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Abstract 

Background: Uterine leiomyosarcoma (ULMS) is a rare, aggressive uterine malignancy with high 
misdiagnosis rates, poor prognosis, and limited molecular biomarkers. Its pathogenesis, links between 
specific genes and the tumor immune microenvironment (TIME), and applications of machine learning 
(ML) and Mendelian randomization (MR) remain understudied. 
Methods: Multi-cohort data (4 GEO datasets, TCGA-SARC, single-cell sequencing) were integrated. 
Differentially expressed genes (DEGs) and WGCNA-derived key modules identified “InteGenes”. 113 
ML algorithms were compared to build a diagnostic model (top: GBM, core genes = “Mgenes”). 
CIBERSORT analyzed TIME; MR explored Mgenes-ULMS causal links. 
Results: 96 InteGenes enriched in cell cycle/p53/DNA repair pathways. The GBM model had training 
AUC=1 and validation accuracy 92.3–100%; 36 Mgenes (e.g., TRIP13, AUC=0.972) showed diagnostic 
value. Mgenes correlated with TIME (upregulated Mgenes ↔ M2 TAMs/Tregs; downregulated ↔ effector 
cells). MR found no genetic causality between Mgenes and ULMS. 
Conclusion: InteGenes reflect ULMS pathogenesis; the GBM model and Mgenes are promising 
diagnostic tools. Mgenes modulate ULMS’s TIME, offering immunotherapeutic targets. This study 
advances ULMS molecular/immune understanding for translational research. 

Keywords: uterine leiomyosarcoma, machine learning, diagnostic model, tumor immune microenvironment, single-cell 
sequencing 

1. Introduction 
Uterine leiomyosarcoma (ULMS) is a rare but 

highly aggressive malignant tumor of the uterine 
mesenchyme, accounting for approximately 1–2% of 
all uterine malignancies yet responsible for a 
disproportionate number of uterine cancer-related 
deaths[1]. Clinically, ULMS poses significant 
challenges: its nonspecific symptoms (e.g., abnormal 
uterine bleeding, pelvic pain) overlap with benign 

uterine lesions such as leiomyomas, leading to 
frequent misdiagnosis[1]. Moreover, ULMS exhibits 
strong invasiveness and early metastatic potential, 
with a 5-year overall survival rate of only 30–50% for 
advanced-stage disease[2]. Current diagnostic 
workflows for ULMS are dominated by postoperative 
histopathological assessment, a gold standard that is 
constrained by inter-observer variability and 
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pathologist-dependent subjectivity. Notably, robust 
molecular biomarkers capable of predicting clinical 
outcomes, stratifying prognostic risk, and uncovering 
the biological underpinnings of tumor progression are 
still lacking, hindering the development of precision 
oncology approaches for this aggressive malignancy. 

At the molecular level, ULMS pathogenesis is 
linked to dysregulation of core oncogenic pathways, 
including cell cycle progression, DNA repair, and 
tumor suppressor signaling (e.g., p53)[3, 4]. However, 
most previous studies have focused on single datasets 
or candidate genes, lacking systematic integration of 
multi-cohort transcriptomic data and rigorous 
validation—limiting the generalizability of their 
findings. Additionally, the tumor immune 
microenvironment (TIME) plays a pivotal role in 
ULMS progression, as immunosuppressive cell 
populations (e.g., M2-like tumor-associated 
macrophages [TAMs], regulatory T cells [Tregs]) 
promote immune escape[5, 6]; yet, the molecular links 
between ULMS-specific genes and TIME modulation 
remain poorly characterized. Furthermore, while 
machine learning (ML) has emerged as a powerful 
tool for developing diagnostic and prognostic models 
in oncology, its application to ULMS—particularly 
with large-scale algorithmic comparisons, 
multi-cohort validation, and a focus on linking genetic 
signatures to tumor biological behavior and clinical 
outcomes—has been rarely reported. Finally, whether 
ULMS-associated genes exert causal genetic effects on 
disease susceptibility (a key question for 
distinguishing driver vs. passenger genes) has not 
been addressed via Mendelian randomization (MR), a 
robust method to minimize confounding in 
observational studies. 

To address these gaps, the present study 
integrated multi-cohort transcriptomic data (4 GEO 
datasets + TCGA-SARC) and single-cell sequencing 
data to systematically investigate ULMS’s molecular 
landscape. We first identified differentially expressed 
genes (DEGs) and key co-expression modules via 
weighted gene co-expression network analysis 
(WGCNA), then defined “InteGenes” as the 
intersection of DEGs and core module genes. 
Functional enrichment analyses (GO/KEGG) were 
performed to elucidate InteGenes’ biological roles. We 
then compared 113 unique ML algorithms to 
construct and validate a high-performance diagnostic 
model, with the top model’s core genes designated as 
“Mgenes.” Subsequently, we explored Mgenes’ 
associations with TIME components via CIBERSORT 
and linkET analyses, and evaluated genetic causality 
between Mgenes and ULMS using MR. Collectively, 
this study aims to identify reliable diagnostic 
biomarkers, reveal Mgenes’ roles in shaping the 

ULMS TIME, and provide a foundation for 
developing targeted and immunotherapeutic 
strategies. Figure 1 presents an outline of the 
workflow. 

2. Materials and Methods 
2.1 Acquisition and preprocessing of datasets 

In this study, 4 datasets of uterine 
leiomyosarcoma (ULMS) were incorporated from the 
Gene Expression Omnibus (GEO) database 
(https://www.ncbi.nlm.nih.gov/geo/), with each 
dataset containing sample data from both tumor 
groups and normal control groups. The detailed 
information of these datasets is as follows: GSE36610 
(normal samples, N=10; tumor samples, T=12), 
GSE764 (normal samples, N=4; tumor samples, T=9), 
GSE68312 (normal samples, N=3; tumor samples, 
T=3), and GSE68295 (normal samples, N=3; tumor 
samples, T=6). Additionally, 27 cases of RNA-seq data 
and corresponding clinical data of ULMS were 
retrieved from the The Cancer Genome Atlas-Sarcoma 
(TCGA-SARC) dataset 
(https://portal.gdc.cancer.gov/) for inclusion in the 
study. Additionally, nine single-cell sequencing 
datasets were employed, specifically encompassing 
single-cell transcriptome sequencing data derived 
from 4 metastatic lesions of ULMS and 5 age-matched 
samples of normal myometrium, as described in 
previously published article[7]. 

For subsequent analytical procedures, the 
TCGA-SARC dataset and GSE36610 were designated 
as the training set, while GSE764, GSE68312, and 
GSE68295 were assigned as the validation set. 
Subsequently, the datasets within the training set 
were integrated, and batch effects—known to 
potentially introduce biases in gene expression 
data—were eliminated using the sva R package[8]. 
Figure 2 presents the boxplots and principal 
component analysis (PCA) plots of the training set 
data both before and after batch effect removal. From 
these visualizations, it can be clearly observed that the 
batch effects were effectively mitigated, ensuring the 
reliability and comparability of the integrated training 
set data for subsequent downstream analyses. 

2.2 Profiling of genes with differential 
ExpressionGenes showing differential 

expression between tumor and normal samples in the 
training set were identified using the limma 
package[9]. The selection of these differentially 
expressed genes (DEGs) was based on two thresholds: 
a log fold change (logFC) of 1.5 and an adjusted 
P-value of 0.05. For visual representation of these 
DEGs, a heatmap was constructed utilizing the 
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pheatmap package[10], while a volcano plot was 
developed with the ggplot2 package[11] to further 
illustrate the expression patterns. 

2.3 Weighted gene co-expression network 
analysis 

For weighted gene co-expression network 
analysis (WGCNA), we leveraged gene expression 
data from the integrated training set, which had 
undergone rigorous preprocessing and integration 
steps to guarantee data uniformity and quality. The 
WGCNA package[12] was applied to conduct a 
thorough network analysis. Specifically, initial sample 

clustering was performed to assess inter-sample 
relationships and detect potential outliers, a step that 
helps uphold the robustness of subsequent network 
building. After sample clustering, module detection 
was carried out according to the co-expression 
patterns of genes; here, genes exhibiting comparable 
expression profiles across samples were clustered into 
separate modules. Finally, the gene inventory for each 
identified module was produced and exported, 
providing a basis for further functional enrichment 
analyses and investigations into module-trait 
associations. 

 

 
Figure 1. Research flow chart. 
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Figure 2. Data preparation. (A) Box plots showing expression profiles of each dataset before batch effect correction. (B) Box plots showing expression profiles of each dataset 
after batch effect correction. (C) PCA plots of each dataset before batch effect correction. (D) PCA plots of each dataset after batch effect correction. 

 
2.4 Screening for intersection genes 

The intersection of the previously identified 
DEGs and the genes from the key modules of 
WGCNA was calculated to obtain intersection genes. 
These genes were designated as InteGenes and used 
for subsequent research. Additionally, the 
VennDiagram package was utilized to generate a 
Venn diagram for visualizing this intersection. 

2.5 Functional enrichment analysis 
To explore the functional attributes of InteGenes, 

the R package “clusterProfiler”[13] was employed to 
carry out comprehensive enrichment analyses 
encompassing Gene Ontology (GO) annotations and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway mapping. The GO analysis was designed to 
classify these genes into three primary 
categories—biological processes, cellular components, 
and molecular functions—thereby offering 
perspectives on their specific roles in diverse 
biological events. In parallel, the KEGG pathway 
analysis was performed to pinpoint signaling 
pathways with significant enrichment, aiding in 
clarifying how these InteGenes collectively engage in 
particular physiological mechanisms or pathological 
cascades. Together, these functional enrichment 
analyses establish a basis for unraveling the core 
biological functionalities and regulatory networks 

that underpin the phenotypic traits under 
investigation. 

2.6 Construction of diagnostic models through 
113 unique machine learning strategies 

This study deployed a total of 113 distinct 
machine learning strategies for developing diagnostic 
models. Specifically, a comprehensive catalog of these 
models—encompassing their core features and 
foundational principles—is provided in 
Supplementary Table 1 for thorough reference. 
Additionally, the algorithmic code implementing all 
113 machine learning approaches, complete with 
respective parameter settings and computational 
pipelines, is available in Supplementary Code 1. 
Notably, among the variables integrated into the 
models, the smallest number of variables included in 
any constructed model was 5, ensuring a baseline 
complexity to capture meaningful diagnostic patterns. 
The model demonstrating the highest mean AUC in 
both the training and validation sets was selected and 
designated as "sModel" for subsequent analyses. ROC 
curves for the training and validation sets were 
generated using the pROC package[14]. Genes 
incorporated in this model were extracted and labeled 
as Mgenes, and volcano plots illustrating these 
Mgenes were subsequently created using the ggplot2 
package. 
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2.7 Development of the confusion matrix 
Since sModel was earlier established as the 

top-performing model—due to its superior mean 
AUC across both the training and validation sets—it 
was chosen to generate the confusion matrix. This 
process seeks to further gauge the model’s 
classification abilities by specifying counts of true 
positives, true negatives, false positives, and false 
negatives, thereby offering a detailed overview of its 
predictive precision. 

2.8 Correlation assessments 
Using the integrated gene expression dataset, 

correlation assessments were conducted to explore 
expression associations among Mgenes, with the goal 
of uncovering potential co-expression patterns and 
interdependent relationships. To visually depict these 
correlative trends, comprehensive correlation 
diagrams were generated via the 
PerformanceAnalytics package[14]. These visuals 
effectively capture both the magnitude and direction 
of associations between each pair of Mgenes, 
providing clear insights into their interconnections. 

2.9 GeneMANIA-based analyses 
To explore in detail the functional connections 

and interaction profiles among Mgenes, we carried 
out GeneMANIA[15] analyses through its specialized 
web-based platform (https://genemania.org/). This 
computational method synthesizes a range of 
biological datasets—including gene co-expression 
trends, protein-protein binding interactions, pathway 
enrichments, genetic interplay, and shared functional 
annotations—to build a holistic network. The analysis 
seeks to uncover potential functional cooperativity, 
regulatory links, and interconnected biological 
mechanisms among Mgenes, thus offering insights 
into their coordinated functions within the biological 
system being studied. 

2.10 Gene set enrichment analysis (GSEA) 
To comprehensively investigate the biological 

functionalities and pathway connections of Mgenes, 
we conducted Gene Set Enrichment Analysis (GSEA) 
via the clusterProfiler package—a robust R-based 
toolkit for functional enrichment investigations. For 
this analytical process, we employed the 
"c2.cp.kegg.Hs.symbols.gmt" reference gene set, a 
carefully compiled dataset from the Molecular 
Signatures Database (MSigDB). This particular gene 
set includes canonical pathways (cp) sourced from the 
Kyoto Encyclopedia of Genes and Genomes (KEGG), 
annotated with human (Hs) gene symbols, rendering 
it highly suitable for identifying enriched signaling 
and metabolic pathways among Mgenes. By utilizing 

this pathway-centered reference dataset, the GSEA 
not only measures the strength of enrichment for 
relevant biological pathways but also uncovers 
potential coordinated mechanisms that underlie the 
functional roles of Mgenes, thereby offering valuable 
insights into their collective participation in the 
biological system being examined. 

2.11 Gene set variation analysis (GSVA) 
To profile the pathway activity dynamics of 

Mgenes across samples and examine their functional 
significance, we conducted Gene Set Variation 
Analysis (GSVA) via the R-based GSVA package[16]. 
In contrast to conventional gene set enrichment 
approaches that center on predefined gene sets within 
a single cohort, GSVA converts gene-level expression 
data into gene set-level enrichment scores. This 
transformation enables quantitative evaluation of 
how pathways vary across multiple samples. For this 
analysis, we drew on the 
"c2.cp.kegg.Hs.symbols.gmt" reference gene set from 
the Molecular Signatures Database (MSigDB). This 
resource comprises curated canonical pathways (cp) 
originating from the Kyoto Encyclopedia of Genes 
and Genomes (KEGG), annotated with human (Hs) 
gene symbols. By harnessing this pathway-focused 
dataset, our GSVA sought to quantify the dynamic 
enrichment of KEGG pathways among Mgenes across 
samples. This effort aimed to uncover potential shifts 
in biological processes linked to Mgenes, shedding 
light on their context-specific functional roles within 
the system under study. 

2.12 Single-cell analysis 
Single-cell sequencing data of ULMS were 

analyzed using the Seurat package[17], and the results 
of cell type identification are described in our 
previously published paper[7]. Gene expression 
feature plots were generated using the FeaturePlot 
function, and violin plots of gene expression were 
generated using the VlnPlot function. 

2.13 Survival analysis 
The clinical data and transcriptome data of 

TCGA-SARC were collated, and cases were divided 
into high-expression and low-expression groups 
based on the median expression value of the gene. 
Survival curves for the high- and low-expression 
groups were plotted using the survival package, with 
statistical significance and P-values annotated. 

2.14 CIBERSORT-based analyses 
To profile the immune cell makeup within the 

studied samples, we conducted CIBERSORT-based 
analyses[18] on the integrated gene expression data. 
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CIBERSORT is a commonly employed computational 
tool that calculates the relative abundances of 22 
immune cell subtypes from bulk gene expression 
profiles by deconvolving mixed transcriptional 
signals. For this deconvolution process, the reference 
panel of immune cell transcriptional 
signatures—encompassing canonical expression 
profiles of distinct immune cell subsets—was adopted 
as detailed in Supplementary Table 2. This analysis 
aimed to quantify the prevalence of various immune 
cell populations (e.g., T cell subsets, B cells, 
macrophages, and neutrophils) across samples. In 
doing so, it sought to uncover potential links between 
the immune microenvironment and the biological 
scenario under investigation, as well as shed light on 
the cross-talk between Mgenes and immune 
modulation. 

2.15 linkET analyses 
To investigate putative connections between 

model genes (Mgenes) and immune cell profiles, we 
performed linkET analyses[19], drawing on findings 
from our earlier CIBERSORT investigations. linkET is 
a computational method developed to unravel 
intricate interplay among biological attributes—here, 
its focus was on measuring and illustrating the 
cross-talk between Mgene expression patterns and the 
relative proportions of immune cell subsets as 
estimated by CIBERSORT. This analytical approach 
aimed to identify specific correlations (such as 
positive or negative associations) between individual 
Mgenes and distinct immune cell populations, while 
also pinpointing broader patterns of co-regulation. By 
integrating Mgene expression data with immune cell 
composition profiles, the linkET analyses sought to 
clarify how Mgenes might shape or be shaped by the 
immune microenvironment, thereby offering a more 
holistic understanding of their functional roles within 
the biological system being studied. 

2.16 Correlation analysis of antineoplastic drug 
sensitivity 

To investigate the correlation between the 
expression of Mgenes and sensitivity to antineoplastic 
drugs, we performed drug sensitivity analysis using 
the GSCA tool 
(https://guolab.wchscu.cn/GSCA/#/drug)[20]. This 
tool compiles the half-maximal inhibitory 
concentration (IC₅₀) values of 265 small-molecule 
compounds across 860 cell lines, together with the 
corresponding mRNA gene expression profiles, 
retrieved from the Genomics of Drug Sensitivity in 
Cancer (GDSC) database. The mRNA expression 
datasets and drug sensitivity datasets were 
integrated, followed by Pearson correlation analysis 

to determine the correlation between gene mRNA 
expression levels and drug IC₅₀ values. The P-values 
were adjusted using the false discovery rate (FDR) 
method. Additionally, this tool compiles the IC₅₀ 
values of 481 small-molecule compounds in 1001 cell 
lines and their corresponding mRNA gene expression 
profiles from the Genomics of Therapeutics Response 
Portal (CTRP). The mRNA expression datasets and 
drug sensitivity datasets were integrated in the same 
manner, and Pearson correlation analysis was 
conducted to assess the correlation between gene 
mRNA expression levels and drug IC₅₀ values, with 
P-values adjusted via the FDR method. For result 
visualization, the top 30 ranked drugs from the 
analyses were selected to generate a correlation 
heatmap. 

2.17 GWAS data compilation and mendelian 
randomization (MR) analyses 

To explore putative causal links between Mgenes 
and leiomyosarcoma pathogenesis, we first assembled 
relevant genomic datasets from two reputable 
repositories: the FinnGen database 
(https://www.finngen.fi/)[21] and the IEU Open 
GWAS Project (https://opengwas.io/)[22]. 
Specifically, we obtained leiomyosarcoma-associated 
genome-wide association study (GWAS) 
datasets—capturing genetic variants tied to 
leiomyosarcoma susceptibility across large 
cohorts—and human gene expression quantitative 
trait locus (eQTL) datasets, which quantify 
relationships between genetic variants and Mgene 
expression levels. The GWAS dataset included in this 
study is detailed in Table 1. 

Subsequent Mendelian Randomization (MR) 
analyses were conducted using the TwoSampleMR 
package in R, with Mgenes designated as exposure 
factors (i.e., their expression levels) and 
leiomyosarcoma incidence as the clinical outcome. To 
uphold methodological rigor, genetic instrumental 
variables (single nucleotide polymorphisms, SNPs) 
were selected from eQTL datasets based on strict 
criteria: they must reach genome-wide significance 
with Mgene expression (P < 5×10⁻⁸) to ensure robust 
associations; exhibit low linkage disequilibrium (r² < 
0.001 within a 10,000 kb window) to avoid correlated 
instruments; and be excluded if located within 500 kb 
of known leiomyosarcoma susceptibility loci to 
reduce pleiotropy. The leiomyosarcoma GWAS 
dataset—used to quantify associations with the 
outcome (Y, leiomyosarcoma)—included cases and 
controls, ensuring sufficient power to detect genetic 
links to disease susceptibility. Meanwhile, the eQTL 
dataset—focused on capturing associations between 
instrumental variables (Z, SNPs) and the exposure (X, 
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Mgene expression)—encompassed individuals, 
providing reliable estimates of SNP-Mgene 
expression correlations. Collectively, these datasets 
provided the statistical robustness necessary to detect 
modest causal effects in subsequent MR analyses, 
where Z acts as a genetic proxy for X to infer its causal 
relationship with Y. 

Multiple MR analytical approaches were 
employed for cross-validation: inverse variance 
weighted (IVW) as the primary method to estimate 
overall causal effects using all valid IVs; MR-Egger 
regression to account for potential horizontal 
pleiotropy and deliver a pleiotropy-adjusted effect 
estimate; weighted median estimator, robust to up to 
50% invalid IVs; and weighted mode estimator, which 
prioritizes IVs with consistent effect directions. 
Heterogeneity among IVs was evaluated using 
Cochran’s Q statistic (significance threshold P < 0.05), 
with the I² statistic quantifying the proportion of 
variance due to heterogeneity. For pleiotropy testing, 
the MR-Egger intercept test (significance threshold P 
< 0.05) was applied to detect directional horizontal 
pleiotropy, and the MR-PRESSO (Mendelian 
Randomization Pleiotropy RESidual Sum and Outlier) 
method was used to identify and correct for outlier 
SNPs introducing pleiotropic bias. A leave-one-out 
sensitivity analysis was also performed to assess 
whether individual SNPs unduly influenced the 
overall effect estimate, ensuring result robustness. 
This comprehensive framework aimed to rigorously 
evaluate whether genetically predicted Mgene 
expression levels exert causal effects on 
leiomyosarcoma risk, leveraging two-sample MR to 
minimize confounding and reverse causation biases 
inherent in observational studies. 

2.18 Statistical analyses 
All statistical procedures carried out in the 

present study were implemented via R software 
(version 4.3.2)—a versatile platform extensively 
employed for statistical computation and data 
visualization in the field of biomedical research. To 
establish statistical significance, a strict threshold of p 
< 0.05 was employed, which ensures that any 
observed associations or discrepancies are not likely 
to stem from random variation. Furthermore, all 
graphical outputs—such as scatter plots, heatmaps, 
and volcano plots—were constructed using the 
ggplot2 package in R. This tool is a robust and 
adaptable component of the R ecosystem, enabling the 
development of high-fidelity, customizable 
visualizations that effectively showcase key insights 
derived from the analyses. This standardized 
methodology for statistical testing and visualization 
guarantees the reproducibility of study results and 

ensures clarity when presenting findings, aligning 
with rigorous biomedical research standards. 

3. Results 
3.1 Identification of differentially expressed 
genes based on transcriptome data from the 
training set 

In the present study, a total of three distinct 
datasets were designated as the training cohort to 
support the analysis of transcriptome data, 
specifically including the TCGA-SARC dataset and 
the GSE36610 dataset. Together, these training 
datasets collectively contained 39 clinical samples 
derived from patients with uterine leiomyosarcoma, 
as well as 10 normal control samples that served as 
the baseline reference for comparison. Separately, 
three other datasets were assigned to serve as the 
testing cohort to validate subsequent findings, namely 
GSE764, GSE68312, and GSE68295. This testing cohort 
comprised 18 uterine leiomyosarcoma samples and an 
additional 10 normal control samples, ensuring 
consistency in the control group setup across both 
training and testing phases. To pinpoint genes with 
differential expression patterns between the uterine 
leiomyosarcoma group and the normal control group, 
the limma software package—widely used in 
bioinformatics for analyzing gene expression 
microarray and RNA-seq data—was employed for 
statistical analysis. This analytical process ultimately 
led to the identification of 143 differentially expressed 
genes (DEGs), which are critical for further exploring 
the molecular signatures of uterine leiomyosarcoma. 
Comprehensive details regarding the specific 
information of these 143 DEGs, such as their 
expression fold changes and statistical significance, 
are provided in Supplementary Table 3 for reference. 

3.2 Identification of key gene modules via 
weighted gene co-expression network analysis 
(WGCNA) 

To pinpoint co-expression gene modules closely 
linked to uterine leiomyosarcoma, weighted gene 
co-expression network analysis (WGCNA) was 
conducted on the transcriptome data of the testing set. 
This analytical approach generated 12 distinct gene 
modules, each labeled with a unique color for 
straightforward differentiation and reference: 
MEblue, MEpink, MEpurple, MEblack, MEred, 
MEturquoise, MEmagenta, MEbrown, 
MEgreenyellow, MEtan, MEgreen, and MEsalmon 
(Figures 3A and 3B). 

Among these 12 color-labeled modules, 5 were 
found to exhibit statistically significant associations 
with the uterine leiomyosarcoma phenotype. 
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Specifically, 4 of these modules—MEpink, 
MEturquoise, MEgreen, and MEsalmon—showed 
strong positive correlations with the presence of 
uterine leiomyosarcoma. Their respective correlation 
coefficients were 0.33, 0.54, 0.42, and 0.34, with 
corresponding p-values of 0.02, 6×10⁻⁵, 0.003, and 
0.02. This positive correlation pattern suggests that 
the coordinated expression trends of genes within 
these four modules may be upregulated during the 
development or progression of uterine 
leiomyosarcoma, potentially reflecting their role in 
driving disease-related molecular processes. 

In contrast, one module—MEblack—displayed a 
notable significant negative correlation with the 
uterine leiomyosarcoma phenotype, with a correlation 
coefficient of -0.6 and a p-value of 5×10⁻⁶. This 
observation implies that the overall gene expression 
profile of the MEblack module is likely 
downregulated in uterine leiomyosarcoma tissues or 
samples, which may indicate a potential 
tumor-suppressive role of genes within this module 

(Figure 3C). 
Given its robust positive correlation with the 

uterine leiomyosarcoma phenotype—particularly its 
relatively high correlation coefficient (0.54) compared 
to the other positively associated 
modules—MEturquoise was selected as the focal 
module for further in-depth analysis. Figure 3D 
presents a scatter plot that visualizes the relationship 
between two key metrics within MEturquoise: 
module membership (MM) and gene significance 
(GS). Module membership (MM) is a quantitative 
indicator that evaluates how strongly each individual 
gene is associated with the overall expression pattern 
of the MEturquoise module, thus reflecting the gene’s 
centrality or “importance” within the module. Gene 
significance (GS), by contrast, quantifies the strength 
of the statistical link between each gene’s expression 
level and the uterine leiomyosarcoma phenotype (e.g., 
whether the gene’s expression differs significantly 
between tumor and normal samples). 

 

 
Figure 3. WGCNA Analysis. (A) Gene dendrogram with corresponding module colors. (B) Distribution of gene significance across different modules. (C) Module-trait 
relationship heatmap. Blue indicates a negative correlation, while red indicates a positive correlation. (D) Scatter plot of Module Membership (MEturquoise) vs. Gene 
Significance. 
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Figure 4. InteGenes functional enrichment analysis. (A) Venn diagram showing overlapping genes between WGCNA MEred module genes and DEGs. (B) GO Enrichment 
Analysis based on InteGenes. (C) KEGG Enrichment Analysis based on InteGenes. 

 
The results from this scatter plot analysis 

revealed a strong and statistically robust positive 
correlation between GS and MM (correlation 
coefficient = 0.74, p < 1×10⁻²⁰⁰). This means that genes 
with high GS—i.e., those most strongly associated 
with the uterine leiomyosarcoma phenotype—also 
tend to have high MM, indicating they are among the 
most central and influential genes within the 
MEturquoise module. This finding not only validates 
the biological relevance of the MEturquoise module to 
uterine leiomyosarcoma pathogenesis but also 
highlights that the core genes of this module are 
tightly intertwined with the disease phenotype. 
Consequently, MEturquoise is reinforced as a critical 
module for subsequent investigations into the 
molecular mechanisms underlying uterine 
leiomyosarcoma. 

3.3 Identification of intersection genes and 
functional enrichment analysis 

To further narrow down and prioritize candidate 
genes that possess both differential expression 
profiles and a close association with the 
ULMS-relevant MEturquoise module, we determined 
the overlap between the previously identified 
differentially expressed genes (DEGs) and the 292 
genes constituting the MEturquoise module—detailed 
information on these 292 module genes is available in 
Supplementary Table 4. This intersection analysis 
yielded 96 shared genes, which were formally 
designated as “InteGenes” (a portmanteau of 
“Intersection Genes”) to reflect their dual origin from 
both DEGs and the MEturquoise module (Figure 4A). 
These InteGenes represent a highly prioritized 
candidate set, as they simultaneously meet two 
critical criteria: they exhibit significant expression 
differences between ULMS tumor samples and 
normal control samples, and they play central roles in 
the MEturquoise module—a module already linked to 
ULMS pathogenesis. This dual qualification not only 

filters out genes with potential non-specific relevance 
but also enhances their credibility as functionally 
important targets for investigating the molecular 
mechanisms underlying ULMS. 

To delineate the biological functions and 
molecular roles of these InteGenes, we subsequently 
performed two complementary enrichment analyses: 
Gene Ontology (GO) enrichment analysis and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis. For the GO analysis, 
results were systematically categorized into three core 
domains—Biological Process (BP), Cellular 
Component (CC), and Molecular Function (MF)—to 
provide a multi-dimensional view of InteGene-related 
biological activities. In the Biological Process (BP) 
domain, the top three most significantly enriched 
terms were chromosome segregation, nuclear 
division, and organelle fission; these processes are all 
tightly linked to cell division, where chromosome 
segregation ensures accurate distribution of genetic 
material during mitosis, and nuclear division and 
organelle fission serve as foundational steps in cell 
cycle progression—pathways frequently dysregulated 
in cancer to drive uncontrolled tumor cell 
proliferation, a key hallmark of ULMS. In the Cellular 
Component (CC) domain, the top three enriched 
terms included “spindle,” “chromosomal region,” 
and “chromosome, centromeric region”; the spindle is 
a microtubule-based structure essential for proper 
chromosome alignment and separation during cell 
division, while the chromosomal region (especially 
the centromeric region) is critical for maintaining 
chromosomal stability—a feature often compromised 
in ULMS, contributing to tumor heterogeneity and 
aggressiveness. In the Molecular Function (MF) 
domain, the top three enriched terms were 
microtubule binding, tubulin binding, and protein 
serine/threonine kinase activity; microtubule and 
tubulin binding are pivotal for cytoskeletal dynamics, 
which regulate cell shape, division, and migration, 
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while protein serine/threonine kinase activity 
mediates intracellular signaling cascades that control 
cell growth and survival—both of which are core 
processes disrupted in ULMS tumorigenesis (Figure 
4B). 

Parallel to the GO analysis, KEGG pathway 
enrichment analysis was conducted to uncover the 
signaling and metabolic pathways in which InteGenes 
are actively involved, providing insights into their 
contextual roles in ULMS biology. This analysis 
identified 10 primary pathways with significant 
enrichment, each bearing relevance to cancer 
development or ULMS-specific molecular features: 
Cell cycle, a pathway frequently dysregulated in 
ULMS as aberrant cell cycle control drives 
uncontrolled tumor growth; Oocyte meiosis and 
Progesterone-mediated oocyte maturation, both 
linked to hormone-dependent cellular processes that 
align with ULMS’s known responsiveness to steroid 
hormones; Human T-cell leukemia virus 1 (HTLV-1) 
infection, implicating potential virus-associated 
pro-tumorigenic mechanisms that may interact with 
ULMS pathogenesis; p53 signaling pathway, a 
well-characterized tumor suppressor pathway that 
regulates cell cycle arrest and 
apoptosis—dysregulation of this pathway is common 
in aggressive sarcomas like ULMS, contributing to 
treatment resistance; Cellular senescence, a process 
that restricts abnormal cell proliferation and is often 
inactivated in tumors to sustain malignant growth; 
Motor proteins, critical for cytoskeletal movement 
and cell division, supporting the GO findings on 
microtubule function and reinforcing the role of cell 
division dysregulation in ULMS; Endocrine 
resistance, relevant to ULMS clinical management as 
endocrine therapies are sometimes used in advanced 
cases, and resistance to such treatments remains a key 
challenge; FoxO signaling pathway, which regulates 
cell metabolism and stress responses, with established 
links to cancer progression and metastasis; and Breast 
cancer, highlighting potential shared molecular 
mechanisms between ULMS and other 
hormone-driven malignancies, offering opportunities 
for cross-disease translational research (Figure 4C). 

Collectively, these GO and KEGG enrichment 
results paint a comprehensive picture of the biological 
roles of InteGenes, directly linking them to core 
cellular processes (e.g., cell division, cytoskeletal 
regulation) and signaling pathways (e.g., cell cycle, 
p53) that are known to be dysregulated in ULMS 
development and progression. By bridging 
differential gene expression with module-specific 
relevance and functional context, these findings not 
only validate the importance of InteGenes as key 
candidates for further study but also lay a foundation 

for subsequent functional experiments to confirm 
their role as mediators of ULMS 
pathogenesis—ultimately providing potential targets 
for the development of more effective diagnostic 
markers or therapeutic strategies for ULMS. 

3.4 Construction and validation of machine 
learning models 

A total of 113 unique machine learning 
algorithms were utilized to develop diagnostic 
models for uterine leiomyosarcoma, and the gene 
parameters associated with each model are elaborated 
in Supplementary Table 5. Subsequently, these 
models underwent validation in three independent 
datasets (GSE764, GSE68312, and GSE68295), and the 
area under the curve (AUC) was calculated for each 
model, as depicted in Figure 5A. Upon sorting the 
models by AUC values in descending order, the top 
12 performers were determined to be Ridge, 
Enet[α=0.1], Enet[α=0.2], Enet[α=0.3], Enet[α=0.4], 
Enet[α=0.5], Enet[α=0.6], Enet[α=0.7], Enet[α=0.8], 
Random Forest (RF), RF+Gradient Boosting Machine 
(GBM), and GBM. The average AUC of these top 12 
models—derived from the mean of their AUC scores 
in the training set—was uniformly 1. 

For a more in-depth assessment of model 
performance, the top 12 models (those with the 
highest average AUC) were subjected to confusion 
matrix analysis. Following this thorough evaluation, 
the GBM model was selected for subsequent 
investigations, as it demonstrated an AUC of 1 in the 
training set (Figures 5B-E). Evaluating the GBM 
model’s performance through confusion matrices 
provided detailed insights: the confusion matrix for 
the training set revealed flawless classification 
between Normal (negative class) and Tumor (positive 
class). Specifically, all 10 actual Normal samples were 
correctly classified as Normal (true negatives, with a 
count of 10), and all 39 actual Tumor samples were 
accurately designated as Tumor (true positives, with a 
count of 39), with no false positives (counting 0, 
meaning no Normal samples were incorrectly labeled 
as Tumor) and no false negatives (counting 0, 
indicating no Tumor samples were misclassified as 
Normal). As a result, crucial metrics such as overall 
accuracy, Tumor-class precision, Tumor-class recall, 
and Normal-class specificity all attained 100%. 
Although the model successfully learned the 
discriminative features between classes in the training 
set, its ability to generalize needed validation using 
independent test sets to verify real-world applicability 
(Figure 5F). Subsequently, confusion matrix analysis 
was conducted on the three validation datasets. 
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Figure 5. Construction and validation of diagnostic models via multiple machine learning methods. (A) Heatmap of AUC values for machine learning methods in the training set 
and test set. (B) ROC curve for the training set based on the GBM model. (C) ROC curve for GSE764 based on the GBM model. (D) ROC curve for GSE68295 based on the 
GBM model. (E) ROC curve for GSE68312 based on the GBM model. (F) Confusion matrix plot for the training set. (G) Confusion matrix plot for GSE764. (H) Confusion 
matrix plot for GSE68295. (H) Confusion matrix plot for GSE68312. 

 
Across the three independent validation datasets 

(GSE764, GSE68295, and GSE68312), the model 
displayed consistent and robust classification 
capability. In the GSE764 dataset, the overall accuracy 
reached approximately 92.3% (calculated as (true 
negatives + true positives) divided by total samples, 
which equals (3 + 9) divided by (3 + 1 + 9 + 0)). The 
precision for the Tumor class (the ratio of truly Tumor 
samples among all predicted Tumor samples) was 
90% (calculated as true positives divided by (true 
positives + false positives), which equals 9 divided by 
(9 + 1)), the recall for the Tumor class (sensitivity, the 
proportion of truly Tumor samples correctly detected) 
was 100% (calculated as true positives divided by 
(true positives + false negatives), which equals 9 
divided by (9 + 0)), and the specificity for the Normal 
class (the proportion of truly Normal samples 
correctly identified) was 75% (calculated as true 
negatives divided by (true negatives + false positives), 
which equals 3 divided by (3 + 1)) (Figure 5G). For the 
GSE68295 dataset, the overall accuracy was 100% 
(calculated as (true negatives + true positives) divided 

by total samples, which equals (3 + 6) divided by (3 + 
0 + 6 + 0)). The Tumor-class precision, Tumor-class 
recall, and Normal-class specificity all reached 100% 
(calculated as 6 divided by (6 + 0), 6 divided by (6 + 0), 
and 3 divided by (3 + 0), respectively) (Figure 5H). In 
the GSE68312 dataset, the overall accuracy also 
reached 100% (calculated as (true negatives + true 
positives) divided by total samples, which equals (3 + 
3) divided by (3 + 0 + 3 + 0)), and the Tumor-class 
precision, Tumor-class recall, and Normal-class 
specificity were all 100% (calculated as 3 divided by (3 
+ 0), 3 divided by (3 + 0), and 3 divided by (3 + 0), 
respectively) (Figure 5I). 

Taken together, these metrics illustrate the 
model’s robust generalizability: the perfect Tumor 
recall (100%) across all datasets ensures that all actual 
Tumor samples are detected, while the high-to-perfect 
accuracy, precision, and Normal specificity 
underscore the model’s reliability in differentiating 
between Normal and Tumor classes—thus supporting 
its potential for practical use in clinical settings. 
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3.5 Expression patterns of Mgenes in uterine 
leiomyosarcoma 

Thirty-six genes—specifically GATA2, FOS, 
CKS2, MCM2, TK1, ATP1A2, PGR, CXCL12, IGF1, 
GGH, APOD, MCM4, TRIP13, TYMS, DPP6, CDKN3, 
STIL, RRM2, HTR2B, CCNB1, MAD2L1, RASSF2, 
CDKN2A, CENPF, CDC20, CENPA, TTK, PLK4, 
CDC7, KIF2C, HMMR, UBE2C, CCNA2, KIF14, 
KIF11, and TOP2A—were integrated into the GBM 
model for subsequent analytical procedures. Among 
these 36 candidate genes, 10 (APOD, PGR, DPP6, 
CXCL12, FOS, ATP1A2, IGF1, GATA2, RASSF2, and 
HTR2B) displayed a statistically significant 
downregulated expression profile in uterine 
leiomyosarcoma tissues relative to non-tumor control 
tissues. In contrast, the remaining 26 
genes—including CKS2, MCM2, TK1, GGH, MCM4, 
TRIP13, TYMS, CDKN3, STIL, RRM2, CCNB1, 
MAD2L1, CDKN2A, CENPF, CDC20, CENPA, TTK, 
PLK4, CDC7, KIF2C, HMMR, UBE2C, CCNA2, KIF14, 
KIF11, and TOP2A—exhibited a notable upregulation 
in expression levels within the tumor group (as 
shown in Figure 6A, B). Additionally, we also 
investigated the expression abundances of Mgenes 
across different cell types in the single-cell RNA 
sequencing data. Except for FOS, most Mgenes 
exhibited relatively low expression abundances 
(Supplementary Figures 1 and 2, where red indicates 
the normal group and green indicates the tumor 
group in the violin plots). 

To further investigate the potential regulatory 
interactions and co-expression features of these 
Mgenes, a correlation analysis was performed on their 
expression levels. Results of this analysis uncovered 
distinct, biologically meaningful correlations between 
the expression profiles of the Mgenes, indicating the 
presence of potential synergistic or antagonistic 
regulatory networks among these genes during the 
progression of uterine leiomyosarcoma (Figure 6C). 

Subsequently, to assess the diagnostic utility of 
each individual Mgene for differentiating uterine 
leiomyosarcoma tissues from non-tumor tissues, 
receiver operating characteristic (ROC) curves were 
constructed for each gene, and the associated area 
under the curve (AUC) values—indicators of 
diagnostic accuracy—were computed (Figure 6D). 
These AUC values were as follows: GATA2 (0.882), 
FOS (0.877), CKS2 (0.967), MCM2 (0.895), TK1 (0.910), 
ATP1A2 (0.872), PGR (0.805), CXCL12 (0.877), IGF1 
(0.836), GGH (0.910), APOD (0.874), MCM4 (0.938), 
TRIP13 (0.972), TYMS (0.946), DPP6 (0.851), CDKN3 
(0.910), STIL (0.897), RRM2 (0.892), HTR2B (0.782), 
CCNB1 (0.844), MAD2L1 (0.938), RASSF2 (0.846), 
CDKN2A (0.823), CENPF (0.923), CDC20 (0.918), 
CENPA (0.879), TTK (0.890), PLK4 (0.923), CDC7 

(0.842), KIF2C (0.892), HMMR (0.877), UBE2C (0.944), 
CCNA2 (0.887), KIF14 (0.915), KIF11 (0.895), and 
TOP2A (0.921). Notably, TRIP13 exhibited the highest 
diagnostic performance, with an AUC of 0.972, 
whereas HTR2B had the relatively lowest—yet still 
clinically relevant—diagnostic accuracy (AUC = 
0.782) among the 36 Mgenes. Collectively, these 
results suggest that most of the Mgenes possess 
substantial potential as valuable diagnostic 
biomarkers for uterine leiomyosarcoma. 

3.6 Functional enrichment analysis of Mgenes 
To explore the underlying molecular interaction 

networks and functional implications of Mgenes in 
uterine leiomyosarcoma, we initially carried out 
protein-protein interaction (PPI) network analysis 
using the GeneMANIA bioinformatics platform 
(Figure 7A). This analysis identified 20 genes that 
display significant co-expression correlations with the 
36 Mgenes, including NDC80, CDK1, MKI67, 
NCAPH, CENPE, DLGAP5, KIF23, MELK, CDC25C, 
NEK2, BUB1B, BUB1, SPC25, BIRC5, AURKA, GTSE1, 
PLK1, ZWINT, TPX2, and FOXM1. Notably, these 
co-expressed genes are well-documented to mediate 
core biological processes such as mitotic nuclear 
division, chromosome segregation, nuclear 
chromosome segregation, mitotic sister chromatid 
segregation, regulation of nuclear division, the 
metaphase-to-anaphase transition of the mitotic cell 
cycle, and cell cycle checkpoint control. Dysregulation 
of these processes is a hallmark of malignant 
transformation, as it drives uncontrolled cell 
proliferation, genomic instability, and aberrant cell 
cycle progression—all of which are key pathological 
features contributing to the initiation, invasion, and 
metastasis of uterine leiomyosarcoma. This suggests 
that Mgenes may interact with these co-expressed 
genes to modulate critical oncogenic pathways in the 
disease. 

Subsequently, to gain deeper insights into the 
pathway enrichment profiles specific to each 
individual Mgene, we performed separate Gene Set 
Enrichment Analysis (GSEA) for all 36 Mgenes. The 
results of this gene-specific GSEA are illustrated in 
Figure 7B (with each subpanel corresponding to one 
Mgene), and consistently pointed to the enrichment of 
several key Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways. These pathways 
included KEGG_CELL_CYCLE (a central regulator of 
cell proliferation, whose dysregulation is ubiquitous 
in sarcomas), KEGG_DNA_REPLICATION (essential 
for maintaining proper DNA duplication during cell 
division), and three DNA repair-related 
pathways—KEGG_BASE_EXCISION_REPAIR, 
KEGG_HOMOLOGOUS_RECOMBINATION, and 
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KEGG_MISMATCH_REPAIR. Impairments in these 
DNA repair pathways are particularly relevant to 
uterine leiomyosarcoma, as they can lead to the 
accumulation of genetic mutations and chromosomal 
abnormalities, further promoting tumor progression 
and resistance to therapeutic interventions. 

To validate the robustness and reproducibility of 
these enrichment findings, we additionally performed 
Gene Set Variation Analysis (GSVA) on the entire 
Mgene set. As shown in Figure 8, the GSVA results 
exhibited a high degree of concordance with the 
GSEA outcomes: both analyses consistently 
highlighted the enrichment of the aforementioned cell 
cycle, DNA replication, and DNA repair pathways. 
This cross-validation not only confirms the reliability 
of our functional enrichment results but also 
underscores that the association of Mgenes with these 
cancer-relevant pathways is not an artifact of 
individual gene analysis, but rather a collective 
functional characteristic of the entire Mgene set. 

Together, these findings strongly support the notion 
that Mgenes play a coordinated role in regulating 
critical oncogenic processes in uterine 
leiomyosarcoma, providing a molecular basis for their 
potential as diagnostic biomarkers and therapeutic 
targets. 

3.7 Analysis of the impact of Mgenes 
expression on the survival prognosis of ULMS 

To investigate the impact of Mgenes expression 
on the survival prognosis of ULMS, we performed 
survival analysis using clinical data and 
transcriptomic data from the TCGA-SARC dataset. 
We found that UBE2C, TK1, GGH, and MAD2L1 
(among Mgenes) were significantly associated with 
the survival prognosis of ULMS, and high expression 
of these genes was correlated with poor survival 
outcomes in ULMS (Figure 9). 

 
 

 
Figure 6. Expression patterns and expression correlation analysis of Mgenes. (A) Volcano plot of differential expression for Mgenes. (B) Expression differences of Mgenes 
between the tumor group and normal group. (C) Expression correlation plot among Mgenes. (D) ROC curves for single Mgenes. *P<0.05, **P<0.01, ***P<0.001. 
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Figure 7. Protein-protein interaction network and GSEA analysis of Mgenes. (A) Protein-protein interaction network diagram of Mgenes. (B) GSEA plot for Mgenes. 

 
3.8 Correlation analysis of Mgenes with diverse 
immune cells in the tumor immune 
microenvironment 

To delineate the potential cross-talk between 
Mgenes and the immune regulatory network within 
the ULMS microenvironment—a vital aspect for 
deciphering tumor-immune interactions and 
advancing the development of immunotherapeutic 
approaches—we first assessed the fractional 

abundances of various immune cell subsets in the 
tumor group versus the normal control group (Figure 
10A, B). Our findings revealed striking disparities in 
immune cell distribution between the two groups: 
specifically, follicular helper T cells and M0 
macrophages were present at substantially elevated 
fractional abundances in the tumor group compared 
to the normal group, a phenomenon that may reflect 
tumor-driven activation or recruitment of these 
immune cell populations. In contrast, gamma delta T 
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cells, activated natural killer (NK) cells, and resting 
mast cells showed notably reduced proportions in the 
tumor group, which could indicate compromised 
immune surveillance or a transition toward an 
immunosuppressive microenvironment. 
Additionally, the analysis identified heterogeneity in 
the fractional distribution patterns of immune cells 
within the tumor group itself, implying that the 
immune microenvironment may differ across distinct 
regions or pathological stages of ULMS 
lesions—variations that could impact the progression 
of local tumor lesions and responsiveness to 
treatment. 

Furthermore, to delineate the interactive 
relationships between immune cell populations in the 
tumor microenvironment, we examined the 
correlative relationships between distinct immune cell 
subsets. The results revealed considerable differences 
in the magnitude and direction of correlations across 
various immune cell types (Figure 10C): for example, 
some cell subsets displayed positive co-occurrence 
trends (suggesting potential synergistic interactions), 
while others exhibited negative associations 
(indicating reciprocal regulatory inhibition). This 
observation further underscores the complexity of the 
immune cell interaction network in the ULMS 
microenvironment, laying a crucial groundwork for 
subsequent investigations into the correlations 
between Mgenes and these immune cell subsets. 

After defining the characteristics of immune cell 
distribution and intercellular correlative relationships, 
we further analyzed the associations between 
individual Mgenes and each immune cell subset to 
elucidate the potential regulatory functions of Mgenes 
in modulating the tumor immune microenvironment. 
As illustrated in Figures 11 and 12, the correlation 
patterns differed markedly across distinct Mgenes. 
Specifically, Figure 11 presents Spearman correlation 
lollipop plots depicting the associations between 36 
candidate Mgenes and immune cell infiltration 
patterns in ULMS, with each subpanel dedicated to a 
single Mgene. The x-axis of each subplot denotes the 
correlation coefficient, which captures both the 
direction and magnitude of the relationship between 
Mgene expression and the cellular abundance of 
particular immune cell subsets; p-values are indicated 
adjacent to each data point, with P < 0.05 defined as 
statistically significant—these significant correlations 
are highlighted in red to differentiate them from 
non-significant results (marked in black). The key 
Mgenes analyzed comprised both upregulated and 
downregulated genes in ULMS, including GATA2, 
FOS, CKS2, MCM2, TK1, ATP1A2, PGR, CXCL12, 
IGF1, GGH, APOD, MCM4, TRIP13, TYMS, DPP6, 
CDKN3, STIL, RRM2, HTR2B, CCNB1, MAD2L1, 
RASSF2, CDKN2A, CENPF, CDC20, CENPA, TTK, 
PLK4, CDC7, KIF2C, HMMR, UBE2C, CCNA2, KIF14, 
KIF11, and TOP2A. 

 

 
Figure 8. GSVA analysis based on Mgenes. 
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Figure 9. Survival curves of survival analysis on TCGA-SARC dataset grouped by Mgenes expression. 
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Figure 10. Proportion and correlation analysis of immune cells in the tumor immune microenvironment. (A) Proportions of various immune cells in the tumor immune 
microenvironment between the tumor group and normal group. (B) Box plots comparing differences in immune cell proportions between the tumor group and normal group. 
(C) Correlation analysis among various immune cells. *P<0.05, **P<0.01. 

 
Within the set of statistically significant findings, 

a cluster of Mgenes that are upregulated in 
ULMS—including genes associated with cell cycle 
progression and cellular proliferation (e.g., CKS2, 
MCM2, TRIP13, TYMS, STIL)—showed positive 
correlations with immunosuppressive cell subsets, 
such as M2-like tumor-associated macrophages 
(TAMs) and regulatory T cells (Tregs). For instance, 
TRIP13—a gene with high diagnostic relevance in 
ULMS—exhibited a striking positive correlation with 
M2 TAMs (P < 0.05), suggesting that it may play a role 
in driving the accumulation of these 
immunosuppressive cell populations to shape the 
ULMS tumor immune microenvironment. In contrast, 
Mgenes that are downregulated in ULMS (e.g., 
GATA2, CXCL12, HTR2B) displayed significant 
negative associations with immunosuppressive cells 
or positive correlations with effector immune cells: 
GATA2 showed a negative correlation with Tregs and 
a positive correlation with CD8+ cytotoxic T 
lymphocytes (CTLs), while HTR2B exhibited a 

negative association with myeloid-derived 
suppressor cells (MDSCs). Reduced expression of 
these genes in ULMS may compromise anti-tumor 
immune responses by disrupting the recruitment of 
effector cell populations or enhancing the 
accumulation of suppressive cells. 

Taken together, these significant correlations 
demonstrate that Mgenes are closely linked to the 
modulation of the ULMS tumor immune 
microenvironment, with their expression patterns 
aligning with the characteristic immunosuppressive 
features of ULMS. Accordingly, the lollipop plots 
provide visual confirmation that specific Mgenes 
(both upregulated and downregulated) are 
statistically significantly associated with specific 
immune cell subsets—validating their potential utility 
as biomarkers for ULMS and offering preliminary 
understanding of their functions in regulating the 
tumor immune landscape of this disease. Consistent 
with these findings, Figure 12 further illustrates the 
intricate correlations between Mgenes and diverse 
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immune cell populations in the tumor immune 
microenvironment, indicating that Mgenes play a 
profound role in regulating the tumor immune 
microenvironment. 

3.9 Exploring the correlation between Mgenes 
and antineoplastic drug sensitivity 

To investigate the correlation between Mgenes 
and antineoplastic drug sensitivity, we performed 
integrated analyses using the CTRP and GDSC 
databases. The results derived from the GDSC 
database are presented in Figure 13A, where a 
correlation heatmap was generated based on the 
sensitivity profiles of the top 30 ranked antineoplastic 
drugs. As illustrated in the heatmap, most Mgenes 
exhibited dual characteristics of both resistance and 
sensitivity to the panel of drugs dominated by 
targeted inhibitors. In contrast, the analytical results 

from the CTRP database are shown in Figure 13B, 
with the heatmap constructed using the sensitivity 
data of the top 30 antineoplastic drugs. Notably, for 
the drug panel primarily composed of conventional 
chemotherapeutic agents, most Mgenes displayed a 
unimodal pattern of either sensitivity or resistance. 
Specifically, high expression of FOS, APOD, TK1, and 
CDKN3 was correlated with antineoplastic drug 
resistance. In contrast, elevated expression of TYMS, 
TTK, TOP2A, STIL, RRM2, RASSF2, PLK4, MCM4, 
MCM2, MAD2L1, KIF2C, KIF14, KIF11, DPP6, 
CENPF, CENPA, CDC7, and CCNA2 was associated 
with increased antineoplastic drug sensitivity. Given 
the prevalent drug resistance in ULMS, the distinct 
expression patterns of Mgenes may provide valuable 
insights for the clinical selection of antineoplastic 
drugs and therapeutic regimens. 

 

 
Figure 11. Correlation analysis between Mgenes and various immune cells. 
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Figure 12. Panoramic correlation heatmap of Mgenes and various immune cells in the tumor immune microenvironment. 

 

 
Figure 13. Correlation Analysis of Mgenes Expression and Antineoplastic Drug Sensitivity. (A) Correlation heatmap of antineoplastic drug sensitivity based on the GDSC 
database, including the top 30 ranked drugs. (B) Correlation heatmap of antineoplastic drug sensitivity based on the CTRP database, including the top 30 ranked drugs. Blue 
indicates drug sensitivity, and red indicates drug resistance. 
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Table 1. Characteristics of GWAS dataset included in the study 

ID Description Cases (n) Controls (n) Population URL 

finngen_R12_C3_LEIOM
YOSARCOMA_EXALLC 

Leiomyosarcoma, excluding all 
cancers (controls excluding all 
cancers) 

306 378749 European https://storage.googleapis.com/finngen-public-data-r12/summar
y_stats/release/finngen_R12_C3_LEIOMYOSARCOMA_EXALLC.
gz 

 
3.10 Exploring genetically causal links between 
Mgenes and leiomyosarcoma via mendelian 
randomization 

To explore whether there are genetically causal 
links between Mgenes and leiomyosarcoma 
pathogenesis, we performed a Mendelian 
Randomization (MR) analysis by employing 
genome-wide association study (GWAS) data and 
expression quantitative trait locus (eQTL) data. 
Within this study, eQTL data corresponding to 
Mgenes were acquired from the IEU Open GWAS 
Database. Concurrently, a GWAS dataset related to 
leiomyosarcoma (accession: 
finngen_R12_C3_LEIOMYOSARCOMA_EXALLC) 
was sourced from the FinnGen Database, which 
contained 306 cases and 378,749 controls. 
Comprehensive information regarding this GWAS 
dataset—such as sample size, study population, and 
access URL—is compiled in Table 1. Regrettably, the 
outcomes of our MR analysis failed to provide 
evidence that supports a genetically causal 
relationship between Mgenes and leiomyosarcoma 
susceptibility. This observation implies that genetic 
variants influencing Mgenes expression may not play 
a direct causal role in driving leiomyosarcoma 
development—at minimum within the study 
populations incorporated here and under the 
analytical framework adopted in this research. 

4. Discussion 
A critical starting point of this study was the 

identification of InteGenes—96 genes that overlap 
between differentially expressed genes (DEGs) in 
uterine leiomyosarcoma (ULMS) and the 
WGCNA-derived MEturquoise module, which 
exhibited the strongest correlation with the ULMS 
phenotype (correlation coefficient = 0.54, P = 6×10⁻⁵). 
This dual-selection strategy was deliberate: by 
prioritizing genes that are not only transcriptionally 
dysregulated between tumor and normal tissues but 
also central to ULMS-specific co-expression networks, 
we minimized the risk of focusing on genes with 
spurious or tissue-unspecific associations, thereby 
enhancing the biological relevance of our candidate 
gene set. Functional enrichment analyses further 
validated this approach, as InteGenes were heavily 

concentrated in pathways that are well-established 
drivers of ULMS pathogenesis. Gene Ontology (GO) 
annotations highlighted processes critical to cell 
division and genomic stability, including 
chromosome segregation, nuclear division, and 
microtubule binding—all of which are frequently 
dysregulated in ULMS to support uncontrolled 
proliferation and chromosomal instability. Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis similarly emphasized cell cycle 
regulation, p53 signaling, and DNA repair 
mechanisms (e.g., homologous recombination, 
mismatch repair); for instance, the p53 
pathway—often mutated or silenced in 
ULMS—mediates cell cycle arrest and apoptosis in 
response to DNA damage, and the enrichment of 
InteGenes here suggests they may act as downstream 
effectors of p53 dysfunction, amplifying 
pro-tumorigenic signaling. Notably, InteGenes also 
overlapped with hormone-responsive pathways (e.g., 
progesterone-mediated oocyte maturation), aligning 
with ULMS’s known sensitivity to steroid hormones 
and the potential for endocrine-based therapeutic 
strategies. While the relatively small sample size of 
individual GEO datasets (e.g., GSE68312 with 3 tumor 
and 3 normal samples) introduced a risk of bias in 
DEG and module identification, we mitigated this by 
integrating larger cohorts (TCGA-SARC: 27 ULMS 
cases; GSE36610: 12 ULMS cases) as the training set 
and validating findings across three independent 
datasets, strengthening the robustness of our 
InteGene prioritization. Future work should further 
validate these genes in larger, prospectively collected 
clinical cohorts and explore their functional roles via 
in vitro (e.g., gene knockdown/overexpression in 
ULMS cell lines) and in vivo (xenograft models) 
experiments to confirm their causal relevance to 
ULMS progression. 

To translate these molecular insights into clinical 
utility, we compared 113 unique machine learning 
(ML) algorithms to develop a ULMS diagnostic 
model—an unprecedented scale of algorithmic 
comparison for this rare disease. The gradient 
boosting machine (GBM) model emerged as the top 
performer, achieving a perfect area under the curve 
(AUC = 1.0) in the training set and maintaining high 
accuracy across validation cohorts (GSE764: 92.3%; 
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GSE68295: 100%; GSE68312: 100%). Critically, the 
model exhibited 100% tumor recall across all datasets, 
ensuring no ULMS cases were missed—a key 
attribute for a diagnostic tool, as false negatives could 
delay treatment initiation and worsen patient 
prognosis. The 36 core genes of this model 
(designated “Mgenes”) included both upregulated 
(e.g., TRIP13, CKS2, MCM2) and downregulated (e.g., 
GATA2, CXCL12, PGR) transcripts, each with strong 
individual diagnostic potential (AUC range: 0.782 for 
HTR2B to 0.972 for TRIP13). TRIP13, which showed 
the highest individual AUC, is a well-characterized 
oncogene that regulates mitotic checkpoint control 
and DNA repair; its overexpression has previously 
been linked to poor prognosis in other sarcoma 
subtypes, further validating its relevance to ULMS 
biology. In contrast, downregulated Mgenes such as 
GATA2—a transcription factor critical for immune 
cell development—foreshadowed potential roles in 
ULMS’s immune microenvironment, as discussed 
below. Compared to prior ULMS diagnostic studies, 
our model offers distinct advantages: it leverages 
multi-cohort data to minimize cohort-specific bias, 
compares a large number of ML algorithms to select 
the most robust approach (rather than relying on a 
single method), and captures a broad spectrum of 
ULMS’s molecular signature via both up- and 
downregulated genes. Clinically, this model could 
serve as a complementary tool to histopathology, 
particularly for ambiguous cases (e.g., differentiating 
ULMS from benign leiomyomas or other uterine 
sarcomas). However, the model currently relies on 
transcriptomic data from tissue samples, which 
requires invasive sampling—a limitation for 
non-invasive diagnostics. Future research should 
explore whether Mgene expression can be detected in 
liquid biopsies (e.g., circulating tumor RNA or 
exosomes) to develop non-invasive tests, and 
integrating clinical variables (e.g., patient age, tumor 
size) with Mgenes may further enhance performance. 

The tumor immune microenvironment (TIME) is 
a key determinant of ULMS progression and response 
to immunotherapy, yet the molecular regulators 
linking ULMS’s transcriptomic signature to immune 
dysregulation remain poorly defined. Our 
CIBERSORT analysis revealed distinct TIME 
alterations in ULMS: tumor tissues exhibited 
increased fractions of follicular helper T cells and M0 
macrophages (a precursor to immunosuppressive 
M2-like tumor-associated macrophages [TAMs]) and 
decreased levels of γδ T cells, activated natural killer 
(NK) cells, and resting mast cells. These changes align 
with a well-documented shift toward immune 
suppression in ULMS: γδ T cells and activated NK 
cells are critical for innate anti-tumor immunity, and 

their depletion impairs early tumor surveillance, 
while M0 macrophage accumulation may facilitate 
M2 polarization and the secretion of pro-tumorigenic 
cytokines (e.g., IL-10, TGF-β). Notably, Mgenes 
exhibited strong correlations with these TIME 
changes, providing a direct molecular link between 
ULMS’s transcriptome and immune dysfunction. 
Upregulated Mgenes associated with cell cycle 
progression (e.g., TRIP13, CKS2, MCM2) showed 
positive correlations with M2 TAMs and regulatory T 
cells (Tregs)—two key immunosuppressive 
populations. For example, TRIP13’s positive 
correlation with M2 TAMs (P < 0.05) suggests it may 
promote M2 polarization, potentially via the secretion 
of cytokines like CSF1 or activation of STAT3 
signaling, which drives macrophage differentiation 
toward an immunosuppressive phenotype. In 
contrast, downregulated Mgenes such as GATA2 and 
CXCL12 correlated negatively with Tregs and 
positively with CD8+ cytotoxic T lymphocytes (CTLs): 
GATA2 is required for the development and 
maturation of CTLs and NK cells, so its reduced 
expression in ULMS may impair effector cell function, 
while CXCL12—a chemokine that recruits CTLs to 
tumor sites—may fail to attract anti-tumor immune 
cells when downregulated. These findings have 
important implications for immunotherapy: ULMS 
has shown limited response to immune checkpoint 
inhibitors (e.g., anti-PD-1), likely due to its highly 
immunosuppressive TIME. Targeting Mgenes could 
reverse this suppression—for instance, inhibiting 
TRIP13 might reduce M2 TAM accumulation, while 
restoring GATA2 or CXCL12 expression could 
enhance CTL recruitment. A limitation of this analysis 
is that CIBERSORT infers immune cell fractions from 
bulk RNA-seq data, which cannot capture 
single-cell-level heterogeneity (e.g., subpopulations of 
M2 TAMs with distinct functional roles). Single-cell 
RNA sequencing of primary ULMS tissues would 
further refine our understanding of Mgene-TIME 
interactions and identify more precise immune 
targets. 

To address whether Mgenes exert causal genetic 
effects on ULMS susceptibility—a key question for 
distinguishing driver vs. passenger genes—we 
performed Mendelian randomization (MR) analysis 
using expression quantitative trait locus (eQTL) data 
from the IEU Open GWAS Database and a ULMS 
genome-wide association study (GWAS) dataset from 
FinnGen (306 cases, 378,749 controls). Surprisingly, no 
evidence of a genetic causal relationship was found, 
suggesting that genetic variants influencing Mgene 
expression do not directly drive ULMS development 
in the studied populations. Several factors may 
explain this null result. First, the FinnGen ULMS 



Int. J. Med. Sci. 2026, Vol. 23 

 
https://www.medsci.org 

948 

dataset includes only 306 cases, which limits statistical 
power to detect modest causal effects—particularly 
for rare genetic variants, given ULMS’s low incidence. 
Large-scale GWAS for ULMS are challenging due to 
its rarity, and future studies should integrate data 
from multiple cohorts (e.g., UK Biobank, expanded 
TCGA-SARC) to increase sample size and power. 
Second, the eQTL data used in MR may not reflect 
Mgene expression in uterine tissues: most public 
eQTL datasets are derived from blood or non-uterine 
organs, and tissue-specific eQTLs could be missed, 
leading to inaccurate estimates of SNP-Mgene 
associations. Third, Mgenes may be consequences 
rather than causes of ULMS: their differential 
expression could result from epigenetic modifications 
(e.g., DNA methylation, histone acetylation) or cues 
from the tumor microenvironment (e.g., cytokine 
signaling) rather than genetic variation. Finally, 
ULMS exhibits high genetic heterogeneity, with 
distinct subtypes driven by different driver mutations 
(e.g., TP53, ATRX); our MR analysis did not stratify by 
subtype, which may have masked subtype-specific 
causal effects. Despite being negative, this result is 
valuable: it rules out Mgenes as major genetic drivers 
of ULMS, guiding future research toward non-genetic 
mechanisms underlying their dysregulation (e.g., 
epigenetic or post-translational modification). 
Additionally, it prevents overinterpretation of 
Mgenes as genetic susceptibility markers, which 
could misdirect clinical screening efforts. Future MR 
studies should use larger, tissue-matched eQTL and 
GWAS datasets to confirm these findings. 

Collectively, these discussions highlight the 
multi-faceted contributions of our study: from 
identifying biologically relevant candidate genes 
(InteGenes) to developing a clinically useful 
diagnostic model (based on Mgenes), uncovering 
links between Mgenes and ULMS’s 
immunosuppressive TIME, and clarifying the 
non-genetic role of Mgenes in ULMS pathogenesis. 
Each finding addresses a critical gap in current ULMS 
research, while acknowledging limitations that point 
to future directions—ultimately advancing our 
understanding of this aggressive disease and laying 
the groundwork for improved diagnostics and 
therapies. 

5. Conclusion 
This study systematically investigated the 

molecular landscape of uterine leiomyosarcoma 
(ULMS) using multi-cohort transcriptomic data, 
weighted gene co-expression network analysis 
(WGCNA), machine learning, tumor immune 
microenvironment (TIME) analysis, and Mendelian 
randomization (MR). Key findings include: (1) 

Identification of 96 InteGenes enriched in core 
oncogenic pathways (cell cycle, p53 signaling, DNA 
repair), which are central regulators of ULMS 
pathogenesis; (2) Development of a gradient boosting 
machine (GBM)-based diagnostic model (36 Mgenes) 
with excellent performance (training AUC = 1.0, 
validation accuracy 92.3–100%); (3) Mgenes are 
closely associated with ULMS’s immunosuppressive 
TIME, with upregulated Mgenes correlating with M2 
tumor-associated macrophages (TAMs)/regulatory T 
cells (Tregs) and downregulated ones with effector 
immune cells; (4) Preliminary correlation between 
Mgenes expression profiles and antineoplastic drug 
sensitivity/resistance; (5) No genetic causality 
between Mgenes and ULMS via MR, indicating 
potential non-genetic mechanisms in Mgene 
dysregulation. 

These findings provide novel insights into 
ULMS’s molecular and immune biology, and identify 
Mgenes as promising diagnostic biomarkers and 
immunotherapeutic targets, laying a solid foundation 
for translational research. Clinically, although the 
GBM model relies on postoperative samples (inherent 
to current ULMS diagnosis), it serves as a valuable 
auxiliary tool for pathological 
confirmation—especially in ambiguous 
cases—helping reduce misdiagnosis of this rare 
malignancy. More importantly, Mgenes’ correlations 
with TIME components (e.g., M2 TAMs, Tregs) and 
drug sensitivity open new avenues for personalized 
treatment: Mgenes highly expressed with M2 
TAMs/Tregs may be targets for immunotherapies 
(e.g., TAM repolarization agents, checkpoint 
inhibitors), while those associated with drug 
sensitivity/resistance can guide neoadjuvant or 
adjuvant therapy selection, addressing the unmet 
clinical need for precise ULMS management. 

Notable strengths of this study include 
integration of multi-cohort data (GEO, TCGA-SARC, 
single-cell sequencing) and a comprehensive 
analytical framework, ensuring robust and 
generalizable findings; additionally, focusing on 
Mgenes advances understanding of ULMS’s 
immunosuppressive microenvironment, a key 
treatment barrier. However, limitations exist: (1) 
Findings are based on retrospective transcriptomic 
data, requiring prospective validation in larger, 
diverse cohorts; (2) The functional mechanisms of 
Mgenes in regulating TIME and drug sensitivity 
remain unclear, needing in-depth in vitro/in vivo 
verification; (3) Non-genetic mechanisms (e.g., 
epigenetic modification) suggested by MR results 
require further exploration. 

Future research will focus on prospective 
validation of Mgenes, elucidating their functional 



Int. J. Med. Sci. 2026, Vol. 23 

 
https://www.medsci.org 

949 

roles in ULMS progression and immune regulation, 
and testing Mgene modulation to enhance 
immunotherapy/chemotherapy efficacy in preclinical 
models. Ultimately, this work aims to improve 
ULMS’s precise diagnosis, prognostic stratification, 
and personalized treatment, thereby enhancing 
outcomes for patients with this highly aggressive 
malignancy. 
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