduced the tumor weight by ~58.55% compared to the control groups (P<0.05). The antitumor effect was accompanied by increased apoptosis and reduced cell proliferation (P<0.05). No significant side effects were observed with i.p. administration of the pGelonin/HPEI complexes. Our data indicate that HPEI nanogel-delivered pGelonin may have promising applications against human ovarian cancer.

Keywords: gene therapy, ovarian cancer, gelonin toxin, cationic nanogels, heparin-polyethyleneimine (HPEI)

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See for full terms and conditions.
How to cite this article:
Bai Y, Gou M, Yi T, Yang L, Liu L, Lin X, Su D, Wei Y, Zhao X. Efficient Inhibition of Ovarian Cancer by Gelonin Toxin Gene Delivered by Biodegradable Cationic Heparin-polyethyleneimine Nanogels. Int J Med Sci 2015; 12(5):397-406. doi:10.7150/ijms.10929. Available from