International Journal of Medical Sciences

Impact factor
2.399

21 October 2017

ISSN 1449-1907 News feeds of published articles

My Manuscript | My Account

Journal of Genomics now in PubMed/PubMed Central. Submit manuscript...

Journal of Biomedicinenew

Theranostics

Journal of Cancer

Oncomedicine

International Journal of Biological Sciences

Journal of Genomics

Journal of Bone and Joint Infection (JBJI)

Nanotheranostics

PubMed Central Indexed in Journal Impact Factor

Int J Med Sci 2013; 10(9):1157-1165. doi:10.7150/ijms.5638

Research Paper

Designer Cytokine Hyper Interleukin 11 (H11) is a Megakaryopoietic Factor

Hanna Dams-Kozlowska1,2✉, Eliza Kwiatkowska-Borowczyk1,2, Katarzyna Gryska2, Andrzej Mackiewicz1,2

1. Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, 61-866, Poland;
2. Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, 61-866, Poland.

Abstract

Interleukin-11 (IL-11) displays megakaryopoietic activity. We constructed super-cytokine Hyper- IL11 (H11) by linking soluble IL-11 receptor α (sIL-11Rα) with IL-11, which directly targets β-receptor (gp130) signal transducing subunit. The effects of H11 on hematopoiesis with a focus on megakaryopoiesis were studied. The expansion, differentiation and type of colony formation of cord blood progenitor Lin-CD34+ cells were analyzed.

H11 was more effective than recombinant human IL-11 (rhIL-11) in enhancement of the Lin-CD34+ cells expansion and differentiation into megakaryocytes (Mk). It induced higher expression of CD41a and CD61 antigens, resulting in a substantially larger population of CD34-CD41ahighCD61high cells. H11 treatment led to increased number of small and mainly medium megakaryocyte colony formation (Mk-CFU). Moreover, it induced the formation of a small number of large colonies, which were not observed following rhIL-11 treatment. Significantly higher number of H11 derived Mk colonies released platelets-like particles (PLP). Furthermore, H11 was considerably more potent than rhIL-11 in promoting differentiation of Lin-CD43+ cells toward erythrocytes.

Our results indicate that H11 is more effective than rhIL-11 in enhancing expansion of early progenitors and directing them to megakaryocyte and erythroid cells and in inducing maturation of Mk. Thus, H11 may prove beneficial for thrombocytopenia treatment and/or an ex vivo expansion of megakaryocytes.

Keywords: interleukin 11, hyper cytokine, megakaryopoiesis, stem cells, platelets, thrombocytopenia.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See http://ivyspring.com/terms for full terms and conditions.
How to cite this article:
Dams-Kozlowska H, Kwiatkowska-Borowczyk E, Gryska K, Mackiewicz A. Designer Cytokine Hyper Interleukin 11 (H11) is a Megakaryopoietic Factor. Int J Med Sci 2013; 10(9):1157-1165. doi:10.7150/ijms.5638. Available from http://www.medsci.org/v10p1157.htm