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Abstract 

Alzheimer’s disease (AD) exhibits sex-specific molecular signatures that may improve diagnostic 
precision. We aimed to identify and validate male- and female-specific blood and brain gene expression 
biomarkers for AD prediction. We analyzed four GEO datasets (blood- and brain-derived) using limma 
and Fisher’s meta-analysis to identify sex-specific differentially expressed genes, assessed age associations 
via linear regression, and constructed 10-fold cross-validated logistic regression models. After 
performing a meta-analysis, 74 differentially expressed genes were identified in the female cohort and 89 
DEGs were screened in the male cohort. ERH and MRPS33 were identified as the most relevant genes in 
the male cohort, and NDUFA1 and NDUFS5 were screened in the female cohort. The identified genes 
were downregulated in AD samples compared to controls. Both male-specific and female-specific 
prediction models achieved an AUC of above 0.7 in two external validation blood-derived datasets as 
well entorhinal cortex dataset. Paradoxically, qPCR showed significant upregulation of all four genes in 
the AD group compared to the control group. 
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Introduction 
Alzheimer’s disease (AD) represents a major 

global health concern, impacting millions of 
individuals worldwide, and is characterized by 
progressive cognitive decline and memory 
impairment [1]. Genetics of AD has been extensively 
studied since the end of the previous century. One of 
the rare forms of AD, known as early-onset AD, is 
primarily caused by mutations in the APP, PSEN1, 
and PSEN2 genes, which alter the processing of 
amyloid precursor protein. In turn, this increases the 
production of Aβ42, a core event in the amyloid 
cascade hypothesis [2-4]. For the much more common 
late-onset AD, the ε4 allele of the APOE gene is the 
only established genetic risk factor associated with the 
development of AD [5]. Apart from these core genes, 

genome-wide association studies have revealed 
numerous susceptibility genes, such as CLU, BIN1, 
and TREM2, implicating additional biological 
pathways involved in pathogenesis of AD (excellently 
summarized in a recent review [6]).  

Emerging evidence suggests that biological sex 
plays a critical role in AD pathophysiology, 
influencing disease risk, progression, and response to 
treatment [7, 8]. Understanding sex-specific 
differences in AD has garnered increasing attention in 
neurology research, highlighting the need for tailored 
approaches [9]. Women were reported to have a 
higher prevalence of AD and have different clinical 
presentations compared to men [10]. Sex-specific 
differences extend beyond prevalence and clinical 
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presentation and include genetic, hormonal, and 
immunological factors [11, 12]. Several studies have 
emphasized sex-specific differences in gene 
expression profiles, implicating unique molecular 
pathways underlying disease pathogenesis. While the 
APOE ε4 allele presents risk in both sexes, women 
carriers show a higher incidence of AD between 65 
and 75 years and exhibit faster cognitive decline 
compared to male carriers [13]. Interestingly, higher 
prevalence of AD in women is observed despite the 
fact that overall measures of Aβ burden often do not 
show consistent sex differences [14]. Recent studies 
investigated association between AD and genes 
previously not implicated with its progression. It was 
recently discovered that LRP10 acts as a major 
regulator in the female AD network and may be 
crucial in driving sex-specific differences in AD 
development [11]. Another study revealed that 
increased expression of SERPINB1, SERPINB6 and 
SERPINB9 in the prefrontal cortex of female AD 
patients was associated with significantly higher 
levels of amyloidosis. In contrast, such differences 
were not observed in male AD patients [15].  

Despite advances in our understanding of AD, 
there is still a lack of studies covering sex-specific 
differences in terms of gene expression of patients 
diagnosed with AD. Our study was conducted in 
order to contribute to the exploration of sex-specific 
gene expression profiles with the primary objective of 
creating sex-specific prediction models capable of 
predicting AD based on gene expression profiles 
alone.  

Methods 
Datasets 

The study was conducted with four datasets 
obtained from the Gene Expression Omnibus that 
included patients with AD and controls: GSE140829, 
GSE63060, GSE63061, and GSE118553. All datasets 
provided information on age and gender. GSE140829, 
GSE63060 and GSE63061 contained blood samples of 
patients diagnosed with AD, mild cognitive 
impairment (MCI), and controls. GSE118553 included 
brain tissue samples obtained from various regions 
(temporal cortex, frontal cortex, entorhinal cortex, and 
cerebellum) of AD, asymptomatic AD, and control 
subjects.  

GSE140829 

A total of 587 samples comprised the GSE140829 
dataset, including 204 AD, 249 control, and 134 MCI 
subjects. Following the removal of MCI samples, the 
dataset was divided into two based on gender. The 
male-only subset consisted of 100 AD samples and 

110 non-AD samples, whereas the female-only subset 
included 104 AD samples and 139 controls. 
GSE140829 was used as a discovery set. Male and 
female subsets were normalized and adjusted for 
batch effects using limma and sva packages, 
respectively. Each dataset was preprocessed using 
‘neqc’ function available in limma (normexp 
background correction and quantile normalization). 

GSE63060 

In GSE63060, three samples (4856050008_B, 
4856050008_K, and 4856050048_A) were removed 
from expression data as they were not found in 
phenodata, and one sample (4856076038_D) was 
removed from phenodata as it was not found in 
expression data. Then, 80 samples with MCI were 
removed, leaving 142 AD and 104 control samples. 
Among 246 samples, there were 158 females (96 with 
AD and 62 controls) and 88 males (46 with AD and 42 
controls). Normexp background correction and 
quantile normalization were applied to each dataset.  

GSE63060 was used as the first external 
validation set.  

GSE63061 

The GSE63061 dataset contained 388 samples: 
139 AD, 109 MCI, 134 controls, three borderline MCI, 
and three unspecific samples. All samples except for 
AD and controls were removed. The final dataset 
included 273 samples: 166 females (85 with AD and 81 
controls) and 107 males (54 with AD and 53 controls). 
Normexp background correction and quantile 
normalization were applied to each dataset. GSE63061 
was used as the second external validation set. 

GSE118553 

In the GSE118553, 115 samples were obtained 
from the temporal cortex: 51 males (19 controls, 23 
AD, and 9 asymptomatic AD samples) and 64 females 
(12 controls, 29 AD, and 23 asymptomatic AD 
samples). There were 92 samples in the cerebellum: 41 
males (12 controls, 18 AD, and 11 asymptomatic AD 
samples) and 51 females (10 controls, 20 AD, and 21 
asymptomatic AD samples). In the entorhinal cortex, 
there were 98 samples: 36 males (12 controls, 14 AD, 
and 10 asymptomatic AD samples) and 62 females (12 
controls, 23 AD, and 27 asymptomatic AD samples). 
Finally, frontal cortex consisted of 96 samples: 36 
males (12 controls, 14 AD, and 10 asymptomatic AD 
samples) and 60 females (11 controls, 26 AD, and 23 
asymptomatic AD samples). Thus, the GSE118553 
dataset was split into four separate datasets based on 
the tissue origin, and each one was used to validate 
the predictive models. Each dataset was preprocessed 
using ‘neqc’ function available in limma (normexp 
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background correction and quantile normalization). 

Identification of Differentially Expressed 
Genes  

For each blood-derived dataset (GSE140829, 
GSE63060, GSE63061), differentially expressed genes 
(DEGs) between AD and controls were identified 
separately for males and females using limma 
(empirical Bayes statistics). A meta-analysis (Fisher’s) 
was then conducted for sex-specific datasets using 
ExpressAnalyst with the following cut-off values: 
p-value < 0.05 and |logFC| > mean(|logFC|) + 
2*SD*(|logFC|), which was equal to 0.32 for females 
and 0.37 for males. Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis was used to identify 
enriched pathways.  

Development and Validation of Predictive 
Models 

A univariate feature selection was applied to 
identify the most relevant genes that could result in 
the best performance. Feature selection is essential to 
reduce the dimensionality of the training set as a 
model cannot be trained on all genes found in the 
dataset. Feature selection reduces the computational 
power required to do the analysis, improves the 
generalization ability and interpretability of machine 
learning models, enhances prediction accuracy, and 
reduces the risk of model overfitting. In order to 
identify AD based on gene expression, a logistic 
regression machine learning algorithm (available 
within caret package) was used with 10-fold cross 
validation. Using the identified genes, models were 
trained on GSE140829 and validated on GSE63060 and 
GSE63061. In addition, GSE118553 was used as 
separate validation set to explore the predictive 
performance of models in brain tissues. Sensitivity, 
specificity, and area under the curve (AUC) were 
calculated to assess model’s performance. 

Experimental validation 
The whole venous blood was collected 

prospectively from patients with confirmed 
Alzheimer’s disease and controls without any signs of 
dementia starting from May 1, 2024 to April 1, 2025 at 
the Third Affiliated Hospital of Sun Yat-Sen 
University.  

For blood samples, a volume of 500 μL of whole 
blood was transferred into a 15 mL centrifuge tube, to 
which ten volumes of red blood cell lysis buffer were 
added. The mixture was gently inverted and 
incubated at room temperature, protected from light, 
for 10 minutes. The sample was then centrifuged at 
300 g for 10 minutes at room temperature, and the 
supernatant was discarded. This red blood cell lysis 

procedure was repeated once under the same 
conditions. The resulting cell pellet was resuspended 
in PBS and centrifuged again at 300 g for 10 minutes at 
room temperature, after which the supernatant was 
removed. The remaining cells were resuspended in 
100 μL PBS, followed by the addition of 1 mL TRIpure 
reagent. After thorough mixing, the sample was left to 
stand for 5 minutes. Next, 250 μL of chloroform was 
added, mixed thoroughly, and incubated on ice for 5 
minutes. The mixture was then centrifuged at 10,000 g 
for 10 minutes at 4 °C. In a biosafety cabinet, 500 μL of 
the upper aqueous phase was carefully transferred to 
a 1.5 mL EP tube, mixed with an equal volume of 
ice-cold isopropanol, and incubated at −20 °C for 15 
minutes. After another centrifugation at 10,000 g for 
10 minutes at 4 °C, the supernatant was carefully 
removed, and the RNA pellet was washed with 1 mL 
of 75% ethanol pre-chilled at 4 °C. The tube was 
inverted several times to ensure proper washing, then 
centrifuged at 10,000 g for 5 minutes at 4 °C. The 
supernatant was discarded, and the pellet was 
allowed to air-dry for several minutes in a biosafety 
cabinet. Finally, the RNA pellet was dissolved in 100 
μL of RNase-free water. 

First-strand cDNA synthesis was performed 
using the EntiLink™ 1st Strand cDNA Synthesis Kit 
(ELK Biotechnology, EQ003). On ice, a reaction 
mixture was prepared containing 2.0 μL of RT primer 
mix, 1.0 μL of 2.5 mM dNTPs, and a volume of RNA 
adjusted to reach a final volume of 15.0 μL. This 
mixture was incubated at 70 °C for 5 minutes in a 
thermal cycler and immediately chilled on ice for 2 
minutes. Subsequently, the second step reaction mix 
was prepared on ice by adding 4.0 μL of 5× RT buffer, 
1.0 μL of M-MLV reverse transcriptase, and 1.0 μL of 
RNase inhibitor to the previous mixture. The 
complete reaction was incubated at 37 °C for 60 
minutes, followed by enzyme inactivation at 85 °C for 
5 minutes, and then held at 4 °C. 

Quantitative real-time PCR (qPCR) was carried 
out on the StepOne™ Real-Time PCR System (Life 
Technologies), using the EnTurbo™ SYBR Green PCR 
SuperMix Kit (ELK Biotechnology, EQ001). Each 
sample was run in triplicate. The thermal cycling 
protocol included an initial denaturation step at 95 °C 
for 3 minutes, followed by 40 cycles of denaturation at 
95 °C for 10 seconds, annealing at 58 °C for 30 
seconds, and extension at 72 °C for 30 seconds. The 
melting curve analysis was performed using the 
instrument’s default settings. The total reaction 
volume was 10 μL, composed of 5.0 μL of 2× Master 
Mix, 1.0 μL of 2.5 μM primer working solution, 1.0 μL 
of template cDNA, 2.0 μL of double-distilled water, 
and 1.0 μL of ROX reference dye. List of primers is 
shown in Table 1. 
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Table 1. List of primers 

Primer name Reference sequence Nucleotide sequence (5’-3’) Tm Value GC Content% Length (bp) 
GAPDH NM_002046 sense CATCATCCCTGCCTCTACTGG 59.4 57.1 259 

antisense GTGGGTGTCGCTGTTGAAGTC 60.1 57.1 
NDUFA1 NM_004541 sense GTGCTTGTTGATTCCAGGACTG 59.6 50 104 

antisense CCATCAGACTCCAGTGATACCC 58.3 54.5 
NDUFS5 NM_004552 sense TAACATAGATCGATGGTTGACAATC 57.1 36 170 

antisense GAAGCAAACACTCTACGAAATCATC 58.8 40 
ERH NM_004450 sense TATGCTGACTACGAATCTGTGAATG 59 40 225 

antisense CACGTAGATCTTCTCTTTAATCCAG 57 40 
MRPS33 NM_016071 sense GGTGAAGTCACCAGGCCTACTA 61.2 54.5 130 

 
 

Statistical Analysis 
Homogeneity of variance was assessed using 

Levene’s test, and normality was assessed using 
Shapiro-Wilk’s test. A student’s t-test was used to 
calculate statistical significance between AD and 
control samples if equal variance and normality were 
assumed. When normal distribution was not 
assumed, Mann-Whitney U test was performed. 
P-value < 0.05 was considered statistically significant. 
Pearson correlation coefficients were computed for 
expression levels of the identified genes. The 
correlation was visualized using scatter plots with 
linear regression lines, and corresponding correlation 
coefficients (r) and p-values were calculated. In 
addition, the association between age and gene 
expression levels was conducted. For each group, 
linear regression models were fitted and the 
relationship was visualized using scatter plots with 
regression lines. The p-values for the association 
between age and expression were computed 
separately for each group.  

Data analysis of qPCR results was conducted 
using the ΔΔCT method. For each sample, ΔCT was 
calculated as the difference between the CT value of 
the target gene and that of the internal reference gene 
(GAPDH). The ΔΔCT value was obtained by 
subtracting the ΔCT of the control sample from that of 
the experimental sample. Fold change in gene 
expression was then calculated as 2-ΔΔCT. Statistical 
analysis was performed in R using cor package. All 
graphics, including volcano plot, violin plot and 
others, were performed using ggplot2 package. 

Results 
Identification of Differentially Expressed 
Genes 

Each dataset was split into male and female sets 
and then normalized. Datasets that analyzed gene 
expression in blood specimens were used for 
differential expression analysis and subsequent 
meta-analysis of DEGs. In females, a total of 700 DEGs 

were extracted from the GSE140829 dataset, 1809 from 
the GSE63060 dataset, and 457 from the GSE63061 
dataset. In males, 1099 DEGs were identified in the 
GSE63061, 1703 in the GSE63060, and 320 in the 
GSE140829 datasets. After performing a 
meta-analysis, 74 DEGs were identified in the female 
cohort and 89 DEGs were screened in the male cohort 
(Figure 1). In both males and females, KEGG 
enrichment analysis revealed genes were mainly 
enriched in similar pathways, such as ribosome, 
Alzheimer’s disease, non-alcoholic fatty liver disease, 
etc.  

Gene Selection and Analysis 
Following feature selection, two genes, ERH and 

MRPS33, were identified in the male cohort (Figure 2), 
whereas NDUFA1 and NDUFS5 were screened in the 
female cohort (Figure 3). ERH and MRPS33 as well as 
NDUFA1 and NDUFS5 exhibited generally moderate 
and above levels of correlation across all datasets 
regardless of tissue type (all P < 0.001).  

Both ERH and MRPS33 were downregulated in 
the AD group compared to the control group. 
However, they were significantly differentially 
expressed only in two out of three blood-derived 
datasets, namely GSE63060 and GSE63061 (all P < 
0.001), as well as several brain tissues (GSE118553: 
entorhinal cortex and frontal cortex; all P < 0.05). In 
addition, ERH was significantly downregulated in the 
AD group in the frontal cortex (P = 0.00713) but not in 
the temporal cortex (P = 0.0749), whereas expression 
levels of MRPS33 were significantly lower in the AD 
group in the temporal cortex (P = 0.0227) but not in 
the frontal one (P = 0.145). Finally, in the female 
cohort, NDUFA1 and NDUFS5 were downregulated 
in patients with AD compared to controls. Notably, 
statistically significant differences were observed in 
all blood-based gene expression datasets (all P < 0.05) 
and only in the entorhinal cortex dataset (P = 0.017 
and P < 0.001 for NDUFS5 and NDUFA1, 
respectively). 
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Figure 1. A. Volcano plot of differentially expressed genes in males. B. Rigline plot of fold change distribution (males). C. Volcano plot of differentially expressed genes in 
females. D. Rigline plot of fold change distribution (females). 

 
Figure 2. Left panel: Violin plots comparing gene expression levels of ERH and MRPS33 between patients with Alzheimer’s disease and control across datasets included in the 
study (male cohort). Right panel: scatter plot with linear fit showing Pearson correlation analysis between ERH and MRPS33 across datasets included in the study (male cohort). 
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Figure 3. Left panel: Violin plots comparing gene expression levels of NDUFA1 and NDUFS5 between patients with Alzheimer’s disease and control across datasets included 
in the study (female cohort). Right panel: scatter plot with linear fit showing Pearson correlation analysis between NDUFA1 and NDUFS5 across datasets included in the study 
(female cohort). 

 

Table 2. Age of females and males in each dataset. 

Dataset Specimen Gender Control Group Age (Mean ± SD; n) Alzheimer’s Disease Group Age (Mean ± SD; n) P value  
GSE140829 Blood Male 74.05 ± 5.67; 110 72.94 ± 6.87; 100 0.245 

Female 73.36 ± 6.68; 139 73.05 ± 7.33; 104 <0.001  
GSE63060 Blood Male 73.02 ± 6.07; 42 75.80 ± 6.24; 46 0.037 

Female 71.94 ± 6.53; 62 75.02 ± 6.76; 96 0.004 
GSE63061 Blood Male 75.98 ± 5.72; 53 77.46 ± 5.79; 54 0.186 

Female 74.84 ± 6.21; 81 78.16 ± 7.19; 85 <0.001 
GSE118553 Temporal Cortex Male 67.68 ± 16.01; 19 81.00 ± 12.00; 23 0.004 

Female 71.91 ± 18.68; 12 83.55 ± 9.69; 29 0.118 
Cerebellum Male 69.17 ± 12.28; 12 79.40 ± 10.90; 18 0.057 

Female 73.10 ± 18.28; 10 85.20 ± 9.34; 20 0.074 
Entorhinal Cortex Male 74.08 ± 8.98; 12 84.21 ± 10.45; 14 0.030 

Female 71.50 ± 21.30; 12 83.90 ± 9.59; 23 0.216 
Frontal Cortex Male 70.58 ± 13.15; 12 81.07 ± 11.87; 14 0.043 

Female 67.10 ± 18.43; 11 83.96 ± 8.87; 26 0.019 
Present study Blood Male 75.4 ± 7.06; 5 72.4 ± 6.11; 5 0.493 

Female 72.4 ± 3.91; 5 71.0 ± 4.12; 5 0.832 
 

Age 
Across multiple datasets, individuals with AD 

were generally older than controls, with several 
statistically significant differences (Table 2). In 
GSE140829, females with AD were significantly older 
compared to controls (73.36 ± 6.68 vs 73.05 ± 7.33 
years, P < 0.001), though no difference was observed 
in males (P = 0.245). In both GSE63060 and GSE63061, 

significant age differences were observed in females 
(71.94 ± 6.53 vs 75.02 ± 6.76, P = 0.004, and 74.84 ± 6.21; 
81 vs 78.16 ± 7.19, P < 0.001, respectively), while males 
with AD were significantly older than controls only in 
the GSE63060 dataset (73.02 ± 6.07 vs 75.80 ± 6.24, P = 
0.037). Similar trends were observed in the brain 
tissue data (GSE118553): males with AD were 
significantly older compared to controls in the 
temporal cortex (67.68 ± 16.01 and 81.00 ± 12.00, P = 



Int. J. Med. Sci. 2026, Vol. 23 

 
https://www.medsci.org 

858 

0.004), entorhinal cortex (74.08 ± 8.98 and 84.21 ± 
10.45, P = 0.030), and frontal cortex (70.58 ± 13.15 and 
81.07 ± 11.87, P = 0.043). As for females, statistically 
significant differences in terms of age were observed 
only in the frontal cortex (67.10 ± 18.43 and 83.96 ± 
8.87, P = 0.019). A linear regression analysis was 
conducted to assess the association between the 
identified genes and age. In male cohort, no 
significant associations were observed between ERH 
or MRPS33 in any dataset except for AD patients in 
the GSE140829 dataset and GSE118553 (cerebellum) (S 
Figure 1). In contrast, there were significant 
associations between age and NDUFA1 expression 
levels in GSE63060 (both control and AD groups), 
GSE630361 (control group), and GSE118553 – 
entorhinal cortex (control group), whereas NDUFS5 
was associated with age only in the control group 
comprising the GSE63060 dataset (S Figure 2). 

Model Development 
The selected genes were used to train and 

validate a logistic regression model. As demonstrated 
in Figure 4, ERH and MRPS33 showed good 
predictive performance across all male-specific 
datasets, reaching AUC of 0.72 and 0.77 in the first 
external validation set (GSE63060) and AUC of 0.72 
and 0.72 in the second one (GSE63061). Moreover, 
their predictive performance was even higher in the 
GSE118553 with both genes having an AUC close to 
0.9 in the entorhinal cortex. Notably, performance of 
models trained on ERH and MRPS33 did not 
marginally decline when predicting asymptomatic 
AD (S Figure 3). Specifically, ERH showed optimal 
sensitivity and specificity in cerebellum (AUC: 0.8) 
and entorhinal cortex (AUC: 0.77), whereas MRPS33 
achieved an AUC of 0.7 in cerebellum, AUC of 0.8 in 
entorhinal cortex, and AUC of 0.71 in temporal cortex. 
Both NDUFA1 and NDUFS5 showed great 
performance in the first validation set and good 
performance in the second validation set, with AUC 
of 0.87 and 0.74-0.76, respectively (Figure 5). 
Moreover, the models were able to reliably predict 
AD in the entorhinal cortex of the third validation set 
(AUC of 0.83 for NDUFA1 and 0.75 for NDUFS5). 
However, their performance declined in the 
cerebellum, frontal cortex, and temporal cortex. 
Similarly, when predicting asymptomatic AD, models 
could not reliably differentiate between cases and 
controls in almost all brain regions (S Figure 4). Only 
the model trained using NDUFA1 exhibited a good 
predictive performance in one of the datasets 
(entorhinal cortex: AUC of 0.77). 

Experimental Validation 
The expression levels of ERH and MRPS33 in 

males as well as NDUFA1 and NDUFS5 in females 
were evaluated in whole venous blood samples of 
patients with AD and healthy controls without any 
signs of dementia (Figure 6). Contrary to earlier 
findings, all four genes were significantly higher in 
the AD group than in the control group (ERH: P = 
0.014, MRPS33: P = 0.045, NDUFA1: P < 0.001, 
NDUFS5: P = 0.003). 

Discussion 
Our study identified ERH & MRPS33 and 

NDUFA1 & NDUFS5 as biomarkers of AD in males 
and females, respectively. Performance of the male 
models trained on ERH and MRPS33 was strong: 
AUCs of 0.72–0.77 in external blood validations 
(GSE63060, GSE63061) and nearly 0.90 in the 
entorhinal cortex of GSE118553. Notably, predictive 
accuracy remained high for asymptomatic AD in 
cerebellum (AUCs 0.80 for ERH; 0.70 for MRPS33) and 
entorhinal cortex (0.77 and 0.80, respectively). 
Female-specific models (NDUFA1 and NDUFS5) 
similarly achieved good performance in the first 
validation set (AUC 0.87) and good performance in 
the second set (AUC 0.74–0.76), as well as in 
entorhinal cortex prediction (AUCs 0.83 for NDUFA1; 
0.75 for NDUFS5). The four identified genes were 
downregulated in blood and four brain regions, yet 
strikingly they were upregulated in our PCR 
evaluation of peripheral blood.  

In studying sex-specific differences in AD, 
bioinformatics methods are instrumental in 
processing and interpreting gene expression data [16]. 
First, raw gene expression datasets underwent 
preprocessing, such as normalization, to ensure data 
comparability. Differential expression analysis was 
then conducted to identify genes that varied 
significantly between AD and normal samples in 
males and females. By performing a meta-analysis of 
sex-specific DEGs across three independent 
blood-derived GEO datasets, we mitigated 
dataset-specific biases in sample handling, platform 
variability, and cohort demographics. Unlike merging 
datasets, which can introduce batch effects, or relying 
on a single dataset, meta-analysis utilizes the 
combined statistical power of multiple experiments 
[17-19]. This approach increases generalizability and 
reproducibility, ensuring that the identified genes 
(ERH, MRPS33 for males; NDUFA1, NDUFS5 for 
females) display consistent disease-related expression 
changes across various cohorts. Importantly, models 
trained on the identified genes achieved good 
predictive performance in all blood datasets and at 
least one brain tissue dataset. Bioinformatics analysis 
also included pathway enrichment analysis, which 
can reveal biological pathways influenced by the 



Int. J. Med. Sci. 2026, Vol. 23 

 
https://www.medsci.org 

859 

identified genes. Machine learning complements 
bioinformatics by analyzing these gene expression 
profiles to build predictive models. Machine learning 
algorithms learn patterns from the data to predict 
disease development [20, 21]. We employed 10-fold 
cross-validated logistic regression model to build 
sex-specific classifiers based on our selected genes. 
The linear nature of these models ensures 
interpretability without relying on complex 
interpretation tools, such as SHAP and LIME, 

allowing direct assessment of each gene’s contribution 
to AD risk prediction. This integrated approach 
enables the discovery of sex-specific biomarkers and 
molecular pathways associated with AD, advancing 
our understanding of sex-specific differences in AD 
progression. The integration of machine learning with 
sex-specific neurobiological research holds promise 
for advancing precision medicine in AD and 
improving diagnostic modalities for individuals 
based on their unique gene expression characteristics. 

 
 

 
Figure 4. Receiver Operating Characteristic (ROC) curve for logistic regression models trained using ERH (top two rows) and MRPS33 (bottom two rows) in male cohort. 
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Figure 5. Receiver Operating Characteristic (ROC) curve for logistic regression models trained using NDUFA1 (top two rows) and NDUFS5 (bottom two rows) in female 
cohort. 
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Figure 6. Violin plot of quantitative real-time PCR validation of the expression levels of ERH, MRPS33, NDUFA1, and NDUFS5 relative to GAPDH based on 2-ΔΔCT method. 

 
ERH is a small, highly conserved nuclear and 

nucleolar protein that promotes proper mitotic 
chromosome alignment. However, it has been mostly 
studied in the field of cancer and its association with 
neurogenerative diseases is unclear [22, 23]. 
Mitochondrial ribosomal protein 33 (MRPS33) is a 
nuclear-encoded component of the mitochondrial 
ribosome, essential for mitochondrial translation and 
oxidative phosphorylation [24]. Disruption of MRPs 
impairs ribosome assembly and oxidative 
phosphorylation, linking this gene’s expression 
alterations to neurodegenerative diseases. It is worth 
mentioning that the identified DEGs in both female 
and male cohorts were involved in ribosome 
pathways. Ribosomal dysfunction impairs 
mitochondrial translation, disrupts oxidative 
phosphorylation, and contributes to neuronal energy 
failure and amyloidogenic stress in AD [25, 26]. 

NDUFA1 and NDUFS5 are nuclear-encoded subunits 
of mitochondrial complex I and belong to the 
NADH-ubiquinone oxidoreductase family. Proteomic 
studies consistently report the downregulation of 
NDUFA1 and NDUFS5 in early-onset and late-onset 
AD, reflecting destabilization of complex I [27]. 
Machine-learning–based analyses in blood cohorts 
identified both NDUFA1 and NDUFS5 as robust 
diagnostic biomarkers across sexes [28], and their 
combined inclusion with age yielded AUCs >0.72 for 
late-onset AD prediction [29].  

Given the known risks of aging in Alzheimer’s 
disease, we evaluated correlations between age and 
transcript levels. In our male cohort, ERH and 
MRPS33 showed no significant age associations as 
except within the AD subgroup of GSE140829 and the 
cerebellum dataset of GSE118553. In females, 
however, NDUFA1 expression inversely correlated 
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with age in multiple datasets (GSE63060, GSE63061 
control, and GSE118553 entorhinal cortex), and 
NDUFS5 was associated with age in the GSE63060 
control group. These findings may indicate that, 
particularly for complex I subunits, aging may 
modulate expression in healthy individuals, 
suggesting the need to adjust for age in future 
biomarker evaluations. 

Across analyzed datasets, ERH and MRPS33 as 
well as NDUFA1 and NDUFS5 were significantly 
downregulated in male and female AD patients 
compared to controls, respectively. However, the 
opposite trend was observed in our PCR validation. 
This is likely attributed to differences in cohorts 
and/or sample size. It is difficult to establish the exact 
reason since the original studies did not provide any 
information on treatment, comorbidities, etc. First, 
given the location of our institution, only Chinese 
patients with AD and controls were included in the 
study. Second, such large discrepancies may be due to 
existing comorbidities, received treatment or disease 
stage. Third, sample size is smaller compared to that 
of the included datasets and had only 10 cases and 10 
controls, which were further divided based on sex. 
The identified genes were associated with good 
predictive performance in most of the included 
datasets, namely blood datasets and entorhinal cortex. 
Performance decline in the other regions as well as 
during asymptomatic AD shows regional and 
stage-specific limitations of constructed models. The 
strong performance of all predictive models in the 
entorhinal cortex can likely be attributed to the 
region’s central and early involvement in Alzheimer’s 
disease pathogenesis. As consistently shown across 
numerous studies, the entorhinal cortex is among the 
first brain regions to undergo structural, cellular, and 
molecular changes, including Tau accumulation and 
layer II neuronal degeneration, even during the 
preclinical stage of AD [30-32]. Therefore, gene 
expression patterns in the entorhinal cortex may offer 
a clearer “picture” of AD-related molecular processes, 
which may explain why our models demonstrated 
superior and consistent predictive performance in this 
region.  

Given the number of included number of 
samples, datasets, tissue specimens and good 
performance of constructed models based on the 
identified genes, we demonstrate that the identified 
genes are robust and generalizable biomarkers for 
AD. However, our study is not without limitations. 
First, all PCR validations were conducted in a single 
prospective cohort without accounting for covariates. 
Second, datasets we used did not report medication 
use, comorbidities, disease stage or lifestyle factors, 
and thus these variables could not be adjusted for. 

Third, the number of samples in the gene expression 
datasets or in our cohort for PCR validation was 
modest, which could potentially limit the reliability of 
our findings. Finally, while our logistic models 
performed well in various external validation 
datasets, prospective validation in independent 
clinical cohorts is essential.  

Conclusion 
Through meta-analysis of multiple datasets, we 

identified ERH and MRPS33 as well as NDUFA1 and 
NDUFS5 as robust biomarkers for sex-specific 
prediction models for AD. Logistic regression models 
based on these genes demonstrated good prediction 
performance in both peripheral blood datasets and in 
various brain regions, particularly the entorhinal 
cortex. However, qPCR analysis yielded opposite 
results of gene expression levels in AD and control 
groups.  
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