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Abstract

Alzheimer’s disease (AD) exhibits sex-specific molecular signatures that may improve diagnostic
precision. We aimed to identify and validate male- and female-specific blood and brain gene expression
biomarkers for AD prediction. We analyzed four GEO datasets (blood- and brain-derived) using limma
and Fisher’s meta-analysis to identify sex-specific differentially expressed genes, assessed age associations
via linear regression, and constructed 10-fold cross-validated logistic regression models. After
performing a meta-analysis, 74 differentially expressed genes were identified in the female cohort and 89
DEGs were screened in the male cohort. ERH and MRPS33 were identified as the most relevant genes in
the male cohort, and NDUFAT1 and NDUFS5 were screened in the female cohort. The identified genes
were downregulated in AD samples compared to controls. Both male-specific and female-specific
prediction models achieved an AUC of above 0.7 in two external validation blood-derived datasets as
well entorhinal cortex dataset. Paradoxically, qPCR showed significant upregulation of all four genes in
the AD group compared to the control group.
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Introduction

Alzheimer’s disease (AD) represents a major
global health concern, impacting millions of
individuals worldwide, and is characterized by
progressive  cognitive  decline and memory
impairment [1]. Genetics of AD has been extensively
studied since the end of the previous century. One of
the rare forms of AD, known as early-onset AD, is
primarily caused by mutations in the APP, PSEN1,
and PSEN2 genes, which alter the processing of
amyloid precursor protein. In turn, this increases the
production of AP42, a core event in the amyloid
cascade hypothesis [2-4]. For the much more common
late-onset AD, the ¢4 allele of the APOE gene is the
only established genetic risk factor associated with the
development of AD [5]. Apart from these core genes,

genome-wide association studies have revealed
numerous susceptibility genes, such as CLU, BIN1,
and TREM2, implicating additional biological
pathways involved in pathogenesis of AD (excellently
summarized in a recent review [6]).

Emerging evidence suggests that biological sex
plays a critical role in AD pathophysiology,
influencing disease risk, progression, and response to
treatment [7, 8]. Understanding sex-specific
differences in AD has garnered increasing attention in
neurology research, highlighting the need for tailored
approaches [9]. Women were reported to have a
higher prevalence of AD and have different clinical
presentations compared to men [10]. Sex-specific
differences extend beyond prevalence and clinical
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presentation and include genetic, hormonal, and
immunological factors [11, 12]. Several studies have
emphasized sex-specific ~differences in gene
expression profiles, implicating unique molecular
pathways underlying disease pathogenesis. While the
APOE €4 allele presents risk in both sexes, women
carriers show a higher incidence of AD between 65
and 75 years and exhibit faster cognitive decline
compared to male carriers [13]. Interestingly, higher
prevalence of AD in women is observed despite the
fact that overall measures of AP burden often do not
show consistent sex differences [14]. Recent studies
investigated association between AD and genes
previously not implicated with its progression. It was
recently discovered that LRP10 acts as a major
regulator in the female AD network and may be
crucial in driving sex-specific differences in AD
development [11]. Another study revealed that
increased expression of SERPINB1, SERPINB6 and
SERPINBY in the prefrontal cortex of female AD
patients was associated with significantly higher
levels of amyloidosis. In contrast, such differences
were not observed in male AD patients [15].

Despite advances in our understanding of AD,
there is still a lack of studies covering sex-specific
differences in terms of gene expression of patients
diagnosed with AD. Our study was conducted in
order to contribute to the exploration of sex-specific
gene expression profiles with the primary objective of
creating sex-specific prediction models capable of
predicting AD based on gene expression profiles
alone.

Methods

Datasets

The study was conducted with four datasets
obtained from the Gene Expression Omnibus that
included patients with AD and controls: GSE140829,
GSE63060, GSE63061, and GSE118553. All datasets
provided information on age and gender. GSE140829,
GSE63060 and GSE63061 contained blood samples of
patients diagnosed with AD, mild cognitive
impairment (MCI), and controls. GSE118553 included
brain tissue samples obtained from various regions
(temporal cortex, frontal cortex, entorhinal cortex, and
cerebellum) of AD, asymptomatic AD, and control
subjects.

GSE140829

A total of 587 samples comprised the GSE140829
dataset, including 204 AD, 249 control, and 134 MCI
subjects. Following the removal of MCI samples, the
dataset was divided into two based on gender. The
male-only subset consisted of 100 AD samples and

110 non-AD samples, whereas the female-only subset
included 104 AD samples and 139 controls.
GSE140829 was used as a discovery set. Male and
female subsets were normalized and adjusted for
batch effects using limma and sva packages,
respectively. Each dataset was preprocessed using
‘neqc” function available in limma (normexp
background correction and quantile normalization).

GSE63060

In GSE63060, three samples (4856050008_B,
4856050008_K, and 4856050048_A) were removed
from expression data as they were not found in
phenodata, and one sample (4856076038_D) was
removed from phenodata as it was not found in
expression data. Then, 80 samples with MCI were
removed, leaving 142 AD and 104 control samples.
Among 246 samples, there were 158 females (96 with
AD and 62 controls) and 88 males (46 with AD and 42
controls). Normexp background correction and
quantile normalization were applied to each dataset.

GSE63060 was used as the first external
validation set.

GSE63061

The GSE63061 dataset contained 388 samples:
139 AD, 109 MCI, 134 controls, three borderline MCI,
and three unspecific samples. All samples except for
AD and controls were removed. The final dataset
included 273 samples: 166 females (85 with AD and 81
controls) and 107 males (54 with AD and 53 controls).
Normexp background correction and quantile
normalization were applied to each dataset. GSE63061
was used as the second external validation set.

GSEI118553

In the GSE118553, 115 samples were obtained
from the temporal cortex: 51 males (19 controls, 23
AD, and 9 asymptomatic AD samples) and 64 females
(12 controls, 29 AD, and 23 asymptomatic AD
samples). There were 92 samples in the cerebellum: 41
males (12 controls, 18 AD, and 11 asymptomatic AD
samples) and 51 females (10 controls, 20 AD, and 21
asymptomatic AD samples). In the entorhinal cortex,
there were 98 samples: 36 males (12 controls, 14 AD,
and 10 asymptomatic AD samples) and 62 females (12
controls, 23 AD, and 27 asymptomatic AD samples).
Finally, frontal cortex consisted of 96 samples: 36
males (12 controls, 14 AD, and 10 asymptomatic AD
samples) and 60 females (11 controls, 26 AD, and 23
asymptomatic AD samples). Thus, the GSE118553
dataset was split into four separate datasets based on
the tissue origin, and each one was used to validate
the predictive models. Each dataset was preprocessed
using ‘neqc’ function available in limma (normexp
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background correction and quantile normalization).

Identification of Differentially Expressed
Genes

For each blood-derived dataset (GSE140829,
GSE63060, GSE63061), differentially expressed genes
(DEGs) between AD and controls were identified
separately for males and females using limma
(empirical Bayes statistics). A meta-analysis (Fisher’s)
was then conducted for sex-specific datasets using
ExpressAnalyst with the following cut-off values:
p-value < 0.05 and |logFC| > mean(|logFC|) +
2*SD*(|logFC|), which was equal to 0.32 for females
and 0.37 for males. Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis was used to identify
enriched pathways.

Development and Validation of Predictive
Models

A univariate feature selection was applied to
identify the most relevant genes that could result in
the best performance. Feature selection is essential to
reduce the dimensionality of the training set as a
model cannot be trained on all genes found in the
dataset. Feature selection reduces the computational
power required to do the analysis, improves the
generalization ability and interpretability of machine
learning models, enhances prediction accuracy, and
reduces the risk of model overfitting. In order to
identify AD based on gene expression, a logistic
regression machine learning algorithm (available
within caret package) was used with 10-fold cross
validation. Using the identified genes, models were
trained on GSE140829 and validated on GSE63060 and
GSE63061. In addition, GSE118553 was used as
separate validation set to explore the predictive
performance of models in brain tissues. Sensitivity,
specificity, and area under the curve (AUC) were
calculated to assess model’s performance.

Experimental validation

The whole venous blood was collected
prospectively  from  patients with confirmed
Alzheimer’s disease and controls without any signs of
dementia starting from May 1, 2024 to April 1, 2025 at
the Third Affiliated Hospital of Sun Yat-Sen
University.

For blood samples, a volume of 500 pL of whole
blood was transferred into a 15 mL centrifuge tube, to
which ten volumes of red blood cell lysis buffer were
added. The mixture was gently inverted and
incubated at room temperature, protected from light,
for 10 minutes. The sample was then centrifuged at
300 g for 10 minutes at room temperature, and the
supernatant was discarded. This red blood cell lysis

procedure was repeated once under the same
conditions. The resulting cell pellet was resuspended
in PBS and centrifuged again at 300 g for 10 minutes at
room temperature, after which the supernatant was
removed. The remaining cells were resuspended in
100 pL PBS, followed by the addition of 1 mL TRIpure
reagent. After thorough mixing, the sample was left to
stand for 5 minutes. Next, 250 pL of chloroform was
added, mixed thoroughly, and incubated on ice for 5
minutes. The mixture was then centrifuged at 10,000 g
for 10 minutes at 4 °C. In a biosafety cabinet, 500 pL of
the upper aqueous phase was carefully transferred to
a 1.5 mL EP tube, mixed with an equal volume of
ice-cold isopropanol, and incubated at —20 °C for 15
minutes. After another centrifugation at 10,000 g for
10 minutes at 4 °C, the supernatant was carefully
removed, and the RNA pellet was washed with 1 mL
of 75% ethanol pre-chilled at 4 °C. The tube was
inverted several times to ensure proper washing, then
centrifuged at 10,000 g for 5 minutes at 4 °C. The
supernatant was discarded, and the pellet was
allowed to air-dry for several minutes in a biosafety
cabinet. Finally, the RNA pellet was dissolved in 100
PL of RNase-free water.

First-strand c¢DNA synthesis was performed
using the EntiLink™ 1st Strand cDNA Synthesis Kit
(ELK Biotechnology, EQO003). On ice, a reaction
mixture was prepared containing 2.0 pL of RT primer
mix, 1.0 pL of 2.5 mM dNTPs, and a volume of RNA
adjusted to reach a final volume of 15.0 pL. This
mixture was incubated at 70 °C for 5 minutes in a
thermal cycler and immediately chilled on ice for 2
minutes. Subsequently, the second step reaction mix
was prepared on ice by adding 4.0 pL of 5x RT buffer,
1.0 pL of M-MLYV reverse transcriptase, and 1.0 pL of
RNase inhibitor to the previous mixture. The
complete reaction was incubated at 37 °C for 60
minutes, followed by enzyme inactivation at 85 °C for
5 minutes, and then held at 4 °C.

Quantitative real-time PCR (qPCR) was carried
out on the StepOne™ Real-Time PCR System (Life
Technologies), using the EnTurbo™ SYBR Green PCR
SuperMix Kit (ELK Biotechnology, EQO001). Each
sample was run in triplicate. The thermal cycling
protocol included an initial denaturation step at 95 °C
for 3 minutes, followed by 40 cycles of denaturation at
95 °C for 10 seconds, annealing at 58 °C for 30
seconds, and extension at 72 °C for 30 seconds. The
melting curve analysis was performed using the
instrument’s default settings. The total reaction
volume was 10 pL, composed of 5.0 pL of 2x Master
Mix, 1.0 pL of 2.5 pM primer working solution, 1.0 pL
of template cDNA, 2.0 pL of double-distilled water,
and 1.0 pL of ROX reference dye. List of primers is
shown in Table 1.
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Table 1. List of primers

Primer name Reference sequence Nucleotide sequence (5-3") Tm Value  GC Content% Length (bp)

GAPDH NM_002046 sense CATCATCCCTGCCTCTACTGG 594 57.1 259
antisense ~ GTGGGTGTCGCTGTTGAAGTC 60.1 57.1

NDUFA1 NM_004541 sense GTGCTTGTTGATTCCAGGACTG 59.6 50 104
antisense ~ CCATCAGACTCCAGTGATACCC 583 54.5

NDUFS5 NM_004552 sense TAACATAGATCGATGGTTGACAATC 57.1 36 170
antisense ~ GAAGCAAACACTCTACGAAATCATC 58.8 40

ERH NM_004450 sense TATGCTGACTACGAATCTGTGAATG 59 40 225
antisense ~ CACGTAGATCTTCTCTTTAATCCAG 57 40

MRPS33 NM_016071 sense GGTGAAGTCACCAGGCCTACTA 61.2 54.5 130

Statistical Analysis

Homogeneity of variance was assessed using
Levene’s test, and normality was assessed using
Shapiro-Wilk’s test. A student’s t-test was used to
calculate statistical significance between AD and
control samples if equal variance and normality were
assumed. When normal distribution was not
assumed, Mann-Whitney U test was performed.
P-value < 0.05 was considered statistically significant.
Pearson correlation coefficients were computed for
expression levels of the identified genes. The
correlation was visualized using scatter plots with
linear regression lines, and corresponding correlation
coefficients (r) and p-values were calculated. In
addition, the association between age and gene
expression levels was conducted. For each group,
linear regression models were fitted and the
relationship was visualized using scatter plots with
regression lines. The p-values for the association
between age and expression were computed
separately for each group.

Data analysis of qPCR results was conducted
using the AACT method. For each sample, ACT was
calculated as the difference between the CT value of
the target gene and that of the internal reference gene
(GAPDH). The AACT value was obtained by
subtracting the ACT of the control sample from that of
the experimental sample. Fold change in gene
expression was then calculated as 2-2ACT. Statistical
analysis was performed in R using cor package. All
graphics, including volcano plot, violin plot and
others, were performed using ggplot2 package.

Results

Identification of Differentially Expressed
Genes

Each dataset was split into male and female sets
and then normalized. Datasets that analyzed gene
expression in blood specimens were used for
differential expression analysis and subsequent
meta-analysis of DEGs. In females, a total of 700 DEGs

were extracted from the GSE140829 dataset, 1809 from
the GSE63060 dataset, and 457 from the GSE63061
dataset. In males, 1099 DEGs were identified in the
GSE63061, 1703 in the GSE63060, and 320 in the
GSE140829  datasets.  After  performing a
meta-analysis, 74 DEGs were identified in the female
cohort and 89 DEGs were screened in the male cohort
(Figure 1). In both males and females, KEGG
enrichment analysis revealed genes were mainly
enriched in similar pathways, such as ribosome,
Alzheimer’s disease, non-alcoholic fatty liver disease,
etc.

Gene Selection and Analysis

Following feature selection, two genes, ERH and
MRPS33, were identified in the male cohort (Figure 2),
whereas NDUFA1 and NDUFS5 were screened in the
female cohort (Figure 3). ERH and MRPS33 as well as
NDUFA1 and NDUFS5 exhibited generally moderate
and above levels of correlation across all datasets
regardless of tissue type (all P < 0.001).

Both ERH and MRPS33 were downregulated in
the AD group compared to the control group.
However, they were significantly differentially
expressed only in two out of three blood-derived
datasets, namely GSE63060 and GSE63061 (all P <
0.001), as well as several brain tissues (GSE118553:
entorhinal cortex and frontal cortex; all P < 0.05). In
addition, ERH was significantly downregulated in the
AD group in the frontal cortex (P = 0.00713) but not in
the temporal cortex (P = 0.0749), whereas expression
levels of MRPS33 were significantly lower in the AD
group in the temporal cortex (P = 0.0227) but not in
the frontal one (P = 0.145). Finally, in the female
cohort, NDUFA1 and NDUEFS5 were downregulated
in patients with AD compared to controls. Notably,
statistically significant differences were observed in
all blood-based gene expression datasets (all P < 0.05)
and only in the entorhinal cortex dataset (P = 0.017
and P < 0.001 for NDUFS5 and NDUFAI1,
respectively).
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Figure 1. A. Volcano plot of differentially expressed genes in males. B. Rigline plot of fold change distribution (males). C. Volcano plot of differentially expressed genes in

females. D. Rigline plot of fold change distribution (females).
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study (male cohort). Right panel: scatter plot with linear fit showing Pearson correlation analysis between ERH and MRPS33 across datasets included in the study (male cohort).
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Table 2. Age of females and males in each dataset.

Dataset Specimen Gender Control Group Age (Mean * SD; n) Alzheimer’s Disease Group Age (Mean * SD; n) P value
GSE140829 Blood Male 74.05 £5.67; 110 72.94 £ 6.87; 100 0.245
Female  73.36 £ 6.68; 139 73.05 £7.33; 104 <0.001
GSE63060 Blood Male 73.02 £ 6.07; 42 75.80 + 6.24; 46 0.037
Female 71.94 +6.53; 62 75.02 £ 6.76; 96 0.004
GSE63061 Blood Male 75.98 +5.72; 53 77.46 +5.79; 54 0.186
Female 74.84+6.21;81 78.16 £7.19; 85 <0.001
GSE118553 Temporal Cortex Male 67.68 £16.01; 19 81.00 +12.00; 23 0.004
Female 7191 £18.68;12 83.55 +9.69; 29 0.118
Cerebellum Male 69.17 £12.28; 12 79.40 £10.90; 18 0.057
Female 73.10 +£18.28; 10 85.20 +9.34; 20 0.074
Entorhinal Cortex ~ Male 74.08 +8.98; 12 84.21 £10.45; 14 0.030
Female  71.50 +21.30; 12 83.90 +9.59; 23 0.216
Frontal Cortex Male 70.58 +13.15; 12 81.07 +11.87;14 0.043
Female 67.10 £18.43;11 83.96 + 8.87; 26 0.019
Present study  Blood Male 754 +7.06;5 724 +6.11;5 0.493
Female 724+391;5 71.0+412;5 0.832
Age significant age differences were observed in females

Across multiple datasets, individuals with AD
were generally older than controls, with several
statistically significant differences (Table 2). In
GSE140829, females with AD were significantly older
compared to controls (73.36 + 6.68 vs 73.05 £ 7.33
years, P < 0.001), though no difference was observed
in males (P = 0.245). In both GSE63060 and GSE63061,

(71.94 £ 6.53 vs 75.02 £ 6.76, P = 0.004, and 74.84 + 6.21;
81 vs 78.16 £ 7.19, P < 0.001, respectively), while males
with AD were significantly older than controls only in
the GSE63060 dataset (73.02 + 6.07 vs 75.80 + 6.24, P =
0.037). Similar trends were observed in the brain
tissue data (GSE118553): males with AD were
significantly older compared to controls in the
temporal cortex (67.68 £ 16.01 and 81.00 + 12.00, P =
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0.004), entorhinal cortex (74.08 £ 8.98 and 84.21 %
10.45, P = 0.030), and frontal cortex (70.58 £ 13.15 and
81.07 £ 11.87, P = 0.043). As for females, statistically
significant differences in terms of age were observed
only in the frontal cortex (67.10 + 18.43 and 83.96
8.87, P = 0.019). A linear regression analysis was
conducted to assess the association between the
identified genes and age. In male cohort, no
significant associations were observed between ERH
or MRPS33 in any dataset except for AD patients in
the GSE140829 dataset and GSE118553 (cerebellum) (S
Figure 1). In contrast, there were significant
associations between age and NDUFA1 expression
levels in GSE63060 (both control and AD groups),
GSE630361 (control group), and GSE118553 -
entorhinal cortex (control group), whereas NDUFS5
was associated with age only in the control group
comprising the GSE63060 dataset (S Figure 2).

Model Development

The selected genes were used to train and
validate a logistic regression model. As demonstrated
in Figure 4, ERH and MRPS33 showed good
predictive performance across all male-specific
datasets, reaching AUC of 0.72 and 0.77 in the first
external validation set (GSE63060) and AUC of 0.72
and 0.72 in the second one (GSE63061). Moreover,
their predictive performance was even higher in the
GSE118553 with both genes having an AUC close to
0.9 in the entorhinal cortex. Notably, performance of
models trained on ERH and MRPS33 did not
marginally decline when predicting asymptomatic
AD (S Figure 3). Specifically, ERH showed optimal
sensitivity and specificity in cerebellum (AUC: 0.8)
and entorhinal cortex (AUC: 0.77), whereas MRPS33
achieved an AUC of 0.7 in cerebellum, AUC of 0.8 in
entorhinal cortex, and AUC of 0.71 in temporal cortex.
Both  NDUFA1l and NDUFS5 showed great
performance in the first validation set and good
performance in the second validation set, with AUC
of 0.87 and 0.74-0.76, respectively (Figure 5).
Moreover, the models were able to reliably predict
AD in the entorhinal cortex of the third validation set
(AUC of 0.83 for NDUFA1 and 0.75 for NDUFS5).
However, their performance declined in the
cerebellum, frontal cortex, and temporal cortex.
Similarly, when predicting asymptomatic AD, models
could not reliably differentiate between cases and
controls in almost all brain regions (S Figure 4). Only
the model trained using NDUFA1 exhibited a good
predictive performance in one of the datasets
(entorhinal cortex: AUC of 0.77).

Experimental Validation
The expression levels of ERH and MRPS33 in

males as well as NDUFA1 and NDUFS5 in females
were evaluated in whole venous blood samples of
patients with AD and healthy controls without any
signs of dementia (Figure 6). Contrary to earlier
findings, all four genes were significantly higher in
the AD group than in the control group (ERH: P =
0.014, MRPS33: P = 0.045, NDUFA1l: P < 0.001,
NDUFS5: P = 0.003).

Discussion

Our study identified ERH & MRPS33 and
NDUFA1 & NDUEFS5 as biomarkers of AD in males
and females, respectively. Performance of the male
models trained on ERH and MRPS33 was strong;:
AUCs of 0.72-0.77 in external blood validations
(GSE63060, GSE63061) and nearly 0.90 in the
entorhinal cortex of GSE118553. Notably, predictive
accuracy remained high for asymptomatic AD in
cerebellum (AUCs 0.80 for ERH; 0.70 for MRPS33) and
entorhinal cortex (0.77 and 0.80, respectively).
Female-specific models (NDUFA1 and NDUFS5)
similarly achieved good performance in the first
validation set (AUC 0.87) and good performance in
the second set (AUC 0.74-0.76), as well as in
entorhinal cortex prediction (AUCs 0.83 for NDUFAT;
0.75 for NDUFS5). The four identified genes were
downregulated in blood and four brain regions, yet
strikingly they were upregulated in our PCR
evaluation of peripheral blood.

In studying sex-specific differences in AD,
bioinformatics methods are instrumental in
processing and interpreting gene expression data [16].
First, raw gene expression datasets underwent
preprocessing, such as normalization, to ensure data
comparability. Differential expression analysis was
then conducted to identify genes that varied
significantly between AD and normal samples in
males and females. By performing a meta-analysis of
sex-specific DEGs across three independent
blood-derived GEO  datasets, we mitigated
dataset-specific biases in sample handling, platform
variability, and cohort demographics. Unlike merging
datasets, which can introduce batch effects, or relying
on a single dataset, meta-analysis utilizes the
combined statistical power of multiple experiments
[17-19]. This approach increases generalizability and
reproducibility, ensuring that the identified genes
(ERH, MRPS33 for males; NDUFA1, NDUFS5 for
females) display consistent disease-related expression
changes across various cohorts. Importantly, models
trained on the identified genes achieved good
predictive performance in all blood datasets and at
least one brain tissue dataset. Bioinformatics analysis
also included pathway enrichment analysis, which
can reveal biological pathways influenced by the
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identified genes. Machine learning complements
bioinformatics by analyzing these gene expression
profiles to build predictive models. Machine learning
algorithms learn patterns from the data to predict
disease development [20, 21]. We employed 10-fold
cross-validated logistic regression model to build
sex-specific classifiers based on our selected genes.
The linear nature of these models ensures
interpretability ~ without relying on complex
interpretation tools, such as SHAP and LIME,

ERH - GSE63060

ERH - GSE63061

allowing direct assessment of each gene’s contribution
to AD risk prediction. This integrated approach
enables the discovery of sex-specific biomarkers and
molecular pathways associated with AD, advancing
our understanding of sex-specific differences in AD
progression. The integration of machine learning with
sex-specific neurobiological research holds promise
for advancing precision medicine in AD and
improving diagnostic modalities for individuals
based on their unique gene expression characteristics.
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Figure 4. Receiver Operating Characteristic (ROC) curve for logistic regression models trained using ERH (top two rows) and MRPS33 (bottom two rows) in male cohort.
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Figure 5. Receiver Operating Characteristic (ROC) curve for logistic regression models trained using NDUFAI (top two rows) and NDUFS5 (bottom two rows) in female
cohort.
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Figure 6. Violin plot of quantitative real-time PCR validation of the expression levels of ERH, MRPS33, NDUFAI, and NDUFSS5 relative to GAPDH based on 2-AACT method.

ERH is a small, highly conserved nuclear and
nucleolar protein that promotes proper mitotic
chromosome alignment. However, it has been mostly
studied in the field of cancer and its association with
neurogenerative diseases is unclear [22, 23].
Mitochondrial ribosomal protein 33 (MRPS33) is a
nuclear-encoded component of the mitochondrial
ribosome, essential for mitochondrial translation and
oxidative phosphorylation [24]. Disruption of MRPs
impairs  ribosome assembly and oxidative
phosphorylation, linking this gene’s expression
alterations to neurodegenerative diseases. It is worth
mentioning that the identified DEGs in both female

and male cohorts were involved in ribosome
pathways. Ribosomal dysfunction  impairs
mitochondrial  translation, disrupts oxidative

phosphorylation, and contributes to neuronal energy
failure and amyloidogenic stress in AD [25, 26].

NDUFA1 and NDUFS5 are nuclear-encoded subunits
of mitochondrial complex I and belong to the
NADH-ubiquinone oxidoreductase family. Proteomic
studies consistently report the downregulation of
NDUFAL1 and NDUFS5 in early-onset and late-onset
AD, reflecting destabilization of complex I [27].
Machine-learning-based analyses in blood cohorts
identified both NDUFA1 and NDUFS5 as robust
diagnostic biomarkers across sexes [28], and their
combined inclusion with age yielded AUCs >0.72 for
late-onset AD prediction [29].

Given the known risks of aging in Alzheimer’s
disease, we evaluated correlations between age and
transcript levels. In our male cohort, ERH and
MRPS33 showed no significant age associations as
except within the AD subgroup of GSE140829 and the
cerebellum dataset of GSE118553. In females,
however, NDUFA1 expression inversely correlated
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with age in multiple datasets (GSE63060, GSE63061
control, and GSE118553 entorhinal cortex), and
NDUFS5 was associated with age in the GSE63060
control group. These findings may indicate that,
particularly for complex I subunits, aging may
modulate expression in healthy individuals,
suggesting the need to adjust for age in future
biomarker evaluations.

Across analyzed datasets, ERH and MRPS33 as
well as NDUFA1 and NDUFS5 were significantly
downregulated in male and female AD patients
compared to controls, respectively. However, the
opposite trend was observed in our PCR validation.
This is likely attributed to differences in cohorts
and/or sample size. It is difficult to establish the exact
reason since the original studies did not provide any
information on treatment, comorbidities, etc. First,
given the location of our institution, only Chinese
patients with AD and controls were included in the
study. Second, such large discrepancies may be due to
existing comorbidities, received treatment or disease
stage. Third, sample size is smaller compared to that
of the included datasets and had only 10 cases and 10
controls, which were further divided based on sex.
The identified genes were associated with good
predictive performance in most of the included
datasets, namely blood datasets and entorhinal cortex.
Performance decline in the other regions as well as
during asymptomatic AD shows regional and
stage-specific limitations of constructed models. The
strong performance of all predictive models in the
entorhinal cortex can likely be attributed to the
region’s central and early involvement in Alzheimer’s
disease pathogenesis. As consistently shown across
numerous studies, the entorhinal cortex is among the
first brain regions to undergo structural, cellular, and
molecular changes, including Tau accumulation and
layer II neuronal degeneration, even during the
preclinical stage of AD [30-32]. Therefore, gene
expression patterns in the entorhinal cortex may offer
a clearer “picture” of AD-related molecular processes,
which may explain why our models demonstrated
superior and consistent predictive performance in this

region.
Given the number of included number of
samples, datasets, tissue specimens and good

performance of constructed models based on the
identified genes, we demonstrate that the identified
genes are robust and generalizable biomarkers for
AD. However, our study is not without limitations.
First, all PCR validations were conducted in a single
prospective cohort without accounting for covariates.
Second, datasets we used did not report medication
use, comorbidities, disease stage or lifestyle factors,
and thus these variables could not be adjusted for.

Third, the number of samples in the gene expression
datasets or in our cohort for PCR validation was
modest, which could potentially limit the reliability of
our findings. Finally, while our logistic models
performed well in various external validation
datasets, prospective validation in independent
clinical cohorts is essential.

Conclusion

Through meta-analysis of multiple datasets, we
identified ERH and MRPS33 as well as NDUFA1 and
NDUFS5 as robust biomarkers for sex-specific
prediction models for AD. Logistic regression models
based on these genes demonstrated good prediction
performance in both peripheral blood datasets and in
various brain regions, particularly the entorhinal
cortex. However, qPCR analysis yielded opposite
results of gene expression levels in AD and control
groups.
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