International Journal of Medical Sciences

Impact factor
2.399

18 December 2017

ISSN 1449-1907 News feeds of published articles

My Manuscript | My Account

Journal of Biomedicinenew

Theranostics

Journal of Cancer

Oncomedicine

International Journal of Biological Sciences

Journal of Genomics

Journal of Bone and Joint Infection (JBJI)

Nanotheranostics

PubMed Central Indexed in Journal Impact Factor

Int J Med Sci 2006; 3(4):148-151. doi:10.7150/ijms.3.148

Short Research Communication

Mutation Analysis of hCDC4 in AML Cells Identifies a New Intronic Polymorphism

Daniel Nowak, Maximilian Mossner, Claudia D. Baldus, Olaf Hopfer, Eckhard Thiel, Wolf-Karsten Hofmann

Department of Hematology, Oncology and Transfusion Medicine, Charité, University Hospital Benjamin Franklin, Berlin, Germany

Abstract

hCDC4 (FBW7, FBXW7) is a new potential tumor suppressor gene which provides substrate specificity for SCF (Skp–Cullin–F-box) ubiquitin ligases and thereby regulates the degradation of potent oncogenes such as cyclin E, Myc, c-Jun and Notch. Mutations in the hCDC4 gene have been found in several solid tumors such as pancreas, colorectal or endometrial cancer. We carried out a mutation analysis of the hCDC4 gene in 35 samples of patients with Acute Myeloid Leukemia (AML) to elucidate a possible role of hCDC4 mutations in this disease. By direct DNA sequencing and digestion with Surveyor nuclease one heterozygous mutation in the 5' untranslated region of exon 1, transcript variant 3 was detected. Additionally, we could identify a new intronic SNP downstream of exon 10. The new variation was present in 20% of AML samples and was furthermore confirmed in a panel of 51 healthy individuals where it displayed a frequency of 14%. In conclusion we provide first data that in contrast to several solid tumors, mutations in the hCDC4 gene may not play a pivotal role in the pathogenesis of AML. Furthermore, we describe a new intronic polymorphism with high frequency in the intron sequence of the hCDC4 gene.

Keywords: hCDC4, AML, Mutation Analysis, SNP

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See http://ivyspring.com/terms for full terms and conditions.
How to cite this article:
Nowak D, Mossner M, Baldus CD, Hopfer O, Thiel E, Hofmann WK. Mutation Analysis of hCDC4 in AML Cells Identifies a New Intronic Polymorphism. Int J Med Sci 2006; 3(4):148-151. doi:10.7150/ijms.3.148. Available from http://www.medsci.org/v03p0148.htm