International Journal of Medical Sciences

Impact factor
2.399

15 December 2017

ISSN 1449-1907 News feeds of published articles

My Manuscript | My Account

Journal of Biomedicinenew

Theranostics

Journal of Cancer

Oncomedicine

International Journal of Biological Sciences

Journal of Genomics

Journal of Bone and Joint Infection (JBJI)

Nanotheranostics

PubMed Central Indexed in Journal Impact Factor

Int J Med Sci 2010; 7(1):29-35. doi:10.7150/ijms.7.29

Research Paper

Ultra-low microcurrent in the management of diabetes mellitus, hypertension and chronic wounds: Report of twelve cases and discussion of mechanism of action

Bok Y. Lee1 ✉, Noori AL-Waili2, Dean Stubbs3, Keith Wendell4, Glenn Butler5, Thia AL-Waili6, Ali AL-Waili7

1. Professor, Department of Surgery, New York Medical College, Valhalla, New York and Research Director, Life Support Technology Group, Mount Vernon Hospital, Sound Shore Health System, Mount Vernon, New York;
2. Clinical Research Director, Life Support Technology Group, Mount Vernon Hospital, Sound Shore Health System, Mount Vernon, New York;
3. Medical Director, BodiHealth Technology, North Tamborine QLD, Australia;
4. CEO and Director, American Institute of Regeneration, Simi Valley, California, Mt. Tamborine QLD, Australia;
5. CEO and Research Coordinator, Life Support Technology Group, Mount Vernon Hospital, Sound Shore Health System, Mount Vernon, New York;
6. American Global University of Medical School, Belize;
7. York College, Queens, New York.

Abstract

Oxidative stress plays a major role in the pathogenesis of both types of diabetes mellitus and cardiovascular diseases including hypertension. The low levels of antioxidants accompanied by raised levels of markers of free radical damage play a major role in delaying wound healing. Ultra-low microcurrent presumably has an antioxidant effect, and it was shown to accelerate wound healing. The purpose of the study is to investigate the efficacy of ultra-low microcurrent delivered by the Electro Pressure Regeneration Therapy (EPRT) device (EPRT Technologies-USA, Simi Valley, CA) in the management of diabetes, hypertension and chronic wounds. The EPRT device is an electrical device that sends a pulsating stream of electrons in a relatively low concentration throughout the body. The device is noninvasive and delivers electrical currents that mimic the endogenous electric energy of the human body. It is a rechargeable battery-operated device that delivers a direct current (maximum of 3 milliAmperes) of one polarity for 11.5 minutes, which then switched to the opposite polarity for another 11.5 minutes. The resulting cycle time is approximately 23min or 0.000732 Hz and delivers a square wave bipolar current with a voltage ranging from 5V up to a maximum of 40 V. The device produces a current range of 3 mA down to 100 nA. Twelve patients with long standing diabetes, hypertension and unhealed wounds were treated with EPRT. The patients were treated approximately for 3.5 h/day/5 days a week. Assessment of ulcer was based on scale used by National Pressure Ulcer Advisory Panel Consensus Development Conference. Patients were followed-up with daily measurement of blood pressure and blood glucose level, and their requirement for medications was recorded. Treatment continued from 2-4 months according to their response. Results showed that diabetes mellitus and hypertension were well controlled after using this device, and their wounds were markedly healed (30-100%). The patients either reduced their medication or completely stopped after the course of treatment. No side effects were reported. The mechanism of action was discussed.

Keywords: Diabetes mellitus, hypertension, wound, ultra-low microcurrent

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See http://ivyspring.com/terms for full terms and conditions.
How to cite this article:
Lee BY, AL-Waili N, Stubbs D, Wendell K, Butler G, AL-Waili T, AL-Waili A. Ultra-low microcurrent in the management of diabetes mellitus, hypertension and chronic wounds: Report of twelve cases and discussion of mechanism of action. Int J Med Sci 2010; 7(1):29-35. doi:10.7150/ijms.7.29. Available from http://www.medsci.org/v07p0029.htm