Int J Med Sci 2015; 12(6):478-486. doi:10.7150/ijms.10529

Research Paper

Effects of Red Wine Tannat on Oxidative Stress Induced by Glucose and Fructose in Erythrocytes in Vitro

Camila Eliza Fernandes Pazzini1, Ana Ceolin Colpo2, Márcia Rósula Poetini1, Cauê Ferreira Pires1, Vanessa Brum de Camargo2, Andreas Sebastian Loureiro Mendez3, Miriane Lucas Azevedo1, Júlio César Mendes Soares1, Vanderlei Folmer2,✉

1. Universidade Federal do Pampa (UNIPAMPA), campus Itaqui, Rua Joaquim de Sá Brito, s/n, 97650-000, Itaqui, Brasil
2. Universidade Federal do Pampa (UNIPAMPA), campus Uruguaiana, BR 472, Km 592, 97500-970, Uruguaiana, Brasil
3. Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Avenida Ipiranga 2752, 90610-000, Porto Alegre-RS, Brazil

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See for full terms and conditions.
Pazzini CEF, Colpo AC, Poetini MR, Pires CF, de Camargo VB, Mendez ASL, Azevedo ML, Soares JCM, Folmer V. Effects of Red Wine Tannat on Oxidative Stress Induced by Glucose and Fructose in Erythrocytes in Vitro. Int J Med Sci 2015; 12(6):478-486. doi:10.7150/ijms.10529. Available from

File import instruction


The literature indicates that red wine presents in its composition several substances that are beneficial to health. This study has investigated the antioxidant effects of Tannat red wine on oxidative stress induced by glucose and fructose in erythrocytes in vitro, with the purpose to determine some of its majoritarian phenolic compounds and its antioxidant capacity. Erythrocytes were incubated using different concentrations of glucose and fructose in the presence or absence of wine. From these erythrocytes were determined the production of thiobarbituric acid reactive species (TBARS), glucose consumption, and osmotic fragility. Moreover, quantification of total phenolic, gallic acid, caffeic acid, epicatechin, resveratrol, and DPPH scavenging activity in wine were also assessed. Red wine showed high levels of polyphenols analyzed, as well as high antioxidant potential. Erythrocytes incubated with glucose and fructose had an increase in lipid peroxidation and this was prevented by the addition of wine. The wine increased glucose uptake into erythrocytes and was able to decrease the osmotic fragility of erythrocytes incubated with fructose. Altogether, these results suggest that wine leads to a reduction of the oxidative stress induced by high concentrations of glucose and fructose.

Keywords: Diabetes, antioxidant activity, phenolic compounds, lipid peroxidation, wine.