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Abstract

Background: Uterine leiomyosarcoma (ULMS) is a rare, aggressive uterine malignancy with high
misdiagnosis rates, poor prognosis, and limited molecular biomarkers. Its pathogenesis, links between
specific genes and the tumor immune microenvironment (TIME), and applications of machine learning
(ML) and Mendelian randomization (MR) remain understudied.

Methods: Multi-cohort data (4 GEO datasets, TCGA-SARC, single-cell sequencing) were integrated.
Differentially expressed genes (DEGs) and WGCNA-derived key modules identified “InteGenes”. 113

ML algorithms were compared to build a diagnostic model (top: GBM, core genes = “Mgenes”).
CIBERSORT analyzed TIME; MR explored Mgenes-ULMS causal links.

Results: 96 InteGenes enriched in cell cycle/p53/DNA repair pathways. The GBM model had training
AUC=] and validation accuracy 92.3—100%; 36 Mgenes (e.g., TRIP13, AUC=0.972) showed diagnostic
value. Mgenes correlated with TIME (upregulated Mgenes <» M2 TAMs/Tregs; downregulated < effector
cells). MR found no genetic causality between Mgenes and ULMS.

Conclusion: InteGenes reflect ULMS pathogenesis; the GBM model and Mgenes are promising
diagnostic tools. Mgenes modulate ULMS’s TIME, offering immunotherapeutic targets. This study
advances ULMS molecular/immune understanding for translational research.

Keywords: uterine leiomyosarcoma, machine learning, diagnostic model, tumor immune microenvironment, single-cell
sequencing

1. Introduction

Uterine leiomyosarcoma (ULMS) is a rare but
highly aggressive malignant tumor of the uterine
mesenchyme, accounting for approximately 1-2% of
all uterine malignancies yet responsible for a
disproportionate number of uterine cancer-related
deaths[1]. Clinically, ULMS poses significant
challenges: its nonspecific symptoms (e.g., abnormal
uterine bleeding, pelvic pain) overlap with benign

uterine lesions such as leiomyomas, leading to
frequent misdiagnosis[1]. Moreover, ULMS exhibits
strong invasiveness and early metastatic potential,
with a 5-year overall survival rate of only 30-50% for
advanced-stage disease[2]. Current diagnostic
workflows for ULMS are dominated by postoperative
histopathological assessment, a gold standard that is
constrained by inter-observer variability and
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pathologist-dependent subjectivity. Notably, robust
molecular biomarkers capable of predicting clinical
outcomes, stratifying prognostic risk, and uncovering
the biological underpinnings of tumor progression are
still lacking, hindering the development of precision
oncology approaches for this aggressive malignancy.

At the molecular level, ULMS pathogenesis is
linked to dysregulation of core oncogenic pathways,
including cell cycle progression, DNA repair, and
tumor suppressor signaling (e.g., p53)[3, 4]. However,
most previous studies have focused on single datasets
or candidate genes, lacking systematic integration of
multi-cohort transcriptomic data and rigorous
validation—limiting the generalizability of their
findings.  Additionally, the tumor immune
microenvironment (TIME) plays a pivotal role in
ULMS progression, as immunosuppressive cell
populations  (e.g.,  M2-like  tumor-associated
macrophages [TAMs], regulatory T cells [Tregs])
promote immune escape[5, 6]; yet, the molecular links
between ULMS-specific genes and TIME modulation
remain poorly characterized. Furthermore, while
machine learning (ML) has emerged as a powerful
tool for developing diagnostic and prognostic models
in oncology, its application to ULMS— particularly
with large-scale algorithmic comparisons,
multi-cohort validation, and a focus on linking genetic
signatures to tumor biological behavior and clinical
outcomes —has been rarely reported. Finally, whether
ULMS-associated genes exert causal genetic effects on
disease susceptibility (a key question for
distinguishing driver vs. passenger genes) has not
been addressed via Mendelian randomization (MR), a
robust method to minimize confounding in
observational studies.

To address these gaps, the present study
integrated multi-cohort transcriptomic data (4 GEO
datasets + TCGA-SARC) and single-cell sequencing
data to systematically investigate ULMS’s molecular
landscape. We first identified differentially expressed
genes (DEGs) and key co-expression modules via
weighted gene co-expression network analysis
(WGCNA), then defined “InteGenes” as the
intersection of DEGs and core module genes.
Functional enrichment analyses (GO/KEGG) were
performed to elucidate InteGenes’ biological roles. We
then compared 113 unique ML algorithms to
construct and validate a high-performance diagnostic
model, with the top model’s core genes designated as
“Mgenes.” Subsequently, we explored Mgenes’
associations with TIME components via CIBERSORT
and linkET analyses, and evaluated genetic causality
between Mgenes and ULMS using MR. Collectively,
this study aims to identify reliable diagnostic
biomarkers, reveal Mgenes' roles in shaping the

928
ULMS TIME, and provide a foundation for
developing targeted and immunotherapeutic

strategies. Figure 1 presents an outline of the
workflow.

2. Materials and Methods

2.1 Acquisition and preprocessing of datasets

In this study, 4 datasets of uterine
leiomyosarcoma (ULMS) were incorporated from the
Gene Expression Omnibus (GEO) database
(https:/ /www.ncbi.nlm.nih.gov/geo/), with each
dataset containing sample data from both tumor
groups and normal control groups. The detailed
information of these datasets is as follows: GSE36610
(normal samples, N=10; tumor samples, T=12),
GSE764 (normal samples, N=4; tumor samples, T=9),
GSE68312 (normal samples, N=3; tumor samples,
T=3), and GSE68295 (normal samples, N=3; tumor
samples, T=6). Additionally, 27 cases of RNA-seq data
and corresponding clinical data of ULMS were
retrieved from the The Cancer Genome Atlas-Sarcoma
(TCGA-SARC) dataset
(https:/ /portal.gdc.cancer.gov/) for inclusion in the
study. Additionally, nine single-cell sequencing
datasets were employed, specifically encompassing
single-cell transcriptome sequencing data derived
from 4 metastatic lesions of ULMS and 5 age-matched
samples of normal myometrium, as described in
previously published article[7].

For subsequent analytical procedures, the
TCGA-SARC dataset and GSE36610 were designated
as the training set, while GSE764, GSE68312, and
GSE68295 were assigned as the validation set.
Subsequently, the datasets within the training set
were integrated, and batch effects—known to
potentially introduce biases in gene expression
data—were eliminated using the sva R package[8].
Figure 2 presents the boxplots and principal
component analysis (PCA) plots of the training set
data both before and after batch effect removal. From
these visualizations, it can be clearly observed that the
batch effects were effectively mitigated, ensuring the
reliability and comparability of the integrated training
set data for subsequent downstream analyses.

2.2 Profiling of genes with differential

ExpressionGenes showing differential
expression between tumor and normal samples in the
training set were identified using the limma
package[9]. The selection of these differentially
expressed genes (DEGs) was based on two thresholds:
a log fold change (logFC) of 1.5 and an adjusted
P-value of 0.05. For visual representation of these
DEGs, a heatmap was constructed utilizing the
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pheatmap package[10], while a volcano plot was
developed with the ggplot2 package[ll] to further
illustrate the expression patterns.

2.3 Weighted gene co-expression network
analysis

For weighted gene co-expression network
analysis (WGCNA), we leveraged gene expression
data from the integrated training set, which had
undergone rigorous preprocessing and integration
steps to guarantee data uniformity and quality. The
WGCNA package[12] was applied to conduct a
thorough network analysis. Specifically, initial sample

clustering was performed to assess inter-sample
relationships and detect potential outliers, a step that
helps uphold the robustness of subsequent network
building. After sample clustering, module detection
was carried out according to the co-expression
patterns of genes; here, genes exhibiting comparable
expression profiles across samples were clustered into
separate modules. Finally, the gene inventory for each
identified module was produced and exported,
providing a basis for further functional enrichment
analyses and investigations into module-trait
associations.

Testing set
(GSE764, GSE68312, GSE68295)

Data Collection
GSE764, GSE68312, GSE68295, TCGA-
SARC, GSE36610

Data preprocessing
Normalization, Batch effect
correction

Training set
(TCGA-SARC dataset, GSE36610)

Feature selection
Differentially expressed genes
analysis, WGCNA analysis

MA_EXALLC

InteGenes
Model building
113 distinct machine learning
methods
Model validation
Confusion Matrix, ROC curve SR
GWAS data curation Single-cell analysis
¢ finngen_R12_C3_LEIOMYOSARCO Mgenes 4 ULSA metastatic lesions and 5

normal controls

Mendelian randomization analysis

Functional enrichment analysis
GO, KEGG, GSEA, GSVA

Expression pattern

GeneMANIA analysis

Tumor immune microenvironment
Correlation analysis, CIBERSORT
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Figure 1. Research flow chart.
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Figure 2. Data preparation. (A) Box plots showing expression profiles of each dataset before batch effect correction. (B) Box plots showing expression profiles of each dataset
after batch effect correction. (C) PCA plots of each dataset before batch effect correction. (D) PCA plots of each dataset after batch effect correction.

2.4 Screening for intersection genes

The intersection of the previously identified
DEGs and the genes from the key modules of
WGCNA was calculated to obtain intersection genes.
These genes were designated as InteGenes and used
for = subsequent research. Additionally, the
VennDiagram package was utilized to generate a
Venn diagram for visualizing this intersection.

2.5 Functional enrichment analysis

To explore the functional attributes of InteGenes,
the R package “clusterProfiler”[13] was employed to
carry out comprehensive enrichment analyses
encompassing Gene Ontology (GO) annotations and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway mapping. The GO analysis was designed to
classify =~ these genes into three primary
categories — biological processes, cellular components,
and  molecular  functions—thereby  offering
perspectives on their specific roles in diverse
biological events. In parallel, the KEGG pathway
analysis was performed to pinpoint signaling
pathways with significant enrichment, aiding in
clarifying how these InteGenes collectively engage in
particular physiological mechanisms or pathological
cascades. Together, these functional enrichment
analyses establish a basis for unraveling the core
biological functionalities and regulatory networks

that underpin the traits under

investigation.

phenotypic

2.6 Construction of diagnostic models through
113 unique machine learning strategies

This study deployed a total of 113 distinct
machine learning strategies for developing diagnostic
models. Specifically, a comprehensive catalog of these
models —encompassing their core features and
foundational principles —is provided in
Supplementary Table 1 for thorough reference.
Additionally, the algorithmic code implementing all
113 machine learning approaches, complete with
respective parameter settings and computational
pipelines, is available in Supplementary Code 1.
Notably, among the variables integrated into the
models, the smallest number of variables included in
any constructed model was 5, ensuring a baseline
complexity to capture meaningful diagnostic patterns.
The model demonstrating the highest mean AUC in
both the training and validation sets was selected and
designated as "sModel" for subsequent analyses. ROC
curves for the training and validation sets were
generated using the pROC package[14]. Genes
incorporated in this model were extracted and labeled
as Mgenes, and volcano plots illustrating these
Mgenes were subsequently created using the ggplot2
package.
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2.7 Development of the confusion matrix

Since sModel was earlier established as the
top-performing model—due to its superior mean
AUC across both the training and validation sets—it
was chosen to generate the confusion matrix. This
process seeks to further gauge the model’s
classification abilities by specifying counts of true
positives, true negatives, false positives, and false
negatives, thereby offering a detailed overview of its
predictive precision.

2.8 Correlation assessments

Using the integrated gene expression dataset,
correlation assessments were conducted to explore
expression associations among Mgenes, with the goal
of uncovering potential co-expression patterns and
interdependent relationships. To visually depict these
correlative  trends, comprehensive correlation
diagrams were generated via the
PerformanceAnalytics package[14]. These visuals
effectively capture both the magnitude and direction
of associations between each pair of Mgenes,
providing clear insights into their interconnections.

2.9 GeneMANIA-based analyses

To explore in detail the functional connections
and interaction profiles among Mgenes, we carried
out GeneMANIA[15] analyses through its specialized
web-based platform (https://genemania.org/). This
computational method synthesizes a range of
biological datasets—including gene co-expression
trends, protein-protein binding interactions, pathway
enrichments, genetic interplay, and shared functional
annotations — to build a holistic network. The analysis
seeks to uncover potential functional cooperativity,
regulatory links, and interconnected biological
mechanisms among Mgenes, thus offering insights
into their coordinated functions within the biological
system being studied.

2.10 Gene set enrichment analysis (GSEA)

To comprehensively investigate the biological
functionalities and pathway connections of Mgenes,
we conducted Gene Set Enrichment Analysis (GSEA)
via the clusterProfiler package—a robust R-based
toolkit for functional enrichment investigations. For
this analytical process, we employed the
"c2.cp.kegg.Hs.symbols.gmt" reference gene set, a
carefully compiled dataset from the Molecular
Signatures Database (MSigDB). This particular gene
set includes canonical pathways (cp) sourced from the
Kyoto Encyclopedia of Genes and Genomes (KEGG),
annotated with human (Hs) gene symbols, rendering
it highly suitable for identifying enriched signaling
and metabolic pathways among Mgenes. By utilizing

this pathway-centered reference dataset, the GSEA
not only measures the strength of enrichment for
relevant biological pathways but also uncovers
potential coordinated mechanisms that underlie the
functional roles of Mgenes, thereby offering valuable
insights into their collective participation in the
biological system being examined.

2.11 Gene set variation analysis (GSVA)

To profile the pathway activity dynamics of
Mgenes across samples and examine their functional
significance, we conducted Gene Set Variation
Analysis (GSVA) via the R-based GSVA package[16].
In contrast to conventional gene set enrichment
approaches that center on predefined gene sets within
a single cohort, GSVA converts gene-level expression
data into gene set-level enrichment scores. This
transformation enables quantitative evaluation of
how pathways vary across multiple samples. For this
analysis, we drew on the
"c2.cp.kegg.Hs.symbols.gmt" reference gene set from
the Molecular Signatures Database (MSigDB). This
resource comprises curated canonical pathways (cp)
originating from the Kyoto Encyclopedia of Genes
and Genomes (KEGG), annotated with human (Hs)
gene symbols. By harnessing this pathway-focused
dataset, our GSVA sought to quantify the dynamic
enrichment of KEGG pathways among Mgenes across
samples. This effort aimed to uncover potential shifts
in biological processes linked to Mgenes, shedding
light on their context-specific functional roles within
the system under study.

2.12 Single-cell analysis

Single-cell sequencing data of ULMS were
analyzed using the Seurat package[17], and the results
of cell type identification are described in our
previously published paper[7]. Gene expression
feature plots were generated using the FeaturePlot
function, and violin plots of gene expression were
generated using the VInPlot function.

2.13 Survival analysis

The clinical data and transcriptome data of
TCGA-SARC were collated, and cases were divided
into high-expression and low-expression groups
based on the median expression value of the gene.
Survival curves for the high- and low-expression
groups were plotted using the survival package, with
statistical significance and P-values annotated.

2.14 CIBERSORT-based analyses

To profile the immune cell makeup within the
studied samples, we conducted CIBERSORT-based
analyses[18] on the integrated gene expression data.
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CIBERSORT is a commonly employed computational
tool that calculates the relative abundances of 22
immune cell subtypes from bulk gene expression
profiles by deconvolving mixed transcriptional
signals. For this deconvolution process, the reference
panel of immune cell transcriptional
signatures —encompassing canonical expression
profiles of distinct immune cell subsets —was adopted
as detailed in Supplementary Table 2. This analysis
aimed to quantify the prevalence of various immune
cell populations (e.g., T cell subsets, B cells,
macrophages, and neutrophils) across samples. In
doing so, it sought to uncover potential links between
the immune microenvironment and the biological
scenario under investigation, as well as shed light on
the cross-talk between Mgenes and immune
modulation.

2.15 linkET analyses

To investigate putative connections between
model genes (Mgenes) and immune cell profiles, we
performed linkET analyses[19], drawing on findings
from our earlier CIBERSORT investigations. linkET is
a computational method developed to unravel
intricate interplay among biological attributes —here,
its focus was on measuring and illustrating the
cross-talk between Mgene expression patterns and the
relative proportions of immune cell subsets as
estimated by CIBERSORT. This analytical approach
aimed to identify specific correlations (such as
positive or negative associations) between individual
Mgenes and distinct immune cell populations, while
also pinpointing broader patterns of co-regulation. By
integrating Mgene expression data with immune cell
composition profiles, the linkET analyses sought to
clarify how Mgenes might shape or be shaped by the
immune microenvironment, thereby offering a more
holistic understanding of their functional roles within
the biological system being studied.

2.16 Correlation analysis of antineoplastic drug
sensitivity

To investigate the correlation between the
expression of Mgenes and sensitivity to antineoplastic
drugs, we performed drug sensitivity analysis using
the GSCA tool
(https:/ / guolab.wchscu.cn/ GSCA/ #/drug)[20]. This
tool compiles the half-maximal inhibitory
concentration (ICso) values of 265 small-molecule
compounds across 860 cell lines, together with the
corresponding  mRNA gene expression profiles,
retrieved from the Genomics of Drug Sensitivity in
Cancer (GDSC) database. The mRNA expression
datasets and drug sensitivity datasets were
integrated, followed by Pearson correlation analysis

to determine the correlation between gene mRNA
expression levels and drug ICs, values. The P-values
were adjusted using the false discovery rate (FDR)
method. Additionally, this tool compiles the ICs,
values of 481 small-molecule compounds in 1001 cell
lines and their corresponding mRNA gene expression
profiles from the Genomics of Therapeutics Response
Portal (CTRP). The mRNA expression datasets and
drug sensitivity datasets were integrated in the same
manner, and Pearson correlation analysis was
conducted to assess the correlation between gene
mRNA expression levels and drug ICso values, with
P-values adjusted via the FDR method. For result
visualization, the top 30 ranked drugs from the
analyses were selected to generate a correlation
heatmap.

2.17 GWAS data compilation and mendelian
randomization (MR) analyses

To explore putative causal links between Mgenes
and leiomyosarcoma pathogenesis, we first assembled
relevant genomic datasets from two reputable
repositories: the FinnGen database
(https:/ /www finngen.fi/)[21] and the IEU Open
GWAS Project (https:/ /opengwas.io/)[22].
Specifically, we obtained leiomyosarcoma-associated

genome-wide association study (GWAS)
datasets —capturing genetic  variants tied to
leiomyosarcoma  susceptibility =~ across  large

cohorts—and human gene expression quantitative
trait locus (eQTL) datasets, which quantify
relationships between genetic variants and Mgene
expression levels. The GWAS dataset included in this
study is detailed in Table 1.

Subsequent Mendelian Randomization (MR)
analyses were conducted using the TwoSampleMR
package in R, with Mgenes designated as exposure
factors (i.e, their expression levels) and
leiomyosarcoma incidence as the clinical outcome. To
uphold methodological rigor, genetic instrumental
variables (single nucleotide polymorphisms, SNPs)
were selected from eQTL datasets based on strict
criteria: they must reach genome-wide significance
with Mgene expression (P < 5x107®%) to ensure robust
associations; exhibit low linkage disequilibrium (r2 <
0.001 within a 10,000 kb window) to avoid correlated
instruments; and be excluded if located within 500 kb
of known leiomyosarcoma susceptibility loci to
reduce pleiotropy. The leiomyosarcoma GWAS
dataset—used to quantify associations with the
outcome (Y, leiomyosarcoma)—included cases and
controls, ensuring sufficient power to detect genetic
links to disease susceptibility. Meanwhile, the eQTL
dataset—focused on capturing associations between
instrumental variables (Z, SNPs) and the exposure (X,
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Mgene  expression)—encompassed  individuals,
providing reliable estimates of SNP-Mgene
expression correlations. Collectively, these datasets
provided the statistical robustness necessary to detect
modest causal effects in subsequent MR analyses,
where Z acts as a genetic proxy for X to infer its causal
relationship with Y.

Multiple MR analytical approaches were
employed for cross-validation: inverse variance
weighted (IVW) as the primary method to estimate
overall causal effects using all valid IVs; MR-Egger
regression to account for potential horizontal
pleiotropy and deliver a pleiotropy-adjusted effect
estimate; weighted median estimator, robust to up to
50% invalid IVs; and weighted mode estimator, which
prioritizes IVs with consistent effect directions.
Heterogeneity among IVs was evaluated using
Cochran’s Q statistic (significance threshold P < 0.05),
with the I? statistic quantifying the proportion of
variance due to heterogeneity. For pleiotropy testing,
the MR-Egger intercept test (significance threshold P
< 0.05) was applied to detect directional horizontal
pleiotropy, and the MR-PRESSO (Mendelian
Randomization Pleiotropy RESidual Sum and Outlier)
method was used to identify and correct for outlier
SNPs introducing pleiotropic bias. A leave-one-out
sensitivity analysis was also performed to assess
whether individual SNPs unduly influenced the
overall effect estimate, ensuring result robustness.
This comprehensive framework aimed to rigorously
evaluate whether genetically predicted Mgene
expression levels exert causal effects on
leiomyosarcoma risk, leveraging two-sample MR to
minimize confounding and reverse causation biases
inherent in observational studies.

2.18 Statistical analyses

All statistical procedures carried out in the
present study were implemented via R software
(version 4.3.2)—a versatile platform extensively
employed for statistical computation and data
visualization in the field of biomedical research. To
establish statistical significance, a strict threshold of p
< 0.05 was employed, which ensures that any
observed associations or discrepancies are not likely
to stem from random variation. Furthermore, all
graphical outputs—such as scatter plots, heatmaps,
and volcano plots—were constructed using the
ggplot2 package in R. This tool is a robust and
adaptable component of the R ecosystem, enabling the
development  of  high-fidelity, = customizable
visualizations that effectively showcase key insights
derived from the analyses. This standardized
methodology for statistical testing and visualization
guarantees the reproducibility of study results and

ensures clarity when presenting findings, aligning
with rigorous biomedical research standards.

3. Results

3.1 Ildentification of differentially expressed
genes based on transcriptome data from the
training set

In the present study, a total of three distinct
datasets were designated as the training cohort to
support the analysis of transcriptome data,
specifically including the TCGA-SARC dataset and
the GSE36610 dataset. Together, these training
datasets collectively contained 39 clinical samples
derived from patients with uterine leiomyosarcoma,
as well as 10 normal control samples that served as
the baseline reference for comparison. Separately,
three other datasets were assigned to serve as the
testing cohort to validate subsequent findings, namely
GSE764, GSE68312, and GSE68295. This testing cohort
comprised 18 uterine leiomyosarcoma samples and an
additional 10 normal control samples, ensuring
consistency in the control group setup across both
training and testing phases. To pinpoint genes with
differential expression patterns between the uterine
leiomyosarcoma group and the normal control group,
the limma software package—widely used in
bioinformatics for analyzing gene expression
microarray and RNA-seq data—was employed for
statistical analysis. This analytical process ultimately
led to the identification of 143 differentially expressed
genes (DEGs), which are critical for further exploring
the molecular signatures of uterine leiomyosarcoma.
Comprehensive details regarding the specific
information of these 143 DEGs, such as their
expression fold changes and statistical significance,
are provided in Supplementary Table 3 for reference.

3.2 Ildentification of key gene modules via
weighted gene co-expression network analysis
(WGCNA)

To pinpoint co-expression gene modules closely
linked to uterine leiomyosarcoma, weighted gene
co-expression network analysis (WGCNA) was
conducted on the transcriptome data of the testing set.
This analytical approach generated 12 distinct gene
modules, each labeled with a unique color for

straightforward  differentiation and  reference:
MEblue, MEpink, MEpurple, MEblack, MEred,
MEturquoise, MEmagenta, MEbrown,

MEgreenyellow, MEtan, MEgreen, and MEsalmon
(Figures 3A and 3B).

Among these 12 color-labeled modules, 5 were
found to exhibit statistically significant associations
with the wuterine leiomyosarcoma phenotype.
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Specifically, 4 of these modules—MEpink,
MEturquoise, MEgreen, and MEsalmon—showed
strong positive correlations with the presence of
uterine leiomyosarcoma. Their respective correlation
coefficients were 0.33, 0.54, 042, and 0.34, with
corresponding p-values of 0.02, 6x107%, 0.003, and
0.02. This positive correlation pattern suggests that
the coordinated expression trends of genes within
these four modules may be upregulated during the
development  or  progression  of  uterine
leiomyosarcoma, potentially reflecting their role in
driving disease-related molecular processes.

In contrast, one module — MEblack —displayed a
notable significant negative correlation with the
uterine leiomyosarcoma phenotype, with a correlation
coefficient of -0.6 and a p-value of 5x107°. This
observation implies that the overall gene expression
profile of the MEblack module is likely
downregulated in uterine leiomyosarcoma tissues or
samples, which may indicate a potential
tumor-suppressive role of genes within this module
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(Figure 3C).

Given its robust positive correlation with the
uterine leiomyosarcoma phenotype— particularly its
relatively high correlation coefficient (0.54) compared
to the other positively associated
modules —MEturquoise was selected as the focal
module for further in-depth analysis. Figure 3D
presents a scatter plot that visualizes the relationship
between two key metrics within MEturquoise:
module membership (MM) and gene significance
(GS). Module membership (MM) is a quantitative
indicator that evaluates how strongly each individual
gene is associated with the overall expression pattern
of the MEturquoise module, thus reflecting the gene’s
centrality or “importance” within the module. Gene
significance (GS), by contrast, quantifies the strength
of the statistical link between each gene’s expression
level and the uterine leiomyosarcoma phenotype (e.g.,
whether the gene’s expression differs significantly
between tumor and normal samples).
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Figure 3. WGCNA Analysis. (A) Gene dendrogram with corresponding module colors. (B) Distribution of gene significance across different modules. (C) Module-trait
relationship heatmap. Blue indicates a negative correlation, while red indicates a positive correlation. (D) Scatter plot of Module Membership (MEturquoise) vs. Gene

Significance.
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Figure 4. InteGenes functional enrichment analysis. (A) Venn diagram showing overlapping genes between WGCNA MEred module genes and DEGs. (B) GO Enrichment

Analysis based on InteGenes. (C) KEGG Enrichment Analysis based on InteGenes.

The results from this scatter plot analysis
revealed a strong and statistically robust positive
correlation between GS and MM (correlation
coefficient = 0.74, p < 1x1072°°). This means that genes
with high GS—i.e., those most strongly associated
with the uterine leiomyosarcoma phenotype—also
tend to have high MM, indicating they are among the
most central and influential genes within the
MEturquoise module. This finding not only validates
the biological relevance of the MEturquoise module to
uterine leiomyosarcoma pathogenesis but also
highlights that the core genes of this module are
tightly intertwined with the disease phenotype.
Consequently, MEturquoise is reinforced as a critical

module for subsequent investigations into the
molecular =~ mechanisms  underlying  uterine
leiomyosarcoma.

3.3 Identification of intersection genes and
functional enrichment analysis

To further narrow down and prioritize candidate
genes that possess both differential expression
profiles and a close association with the
ULMS-relevant MEturquoise module, we determined
the overlap between the previously identified
differentially expressed genes (DEGs) and the 292
genes constituting the MEturquoise module — detailed
information on these 292 module genes is available in
Supplementary Table 4. This intersection analysis
yielded 96 shared genes, which were formally
designated as “InteGenes” (a portmanteau of
“Intersection Genes”) to reflect their dual origin from
both DEGs and the MEturquoise module (Figure 4A).
These InteGenes represent a highly prioritized
candidate set, as they simultaneously meet two
critical criteria: they exhibit significant expression
differences between ULMS tumor samples and
normal control samples, and they play central roles in
the MEturquoise module —a module already linked to
ULMS pathogenesis. This dual qualification not only

filters out genes with potential non-specific relevance
but also enhances their credibility as functionally
important targets for investigating the molecular
mechanisms underlying ULMS.

To delineate the biological functions and
molecular roles of these InteGenes, we subsequently
performed two complementary enrichment analyses:
Gene Ontology (GO) enrichment analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis. For the GO analysis,
results were systematically categorized into three core
domains—Biological =~ Process (BP),  Cellular
Component (CC), and Molecular Function (MF)—to
provide a multi-dimensional view of InteGene-related
biological activities. In the Biological Process (BP)
domain, the top three most significantly enriched
terms were chromosome segregation, nuclear
division, and organelle fission; these processes are all
tightly linked to cell division, where chromosome
segregation ensures accurate distribution of genetic
material during mitosis, and nuclear division and
organelle fission serve as foundational steps in cell
cycle progression — pathways frequently dysregulated
in cancer to drive uncontrolled tumor cell
proliferation, a key hallmark of ULMS. In the Cellular
Component (CC) domain, the top three enriched
terms included “spindle,” “chromosomal region,”
and “chromosome, centromeric region”; the spindle is
a microtubule-based structure essential for proper
chromosome alignment and separation during cell
division, while the chromosomal region (especially
the centromeric region) is critical for maintaining
chromosomal stability —a feature often compromised
in ULMS, contributing to tumor heterogeneity and
aggressiveness. In the Molecular Function (MF)
domain, the top three enriched terms were
microtubule binding, tubulin binding, and protein
serine/threonine kinase activity; microtubule and
tubulin binding are pivotal for cytoskeletal dynamics,
which regulate cell shape, division, and migration,
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while protein serine/threonine kinase activity
mediates intracellular signaling cascades that control
cell growth and survival—both of which are core
processes disrupted in ULMS tumorigenesis (Figure
4B).

Parallel to the GO analysis, KEGG pathway
enrichment analysis was conducted to uncover the
signaling and metabolic pathways in which InteGenes
are actively involved, providing insights into their
contextual roles in ULMS biology. This analysis
identified 10 primary pathways with significant
enrichment, each bearing relevance to cancer
development or ULMS-specific molecular features:
Cell cycle, a pathway frequently dysregulated in
ULMS as aberrant cell cycle control drives
uncontrolled tumor growth; Oocyte meiosis and
Progesterone-mediated oocyte maturation, both
linked to hormone-dependent cellular processes that
align with ULMS’s known responsiveness to steroid
hormones; Human T-cell leukemia virus 1 (HTLV-1)
infection, implicating potential virus-associated
pro-tumorigenic mechanisms that may interact with
ULMS pathogenesis; p53 signaling pathway, a
well-characterized tumor suppressor pathway that
regulates cell cycle arrest and
apoptosis — dysregulation of this pathway is common
in aggressive sarcomas like ULMS, contributing to
treatment resistance; Cellular senescence, a process
that restricts abnormal cell proliferation and is often
inactivated in tumors to sustain malignant growth;
Motor proteins, critical for cytoskeletal movement
and cell division, supporting the GO findings on
microtubule function and reinforcing the role of cell
division dysregulation in ULMS; Endocrine
resistance, relevant to ULMS clinical management as
endocrine therapies are sometimes used in advanced
cases, and resistance to such treatments remains a key
challenge; FoxO signaling pathway, which regulates
cell metabolism and stress responses, with established
links to cancer progression and metastasis; and Breast
cancer, highlighting potential shared molecular
mechanisms  between = ULMS  and  other
hormone-driven malignancies, offering opportunities
for cross-disease translational research (Figure 4C).

Collectively, these GO and KEGG enrichment
results paint a comprehensive picture of the biological
roles of InteGenes, directly linking them to core
cellular processes (e.g., cell division, cytoskeletal
regulation) and signaling pathways (e.g., cell cycle,
p53) that are known to be dysregulated in ULMS
development and progression. By bridging
differential gene expression with module-specific
relevance and functional context, these findings not
only validate the importance of InteGenes as key
candidates for further study but also lay a foundation

for subsequent functional experiments to confirm
their role as mediators of ULMS
pathogenesis — ultimately providing potential targets
for the development of more effective diagnostic
markers or therapeutic strategies for ULMS.

3.4 Construction and validation of machine
learning models

A total of 113 unique machine learning
algorithms were utilized to develop diagnostic
models for uterine leiomyosarcoma, and the gene
parameters associated with each model are elaborated
in Supplementary Table 5. Subsequently, these
models underwent validation in three independent
datasets (GSE764, GSE68312, and GSE68295), and the
area under the curve (AUC) was calculated for each
model, as depicted in Figure 5A. Upon sorting the
models by AUC values in descending order, the top
12 performers were determined to be Ridge,
Enet[a=0.1], Enet[a=0.2], Enet[a=0.3], Enet[a=0.4],
Enet[a=0.5], Enet[a=0.6], Enet[a=0.7], Enet[a=0.8],
Random Forest (RF), RF+Gradient Boosting Machine
(GBM), and GBM. The average AUC of these top 12
models—derived from the mean of their AUC scores
in the training set—was uniformly 1.

For a more in-depth assessment of model
performance, the top 12 models (those with the
highest average AUC) were subjected to confusion
matrix analysis. Following this thorough evaluation,
the GBM model was selected for subsequent
investigations, as it demonstrated an AUC of 1 in the
training set (Figures 5B-E). Evaluating the GBM
model’s performance through confusion matrices
provided detailed insights: the confusion matrix for
the training set revealed flawless -classification
between Normal (negative class) and Tumor (positive
class). Specifically, all 10 actual Normal samples were
correctly classified as Normal (true negatives, with a
count of 10), and all 39 actual Tumor samples were
accurately designated as Tumor (true positives, with a
count of 39), with no false positives (counting 0,
meaning no Normal samples were incorrectly labeled
as Tumor) and no false negatives (counting 0,
indicating no Tumor samples were misclassified as
Normal). As a result, crucial metrics such as overall
accuracy, Tumor-class precision, Tumor-class recall,
and Normal-class specificity all attained 100%.
Although the model successfully learned the
discriminative features between classes in the training
set, its ability to generalize needed validation using
independent test sets to verify real-world applicability
(Figure 5F). Subsequently, confusion matrix analysis
was conducted on the three validation datasets.

https://www.medsci.org



Int. J. Med. Sci. 2026, Vol. 23

937

A

Ridge
Enet[alpha=0.1]
Enet[alpha=0.2]
Enet[alpha=0.3]
Enet[alpha=0.4]
Enet[alpha=0.5]
Enet[alpha=0.6]
Enet[alpha=0.8]
Enet[alpha=0.7]

RF

RF+GBM

GBM
Enet[alpha=0.9]
RF+Enet[alpha=0.1]
RF+Enet[alpha=0.3]
RF+Enet[alpha=0.5]
RF+Enet[alpha=0.4]

AUC Cohort
' M GsEes205
g _ GSE68312
M GSE764
06 Train

Sensitivity

04

Train

10

08
!

AUC: 1.000
95% CI: 1.000-1.000

0.2

0.0

T T T T T
00 02 04 06 08
1 - Specificity

GSE68295

(@)

Sensitivity

0.4

GSE764

1.0

0.8
I

0.6
I

AUC: 1.000
95% Cl: 1.000-1.000

0.2
1

0.0
1

T T T T T
00 02 04 06 08
1 - Speciticity

GSE68312

RF+Ridge
RF+Enet[alpha=0.2]
XGBoost
RF+plsRgim
RF+XGBoost
RF+LDA

LDA
Stepglm[forward]
RF+Stepglm(forward]
RF+SVM

SVM

plsRgim
RF+NaiveBayes
NaiveBayes

| 0.4

o|o
>|2
o
SN2

o
(=2
(=2}
%
°
2121212l
2 olo
NEEEMEEHEE
g1IZ1Z 1< 12icicie e lelelelelel - 1= ~1=1=1=]-
Al 1C121elelelejeo oo le
Sielolojlojojojejo o
ovolN|ejojojo oo

o
o
Iy

o

CONFUSION MATRIX (Train) G CONFUSION MATRIX (GSE764)

H

0
0

1
1

0.8
1
08
1

Sensitivity
06
06

04
Sensitivity

AUC: 1.000 AUC: 1.000
95% CI: 1.000-1.000 95% Cl: 1.000-1.000

04
1

0.2
0.2

0.0
0.0

T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
1 - Specificity 1 - Specificity

CONFUSION MATRIX (GSE68295) I CONFUSION MATRIX (GSE68312)

Actual Actual

Normal Tumor Normal Tumor

K
=

Normal
Normal

Predicted
Predicted

Tumor
Tumor

Actual Actual

Normal Turmor

Tumor

Normal

Normal
Normal

Predicted
Predicted

Tumor
Tumor

Figure 5. Construction and validation of diagnostic models via multiple machine learning methods. (A) Heatmap of AUC values for machine learning methods in the training set
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Across the three independent validation datasets
(GSE764, GSE68295, and GSE68312), the model
displayed consistent and robust classification
capability. In the GSE764 dataset, the overall accuracy
reached approximately 92.3% (calculated as (true
negatives + true positives) divided by total samples,
which equals (3 + 9) divided by (3 + 1 + 9 + 0)). The
precision for the Tumor class (the ratio of truly Tumor
samples among all predicted Tumor samples) was
90% (calculated as true positives divided by (true
positives + false positives), which equals 9 divided by
(9 + 1)), the recall for the Tumor class (sensitivity, the
proportion of truly Tumor samples correctly detected)
was 100% (calculated as true positives divided by
(true positives + false negatives), which equals 9
divided by (9 + 0)), and the specificity for the Normal
class (the proportion of truly Normal samples
correctly identified) was 75% (calculated as true
negatives divided by (true negatives + false positives),
which equals 3 divided by (3 + 1)) (Figure 5G). For the
GSE68295 dataset, the overall accuracy was 100%
(calculated as (true negatives + true positives) divided

by total samples, which equals (3 + 6) divided by (3 +
0 + 6 + 0)). The Tumor-class precision, Tumor-class
recall, and Normal-class specificity all reached 100%
(calculated as 6 divided by (6 + 0), 6 divided by (6 + 0),
and 3 divided by (3 + 0), respectively) (Figure 5H). In
the GSE68312 dataset, the overall accuracy also
reached 100% (calculated as (true negatives + true
positives) divided by total samples, which equals (3 +
3) divided by (3 + 0 + 3 + 0)), and the Tumor-class
precision, Tumor-class recall, and Normal-class
specificity were all 100% (calculated as 3 divided by (3
+ 0), 3 divided by (3 + 0), and 3 divided by (3 + 0),
respectively) (Figure 5I).

Taken together, these metrics illustrate the
model’s robust generalizability: the perfect Tumor
recall (100%) across all datasets ensures that all actual
Tumor samples are detected, while the high-to-perfect
accuracy, precision, and Normal specificity
underscore the model’s reliability in differentiating
between Normal and Tumor classes — thus supporting
its potential for practical use in clinical settings.
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3.5 Expression patterns of Mgenes in uterine
leiomyosarcoma

Thirty-six genes—specifically GATA2, FOS,
CKS2, MCM2, TK1, ATP1A2, PGR, CXCL12, IGF1,
GGH, APOD, MCM4, TRIP13, TYMS, DPP6, CDKN3,
STIL, RRM2, HTR2B, CCNB1, MAD2L1, RASSF2,
CDKN2A, CENPF, CDC20, CENPA, TTK, PLK4,
CDC7, KIF2C, HMMR, UBE2C, CCNA2, KIF14,
KIF11, and TOP2A —were integrated into the GBM
model for subsequent analytical procedures. Among
these 36 candidate genes, 10 (APOD, PGR, DPP6,
CXCL12, FOS, ATP1A2, IGF1, GATA2, RASSF2, and
HTR2B) displayed a statistically significant
downregulated expression profile in uterine
leiomyosarcoma tissues relative to non-tumor control
tissues. In  contrast, the  remaining 26
genes —including CKS2, MCM2, TK1, GGH, MCM4,
TRIP13, TYMS, CDKN3, STIL, RRM2, CCNBI,
MAD2L1, CDKN2A, CENPF, CDC20, CENPA, TTK,
PLK4, CDC7, KIF2C, HMMR, UBE2C, CCNAZ2, KIF14,
KIF11, and TOP2A — exhibited a notable upregulation
in expression levels within the tumor group (as
shown in Figure 6A, B). Additionally, we also
investigated the expression abundances of Mgenes
across different cell types in the single-cell RNA
sequencing data. Except for FOS, most Mgenes
exhibited relatively low expression abundances
(Supplementary Figures 1 and 2, where red indicates
the normal group and green indicates the tumor
group in the violin plots).

To further investigate the potential regulatory
interactions and co-expression features of these
Mgenes, a correlation analysis was performed on their
expression levels. Results of this analysis uncovered
distinct, biologically meaningful correlations between
the expression profiles of the Mgenes, indicating the
presence of potential synergistic or antagonistic
regulatory networks among these genes during the
progression of uterine leiomyosarcoma (Figure 6C).

Subsequently, to assess the diagnostic utility of
each individual Mgene for differentiating uterine
leiomyosarcoma tissues from non-tumor tissues,
receiver operating characteristic (ROC) curves were
constructed for each gene, and the associated area
under the curve (AUC) values—indicators of
diagnostic accuracy —were computed (Figure 6D).
These AUC values were as follows: GATA2 (0.882),
FOS (0.877), CKS2 (0.967), MCM2 (0.895), TK1 (0.910),
ATP1A2 (0.872), PGR (0.805), CXCL12 (0.877), IGF1
(0.836), GGH (0.910), APOD (0.874), MCM4 (0.938),
TRIP13 (0.972), TYMS (0.946), DPP6 (0.851), CDKN3
(0.910), STIL (0.897), RRM2 (0.892), HTR2B (0.782),
CCNB1 (0.844), MAD2L1 (0.938), RASSF2 (0.846),
CDKN2A (0.823), CENPF (0.923), CDC20 (0.918),
CENPA (0.879), TTK (0.890), PLK4 (0.923), CDC7

(0.842), KIF2C (0.892), HMMR (0.877), UBE2C (0.944),
CCNA2 (0.887), KIF14 (0.915), KIF11 (0.895), and
TOP2A (0.921). Notably, TRIP13 exhibited the highest
diagnostic performance, with an AUC of 0.972,
whereas HTR2B had the relatively lowest—yet still
clinically relevant—diagnostic accuracy (AUC =
0.782) among the 36 Mgenes. Collectively, these
results suggest that most of the Mgenes possess
substantial ~potential as valuable diagnostic
biomarkers for uterine leiomyosarcoma.

3.6 Functional enrichment analysis of Mgenes

To explore the underlying molecular interaction
networks and functional implications of Mgenes in
uterine leiomyosarcoma, we initially carried out
protein-protein interaction (PPI) network analysis
using the GeneMANIA bioinformatics platform
(Figure 7A). This analysis identified 20 genes that
display significant co-expression correlations with the
36 Mgenes, including NDC80, CDK1, MKI67,
NCAPH, CENPE, DLGAP5, KIF23, MELK, CDC25C,
NEK2, BUB1B, BUBI, SPC25, BIRC5, AURKA, GTSEL,
PLK1, ZWINT, TPX2, and FOXM1. Notably, these
co-expressed genes are well-documented to mediate
core biological processes such as mitotic nuclear
division, chromosome segregation, nuclear
chromosome segregation, mitotic sister chromatid
segregation, regulation of nuclear division, the
metaphase-to-anaphase transition of the mitotic cell
cycle, and cell cycle checkpoint control. Dysregulation
of these processes is a hallmark of malignant
transformation, as it drives wuncontrolled cell
proliferation, genomic instability, and aberrant cell
cycle progression—all of which are key pathological
features contributing to the initiation, invasion, and
metastasis of uterine leiomyosarcoma. This suggests
that Mgenes may interact with these co-expressed
genes to modulate critical oncogenic pathways in the
disease.

Subsequently, to gain deeper insights into the
pathway enrichment profiles specific to each
individual Mgene, we performed separate Gene Set
Enrichment Analysis (GSEA) for all 36 Mgenes. The
results of this gene-specific GSEA are illustrated in
Figure 7B (with each subpanel corresponding to one
Mgene), and consistently pointed to the enrichment of
several key Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways. These pathways
included KEGG_CELL_CYCLE (a central regulator of
cell proliferation, whose dysregulation is ubiquitous
in sarcomas), KEGG_DNA_REPLICATION (essential
for maintaining proper DNA duplication during cell
division), @ and three = DNA  repair-related
pathways —KEGG_BASE_EXCISION_REPAIR,
KEGG_HOMOLOGOUS_RECOMBINATION, and
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KEGG_MISMATCH_REPAIR. Impairments in these
DNA repair pathways are particularly relevant to
uterine leiomyosarcoma, as they can lead to the
accumulation of genetic mutations and chromosomal
abnormalities, further promoting tumor progression
and resistance to therapeutic interventions.

To validate the robustness and reproducibility of
these enrichment findings, we additionally performed
Gene Set Variation Analysis (GSVA) on the entire
Mgene set. As shown in Figure 8, the GSVA results
exhibited a high degree of concordance with the
GSEA  outcomes: both analyses consistently
highlighted the enrichment of the aforementioned cell
cycle, DNA replication, and DNA repair pathways.
This cross-validation not only confirms the reliability
of our functional enrichment results but also
underscores that the association of Mgenes with these
cancer-relevant pathways is not an artifact of
individual gene analysis, but rather a collective
functional characteristic of the entire Mgene set.
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Together, these findings strongly support the notion
that Mgenes play a coordinated role in regulating
critical oncogenic processes in uterine
leiomyosarcoma, providing a molecular basis for their
potential as diagnostic biomarkers and therapeutic
targets.

3.7 Analysis of the impact of Mgenes
expression on the survival prognosis of ULMS

To investigate the impact of Mgenes expression
on the survival prognosis of ULMS, we performed
survival = analysis using clinical data and
transcriptomic data from the TCGA-SARC dataset.
We found that UBE2C, TK1, GGH, and MAD2L1
(among Mgenes) were significantly associated with
the survival prognosis of ULMS, and high expression
of these genes was correlated with poor survival
outcomes in ULMS (Figure 9).
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Figure 6. Expression patterns and expression correlation analysis of Mgenes. (A) Volcano plot of differential expression for Mgenes. (B) Expression differences of Mgenes
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Figure 7. Protein-protein interaction network and GSEA analysis of Mgenes. (A) Protein-protein interaction network diagram of Mgenes. (B) GSEA plot for Mgenes.

3.8 Correlation analysis of Mgenes with diverse
immune cells in the tumor immune
microenvironment

To delineate the potential cross-talk between
Mgenes and the immune regulatory network within
the ULMS microenvironment—a vital aspect for
deciphering  tumor-immune interactions and
advancing the development of immunotherapeutic
approaches—we first assessed the fractional

abundances of various immune cell subsets in the
tumor group versus the normal control group (Figure
10A, B). Our findings revealed striking disparities in
immune cell distribution between the two groups:
specifically, follicular helper T cells and MO
macrophages were present at substantially elevated
fractional abundances in the tumor group compared
to the normal group, a phenomenon that may reflect
tumor-driven activation or recruitment of these
immune cell populations. In contrast, gamma delta T
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cells, activated natural killer (NK) cells, and resting
mast cells showed notably reduced proportions in the
tumor group, which could indicate compromised
immune surveillance or a transition toward an
immunosuppressive microenvironment.
Additionally, the analysis identified heterogeneity in
the fractional distribution patterns of immune cells
within the tumor group itself, implying that the
immune microenvironment may differ across distinct
regions or pathological stages of ULMS
lesions — variations that could impact the progression
of local tumor lesions and responsiveness to
treatment.

Furthermore, to delineate the interactive
relationships between immune cell populations in the
tumor microenvironment, we examined the
correlative relationships between distinct immune cell
subsets. The results revealed considerable differences
in the magnitude and direction of correlations across
various immune cell types (Figure 10C): for example,
some cell subsets displayed positive co-occurrence
trends (suggesting potential synergistic interactions),
while others exhibited negative associations
(indicating reciprocal regulatory inhibition). This
observation further underscores the complexity of the
immune cell interaction network in the ULMS
microenvironment, laying a crucial groundwork for
subsequent investigations into the correlations
between Mgenes and these immune cell subsets.

i

tvalue of GSVA score tvalue of GSVA score

Figure 8. GSVA analysis based on Mgenes.

After defining the characteristics of immune cell
distribution and intercellular correlative relationships,
we further analyzed the associations between
individual Mgenes and each immune cell subset to
elucidate the potential regulatory functions of Mgenes
in modulating the tumor immune microenvironment.
As illustrated in Figures 11 and 12, the correlation
patterns differed markedly across distinct Mgenes.
Specifically, Figure 11 presents Spearman correlation
lollipop plots depicting the associations between 36
candidate Mgenes and immune cell infiltration
patterns in ULMS, with each subpanel dedicated to a
single Mgene. The x-axis of each subplot denotes the
correlation coefficient, which captures both the
direction and magnitude of the relationship between
Mgene expression and the cellular abundance of
particular immune cell subsets; p-values are indicated
adjacent to each data point, with P < 0.05 defined as
statistically significant—these significant correlations
are highlighted in red to differentiate them from
non-significant results (marked in black). The key
Mgenes analyzed comprised both upregulated and
downregulated genes in ULMS, including GATA?2,
FOS, CKS2, MCM2, TK1, ATP1A2, PGR, CXCL12,
IGF1, GGH, APOD, MCM4, TRIP13, TYMS, DPPs,
CDKNS3, STIL, RRM2, HTR2B, CCNB1, MAD2L1,
RASSF2, CDKN2A, CENPF, CDC20, CENPA, TTK,
PLK4, CDC7, KIF2C, HMMR, UBE2C, CCNA2, KIF14,
KIF11, and TOP2A.
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Figure 9. Survival curves of survival analysis on TCGA-SARC dataset grouped by Mgenes expression.
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Figure 10. Proportion and correlation analysis of immune cells in the tumor immune microenvironment. (A) Proportions of various immune cells in the tumor immune
microenvironment between the tumor group and normal group. (B) Box plots comparing differences in immune cell proportions between the tumor group and normal group.

(C) Correlation analysis among various immune cells. *P<0.05, **P<0.01.

Within the set of statistically significant findings,
a cluster of Mgenes that are upregulated in
ULMS—including genes associated with cell cycle
progression and cellular proliferation (e.g., CKS2,
MCM2, TRIP13, TYMS, STIL)—showed positive
correlations with immunosuppressive cell subsets,
such as M2-like tumor-associated macrophages
(TAMs) and regulatory T cells (Tregs). For instance,
TRIP13—a gene with high diagnostic relevance in
ULMS — exhibited a striking positive correlation with
M2 TAMs (P < 0.05), suggesting that it may play a role
in driving the accumulation of  these
immunosuppressive cell populations to shape the
ULMS tumor immune microenvironment. In contrast,
Mgenes that are downregulated in ULMS (e.g.,
GATA2, CXCL12, HTR2B) displayed significant
negative associations with immunosuppressive cells
or positive correlations with effector immune cells:
GATA2 showed a negative correlation with Tregs and
a positive correlation with CD8* cytotoxic T
lymphocytes (CTLs), while HTR2B exhibited a

negative  association  with ~ myeloid-derived
suppressor cells (MDSCs). Reduced expression of
these genes in ULMS may compromise anti-tumor
immune responses by disrupting the recruitment of
effector cell populations or enhancing the
accumulation of suppressive cells.

Taken together, these significant correlations
demonstrate that Mgenes are closely linked to the
modulation of the ULMS tumor immune
microenvironment, with their expression patterns
aligning with the characteristic immunosuppressive
features of ULMS. Accordingly, the lollipop plots
provide visual confirmation that specific Mgenes
(both  upregulated and downregulated) are
statistically significantly associated with specific
immune cell subsets — validating their potential utility
as biomarkers for ULMS and offering preliminary
understanding of their functions in regulating the
tumor immune landscape of this disease. Consistent
with these findings, Figure 12 further illustrates the
intricate correlations between Mgenes and diverse
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immune cell populations in the tumor immune
microenvironment, indicating that Mgenes play a
profound role in regulating the tumor immune
microenvironment.

3.9 Exploring the correlation between Mgenes
and antineoplastic drug sensitivity

To investigate the correlation between Mgenes
and antineoplastic drug sensitivity, we performed
integrated analyses using the CTRP and GDSC
databases. The results derived from the GDSC
database are presented in Figure 13A, where a
correlation heatmap was generated based on the
sensitivity profiles of the top 30 ranked antineoplastic
drugs. As illustrated in the heatmap, most Mgenes
exhibited dual characteristics of both resistance and
sensitivity to the panel of drugs dominated by
targeted inhibitors. In contrast, the analytical results

from the CTRP database are shown in Figure 13B,
with the heatmap constructed using the sensitivity
data of the top 30 antineoplastic drugs. Notably, for
the drug panel primarily composed of conventional
chemotherapeutic agents, most Mgenes displayed a
unimodal pattern of either sensitivity or resistance.
Specifically, high expression of FOS, APOD, TK1, and
CDKN3 was correlated with antineoplastic drug
resistance. In contrast, elevated expression of TYMS,
TTK, TOP2A, STIL, RRM2, RASSF2, PLK4, MCM4,
MCM2, MAD?2L1, KIF2C, KIF14, KIF11, DPPs,
CENPF, CENPA, CDC7, and CCNA2 was associated
with increased antineoplastic drug sensitivity. Given
the prevalent drug resistance in ULMS, the distinct
expression patterns of Mgenes may provide valuable
insights for the clinical selection of antineoplastic
drugs and therapeutic regimens.

Correlation Lollipop Plots: Mgenes vs Immune Cells

CKs2

Figure 11. Correlation analysis between Mgenes and various immune cells.

Mem2
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Figure 12. Panoramic correlation heatmap of Mgenes and various immune cells in the tumor immune
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Table 1. Characteristics of GWAS dataset included in the study

D Description Cases (n)

Controls (n)

Population ~ URL

finngen_R12_C3_LEIOM Leiomyosarcoma, excluding all 306 378749
YOSARCOMA_EXALLC  cancers (controls excluding all

cancers)

European https:/ /storage.googleapis.com/finngen-public-data-r12/summar
y_stats/release/finngen_R12_C3_LEIOMYOSARCOMA_EXALLC.

8z

3.10 Exploring genetically causal links between
Mgenes and leiomyosarcoma via mendelian
randomization

To explore whether there are genetically causal

links between Mgenes and leiomyosarcoma
pathogenesis, we  performed a  Mendelian
Randomization (MR) analysis by employing

genome-wide association study (GWAS) data and
expression quantitative trait locus (eQTL) data.
Within this study, eQTL data corresponding to
Mgenes were acquired from the IEU Open GWAS
Database. Concurrently, a GWAS dataset related to
leiomyosarcoma (accession:
finngen_R12_C3_LEIOMYOSARCOMA_EXALLC)
was sourced from the FinnGen Database, which
contained 306 cases and 378,749 controls.
Comprehensive information regarding this GWAS
dataset—such as sample size, study population, and
access URL —is compiled in Table 1. Regrettably, the
outcomes of our MR analysis failed to provide
evidence that supports a genetically causal
relationship between Mgenes and leiomyosarcoma
susceptibility. This observation implies that genetic
variants influencing Mgenes expression may not play
a direct causal role in driving leiomyosarcoma
development—at minimum within the study
populations incorporated here and under the
analytical framework adopted in this research.

4. Discussion

A critical starting point of this study was the
identification of InteGenes—96 genes that overlap
between differentially expressed genes (DEGs) in
uterine  leiomyosarcoma  (ULMS) and the
WGCNA-derived MEturquoise module, which
exhibited the strongest correlation with the ULMS
phenotype (correlation coefficient = 0.54, P = 6x107°).
This dual-selection strategy was deliberate: by
prioritizing genes that are not only transcriptionally
dysregulated between tumor and normal tissues but
also central to ULMS-specific co-expression networks,
we minimized the risk of focusing on genes with
spurious or tissue-unspecific associations, thereby
enhancing the biological relevance of our candidate
gene set. Functional enrichment analyses further
validated this approach, as InteGenes were heavily

concentrated in pathways that are well-established
drivers of ULMS pathogenesis. Gene Ontology (GO)
annotations highlighted processes critical to cell
division and genomic  stability, including
chromosome segregation, nuclear division, and
microtubule binding—all of which are frequently
dysregulated in ULMS to support uncontrolled
proliferation and chromosomal instability. Kyoto
Encyclopedia of Genes and Genomes (KEGG)
pathway analysis similarly emphasized cell cycle

regulation, p53 signaling, and DNA repair
mechanisms (e.g., homologous recombination,
mismatch  repair); for instance, the p53

pathway—often = mutated or  silenced in
ULMS —mediates cell cycle arrest and apoptosis in
response to DNA damage, and the enrichment of
InteGenes here suggests they may act as downstream
effectors of p53  dysfunction,  amplifying
pro-tumorigenic signaling. Notably, InteGenes also
overlapped with hormone-responsive pathways (e.g.,
progesterone-mediated oocyte maturation), aligning
with ULMS'’s known sensitivity to steroid hormones
and the potential for endocrine-based therapeutic
strategies. While the relatively small sample size of
individual GEO datasets (e.g., GSE68312 with 3 tumor
and 3 normal samples) introduced a risk of bias in
DEG and module identification, we mitigated this by
integrating larger cohorts (TCGA-SARC: 27 ULMS
cases; GSE36610: 12 ULMS cases) as the training set
and validating findings across three independent
datasets, strengthening the robustness of our
InteGene prioritization. Future work should further
validate these genes in larger, prospectively collected
clinical cohorts and explore their functional roles via
in vitro (e.g., gene knockdown/overexpression in
ULMS cell lines) and in vivo (xenograft models)
experiments to confirm their causal relevance to
ULMS progression.

To translate these molecular insights into clinical
utility, we compared 113 unique machine learning
(ML) algorithms to develop a ULMS diagnostic
model—an unprecedented scale of algorithmic
comparison for this rare disease. The gradient
boosting machine (GBM) model emerged as the top
performer, achieving a perfect area under the curve
(AUC = 1.0) in the training set and maintaining high
accuracy across validation cohorts (GSE764: 92.3%;
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GSE68295: 100%; GSE68312: 100%). Critically, the
model exhibited 100% tumor recall across all datasets,
ensuring no ULMS cases were missed—a key
attribute for a diagnostic tool, as false negatives could
delay treatment initiation and worsen patient
prognosis. The 36 core genes of this model
(designated “Mgenes”) included both upregulated
(e.g., TRIP13, CKS2, MCM2) and downregulated (e.g.,
GATA2, CXCL12, PGR) transcripts, each with strong
individual diagnostic potential (AUC range: 0.782 for
HTR2B to 0.972 for TRIP13). TRIP13, which showed
the highest individual AUC, is a well-characterized
oncogene that regulates mitotic checkpoint control
and DNA repair; its overexpression has previously
been linked to poor prognosis in other sarcoma
subtypes, further validating its relevance to ULMS
biology. In contrast, downregulated Mgenes such as
GATA2—a transcription factor critical for immune
cell development—foreshadowed potential roles in
ULMS’s immune microenvironment, as discussed
below. Compared to prior ULMS diagnostic studies,
our model offers distinct advantages: it leverages
multi-cohort data to minimize cohort-specific bias,
compares a large number of ML algorithms to select
the most robust approach (rather than relying on a
single method), and captures a broad spectrum of
ULMS’s molecular signature via both up- and
downregulated genes. Clinically, this model could
serve as a complementary tool to histopathology,
particularly for ambiguous cases (e.g., differentiating
ULMS from benign leiomyomas or other uterine
sarcomas). However, the model currently relies on
transcriptomic data from tissue samples, which
requires invasive sampling—a limitation for
non-invasive diagnostics. Future research should
explore whether Mgene expression can be detected in
liquid biopsies (e.g., circulating tumor RNA or
exosomes) to develop non-invasive tests, and
integrating clinical variables (e.g., patient age, tumor
size) with Mgenes may further enhance performance.

The tumor immune microenvironment (TIME) is
a key determinant of ULMS progression and response
to immunotherapy, yet the molecular regulators
linking ULMS's transcriptomic signature to immune

dysregulation remain poorly defined. Our
CIBERSORT analysis revealed distinct TIME
alterations in ULMS: tumor tissues exhibited

increased fractions of follicular helper T cells and MO
macrophages (a precursor to immunosuppressive
M2-like tumor-associated macrophages [TAMs]) and
decreased levels of yO T cells, activated natural killer
(NK) cells, and resting mast cells. These changes align
with a well-documented shift toward immune
suppression in ULMS: yd T cells and activated NK
cells are critical for innate anti-tumor immunity, and

their depletion impairs early tumor surveillance,
while MO macrophage accumulation may facilitate
M2 polarization and the secretion of pro-tumorigenic
cytokines (e.g., IL-10, TGF-B). Notably, Mgenes
exhibited strong correlations with these TIME
changes, providing a direct molecular link between
ULMS's transcriptome and immune dysfunction.
Upregulated Mgenes associated with cell cycle
progression (e.g., TRIP13, CKS2, MCM2) showed
positive correlations with M2 TAMs and regulatory T
cells  (Tregs)—two  key  immunosuppressive
populations. For example, TRIP13’s positive
correlation with M2 TAMs (P < 0.05) suggests it may
promote M2 polarization, potentially via the secretion
of cytokines like CSF1 or activation of STAT3
signaling, which drives macrophage differentiation
toward an immunosuppressive phenotype. In
contrast, downregulated Mgenes such as GATA2 and
CXCL12 correlated negatively with Tregs and
positively with CD8* cytotoxic T lymphocytes (CTLs):
GATA2 is required for the development and
maturation of CTLs and NK cells, so its reduced
expression in ULMS may impair effector cell function,
while CXCL12—a chemokine that recruits CTLs to
tumor sites—may fail to attract anti-tumor immune
cells when downregulated. These findings have
important implications for immunotherapy: ULMS
has shown limited response to immune checkpoint
inhibitors (e.g., anti-PD-1), likely due to its highly
immunosuppressive TIME. Targeting Mgenes could
reverse this suppression—for instance, inhibiting
TRIP13 might reduce M2 TAM accumulation, while
restoring  GATA2 or CXCL12 expression could
enhance CTL recruitment. A limitation of this analysis
is that CIBERSORT infers immune cell fractions from
bulk RNA-seq data, which cannot capture
single-cell-level heterogeneity (e.g., subpopulations of
M2 TAMs with distinct functional roles). Single-cell
RNA sequencing of primary ULMS tissues would
further refine our understanding of Mgene-TIME
interactions and identify more precise immune
targets.

To address whether Mgenes exert causal genetic
effects on ULMS susceptibility —a key question for
distinguishing driver vs. passenger genes—we
performed Mendelian randomization (MR) analysis
using expression quantitative trait locus (eQTL) data
from the IEU Open GWAS Database and a ULMS
genome-wide association study (GWAS) dataset from
FinnGen (306 cases, 378,749 controls). Surprisingly, no
evidence of a genetic causal relationship was found,
suggesting that genetic variants influencing Mgene
expression do not directly drive ULMS development
in the studied populations. Several factors may
explain this null result. First, the FinnGen ULMS
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dataset includes only 306 cases, which limits statistical
power to detect modest causal effects —particularly
for rare genetic variants, given ULMS’s low incidence.
Large-scale GWAS for ULMS are challenging due to
its rarity, and future studies should integrate data
from multiple cohorts (e.g., UK Biobank, expanded
TCGA-SARCQC) to increase sample size and power.
Second, the eQTL data used in MR may not reflect
Mgene expression in uterine tissues: most public
eQTL datasets are derived from blood or non-uterine
organs, and tissue-specific eQTLs could be missed,
leading to inaccurate estimates of SNP-Mgene
associations. Third, Mgenes may be consequences
rather than causes of ULMS: their differential
expression could result from epigenetic modifications
(e.g., DNA methylation, histone acetylation) or cues
from the tumor microenvironment (e.g., cytokine
signaling) rather than genetic variation. Finally,
ULMS exhibits high genetic heterogeneity, with
distinct subtypes driven by different driver mutations
(e.g., TP53, ATRX); our MR analysis did not stratify by
subtype, which may have masked subtype-specific
causal effects. Despite being negative, this result is
valuable: it rules out Mgenes as major genetic drivers
of ULMS, guiding future research toward non-genetic
mechanisms underlying their dysregulation (e.g.,
epigenetic or post-translational = modification).
Additionally, it prevents overinterpretation of
Mgenes as genetic susceptibility markers, which
could misdirect clinical screening efforts. Future MR
studies should use larger, tissue-matched eQTL and
GWAS datasets to confirm these findings.

Collectively, these discussions highlight the
multi-faceted contributions of our study: from
identifying biologically relevant candidate genes
(InteGenes) to developing a clinically useful
diagnostic model (based on Mgenes), uncovering
links between Mgenes and ULMS’s
immunosuppressive TIME, and clarifying the
non-genetic role of Mgenes in ULMS pathogenesis.
Each finding addresses a critical gap in current ULMS
research, while acknowledging limitations that point
to future directions—ultimately advancing our
understanding of this aggressive disease and laying
the groundwork for improved diagnostics and
therapies.

5. Conclusion

This study systematically investigated the
molecular landscape of uterine leiomyosarcoma
(ULMS) wusing multi-cohort transcriptomic data,
weighted gene co-expression network analysis
(WGCNA), machine learning, tumor immune
microenvironment (TIME) analysis, and Mendelian
randomization (MR). Key findings include: (1)

Identification of 96 InteGenes enriched in core
oncogenic pathways (cell cycle, p53 signaling, DNA
repair), which are central regulators of ULMS
pathogenesis; (2) Development of a gradient boosting
machine (GBM)-based diagnostic model (36 Mgenes)
with excellent performance (training AUC = 1.0,
validation accuracy 92.3-100%); (3) Mgenes are
closely associated with ULMS’s immunosuppressive
TIME, with upregulated Mgenes correlating with M2
tumor-associated macrophages (TAMs)/regulatory T
cells (Tregs) and downregulated ones with effector
immune cells; (4) Preliminary correlation between
Mgenes expression profiles and antineoplastic drug
sensitivity /resistance; (5) No genetic causality
between Mgenes and ULMS via MR, indicating
potential non-genetic mechanisms in Mgene
dysregulation.

These findings provide novel insights into
ULMS’s molecular and immune biology, and identify
Mgenes as promising diagnostic biomarkers and
immunotherapeutic targets, laying a solid foundation
for translational research. Clinically, although the
GBM model relies on postoperative samples (inherent
to current ULMS diagnosis), it serves as a valuable
auxiliary tool for pathological
confirmation —especially in ambiguous
cases—helping reduce misdiagnosis of this rare
malignancy. More importantly, Mgenes’ correlations
with TIME components (e.g., M2 TAMs, Tregs) and
drug sensitivity open new avenues for personalized
treatment: Mgenes highly expressed with M2
TAMs/Tregs may be targets for immunotherapies
(e.g, TAM repolarization agents, checkpoint
inhibitors), while those associated with drug
sensitivity /resistance can guide neoadjuvant or
adjuvant therapy selection, addressing the unmet
clinical need for precise ULMS management.

Notable strengths of this study include
integration of multi-cohort data (GEO, TCGA-SARC,
single-cell sequencing) and a comprehensive
analytical  framework, ensuring robust and
generalizable findings; additionally, focusing on
Mgenes advances understanding of ULMS's
immunosuppressive  microenvironment, a key
treatment barrier. However, limitations exist: (1)
Findings are based on retrospective transcriptomic
data, requiring prospective validation in larger,
diverse cohorts; (2) The functional mechanisms of
Mgenes in regulating TIME and drug sensitivity
remain unclear, needing in-depth in vitro/in vivo
verification; (3) Non-genetic mechanisms (e.g.,
epigenetic modification) suggested by MR results
require further exploration.

Future research will focus on prospective
validation of Mgenes, elucidating their functional
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roles in ULMS progression and immune regulation,
and testing Mgene modulation to enhance
immunotherapy/chemotherapy efficacy in preclinical
models. Ultimately, this work aims to improve
ULMS's precise diagnosis, prognostic stratification,
and personalized treatment, thereby enhancing
outcomes for patients with this highly aggressive
malignancy.
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