Int J Med Sci 2020; 17(10):1307-1314. doi:10.7150/ijms.43140

Review

The Role of Histone Acetyltransferases and Histone Deacetylases in Photoreceptor Differentiation and Degeneration

Meng Zhao1,2, Ye Tao1,3✉, Guang-Hua Peng1,2✉

1. Laboratory of Visual Cell Differentiation and Regulation, Basic Medical College, Zhengzhou University, Zhengzhou 450001, China.
2. Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou 450001, China.
3. Department of Physiology, Basic Medical College, Zhengzhou University, Zhengzhou 450001, China.

This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.
Citation:
Zhao M, Tao Y, Peng GH. The Role of Histone Acetyltransferases and Histone Deacetylases in Photoreceptor Differentiation and Degeneration. Int J Med Sci 2020; 17(10):1307-1314. doi:10.7150/ijms.43140. Available from http://www.medsci.org/v17p1307.htm

File import instruction

Abstract

Photoreceptors are critical components of the retina and play a role in the first step of the conversion of light to electrical signals. The differentiation and degeneration of photoreceptors are regulated by specific genes and proteins. With the development of epigenetic approaches, scientists have discovered that histone modifications, such as acetylation, methylation, ubiquitylation, and phosphorylation, may modulate the processes of photoreceptor differentiation and degeneration. Histone acetylation is regulated by two opposing classes of enzymes, namely, histone acetyltransferases (HATs) and histone deacetylases (HDACs), which add and remove acetyl groups to and from target histones, respectively, causing changes in transcriptional activity. Herein, we review the effects of HATs and HDACs on the differentiation and degeneration of photoreceptors and discuss the underlying mechanisms of these effects.

Keywords: HDAC, HAT, photoreceptor, differentiation, degeneration