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Abstract

Kidney renal clear cell carcinoma (KIRC) exhibits pronounced immune heterogeneity, and immune
dysregulation within the tumor microenvironment (TME) contributes to poor outcomes. Leveraging
TCGA-KIRC RNA-seq, we stratified patients by immune-cell infiltration and immune-regulatory gene
expression to define a poor-survival subgroup for discovery. Differential expression analysis prioritized
lipopolysaccharide-binding protein (LBP) and generated an immune-relevant candidate set that was
refined from 406 to 87 genes by stepwise logistic regression and then benchmarked through one million
random 20-gene models, yielding a final 19-gene prognostic signature. Six immune-cell features associated
with survival were identified, including higher MO macrophages, regulatory T cells, activated CD4
memory T cells, plasma cells, and neutrophils (worse prognosis) and resting mast cells (better prognosis).
LBP was highly expressed in the poor-survival subgroup and functionally validated in vitro:
RT-PCR/ELISA/Western blot and cell-based assays showed that LBP promotes tumor-cell migration and
macrophage activation, while LBP neutralization reversed these effects, supporting its role as a mediator
of tumor—immune crosstalk. The 19-gene panel robustly distinguished poor-survival patients, achieving
AUC = 0.84 in TCGA-KIRC and 0.79-1.00 across three external datasets. Pathway analysis implicated
ERK signaling, immune suppression, and chronic inflammation. These findings establish a clinically relevant
19-gene signature and highlight LBP-driven immune dysregulation as a potential target in KIRC.

Keywords: kidney renal clear cell carcinoma (KIRC); tumor microenvironment (TME); lipopolysaccharide-binding protein (LBP);
prognostic gene signature
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Introduction

Kidney renal clear cell carcinoma (KIRC), the
most common subtype of renal cell carcinoma,
accounts for approximately 70-80% of all cases.
Although the advent of targeted therapies and
immune checkpoint inhibitors (ICIs) has improved
outcomes in a subset of patients, those with
advanced-stage KIRC continue to experience poor
prognoses [1-3]. Despite being considered a highly
immunogenic tumor, KIRC exhibits substantial
heterogeneity in immune cell infiltration and
therapeutic response [4, 5]. Some tumors resemble
“cold” tumors with minimal immune cell presence,
while others show extensive immune infiltration yet
paradoxically associate with unfavorable survival
outcomes [6]. These findings highlight that immune
contexture—the composition, functional status, and
spatial organization of immune cells—is more
informative than mere immune cell abundance when
assessing prognosis and treatment response [7, 8].
This complexity reflects the broader regulatory role of
the tumor microenvironment (TME), which
orchestrates tumor development, immune evasion,
and resistance to therapy through intricate crosstalk
between tumor, immune, and stromal components [9,
10]. Traditionally, tumors are categorized as “hot” or
“cold” based on immune cell infiltration levels, with
hot tumors typically responding better to
immunotherapy, whereas cold tumors tend to be
resistant [11-14]. However, immune infiltration alone
does not guarantee favorable outcomes. In certain
cancers, increased immune cell presence has
paradoxically correlated with worse survival, further
emphasizing that the quality and function of immune
components—not just their quantity—are critical
determinants of clinical outcomes [15]. Therefore, a
deeper understanding of immune dynamics within
the KIRC microenvironment is urgently needed to
identify robust prognostic biomarkers and to guide
the development of more effective, personalized
immunotherapeutic strategies [6, 16].

In this study, we aimed to identify immune-
related molecular features associated with poor
survival in KIRC and to investigate their potential
mechanistic relevance. Using bulk RNA-seq data from
TCGA-KIRC, we performed dual patient stratification
based on immune cell composition (via CIBERSORTx)
and immune regulatory gene expression (via Gene
Ontology analysis). We then focused on patients
classified into poor-prognosis groups by both
methods to define a robust cohort for downstream
analysis. Through systematic gene prioritization and
statistical refinement, we constructed a 19-gene panel
enriched for immune regulatory genes consistently

associated with adverse outcomes. Cross-dataset
validation and functional annotation revealed that
these genes are involved in key processes, including

immune suppression, inflammation, and tumor
invasion.
Among  these, lipopolysaccharide-binding

protein (LBP) emerged as a prominent candidate due
to its high expression in tumors with poor survival
rates and its centrality in the network of tumor and
immune pathways. While traditionally known for its
role in innate immunity, recent studies have linked
LBP to tumor-promoting inflammation and immune
modulation [17-19]. To explore its functional
relevance in the KIRC microenvironment, we further
investigated LBP’s effects using in vitro models of
tumor-immune interaction.

Materials and Methods

RNA sequencing and microarray datasets

RNA sequencing, gene expression microarray
and clinical data were obtained from four public
datasets: TCGA-KIRC, GSE22541, E-MTAB-1980, and
RECA-EU. All expression data were processed using
R (v3.6.2).

RNA  sequencing (RNA-seq) data and
corresponding clinical information for KIRC were
retrieved from The Cancer Genome Atlas (TCGA)
database using the TCGAbiolinks package in R. Gene
expression levels were normalized and reported as
fragments per kilobase of transcript per million
mapped reads (FPKM). A total of 539 KIRC patient
samples were included in the analysis. To ensure
consistent gene annotation, the expression matrix was
mapped to Ensembl gene identifiers (ENSG) and gene
symbols according to the GRCh38/hg38 human
reference genome. For downstream analyses, only
protein-coding genes were retained to improve
biological interpretability and reduce potential
confounding from non-coding RNAs.

The GSE22541 and E-MTAB-1980 microarray
datasets were downloaded from GEO and
ArrayExpress, respectively; preprocessing details
follow repository documentation [20]. RNA-seq data
from the RECA-EU cohort were obtained from the
ICGC portal and include European patients with renal
cancer.

Annotation of immune regulation genes using
the Gene Ontology database

Genes involved in immune regulation were
identified using the Gene Ontology (GO) resource [21,
22]. The search term “immune regulation” was
applied under the “Ontology” subclass, and genes
annotated with the accession ID GO:0050776
(regulation of immune response) were selected. These
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genes were filtered from the previously curated
protein-coding gene list, resulting in a final set of 987
immune regulation genes for further analysis.

CIBERSORTX analysis for immune cell
quantification

Cell-type Identification by Estimating Relative
Subsets of RNA Transcripts (CIBERSORTX) is an
online computational tool designed to quantify
immune cell composition based on gene expression
data [23]. CIBERSORTx utilizes a reference gene
matrix consisting of 547 signature genes to
deconvolute bulk RNA-sequencing data into the
relative proportions of 22 immune cell types. This
approach allowed us to determine the immune cell
content in the TME of renal cancer patients by
applying CIBERSORTx's deconvolution algorithm to
the mRNA expression profiles.

Gaussian Mixture Model (GMM) clustering

Gaussian Mixture Modeling (GMM) was applied
as an unsupervised clustering approach to identify
immune infiltration patterns across tumor samples.
GMM assumes that the observed data arise from a
mixture of multiple Gaussian distributions and is well
suited for modeling heterogeneous and multimodal
data structures commonly observed in immune
deconvolution profiles. Unlike hard clustering
methods, GMM provides probabilistic cluster
assignments, allowing samples to exhibit gradual
transitions between immune states rather than being
forced into rigid cluster boundaries.

In this study, samples were represented in a
high-dimensional feature space defined by immune
cell composition profiles and clustered using the
“mclust” package in R (version 3.6.2). This approach

enabled the identification of distinct immune
infiltration patterns across the dataset.
Kaplan-Meier survival analysis

Kaplan-Meier (KM) survival analysis was

performed to evaluate the overall survival (OS) of
patients within distinct clusters or immune cell
groups. For GMM-based clustering, patient groups
were analyzed using the “survival” and “survminer”
packages in R.

To stratify KIRC patients based on immune
landscape, the cohort was classified into high and low
immune cell infiltration groups according to the
variability in infiltration levels across 22 distinct
immune cell types. This stratification approach is
particularly suited for data characterized by a
long-tailed distribution and aims to partition the
samples into two different subgroups. The procedure
involves initially ranking all samples based on the

variable of interest. Subsequently, the standard
deviation (SD) is sequentially calculated in an
accumulative manner —from the first three samples,
then the first four, and so forth. Since the standard
deviation reflects the degree of dispersion within a
potential cluster, this iterative process allows the
construction of a simulation curve. The point at which
the SD reaches its maximum is identified as the
optimal cut-off, serving as the threshold to divide the
cohort into two subgroups: one with relatively high
infiltration values and the other with low infiltration
values.

Clinical data and group labels were integrated
into the analysis, and survival curves were generated.
Statistical significance was assessed using the
log-rank test, with a threshold of p < 0.05 to define
significant survival differences.

Stepwise logistic regression algorithm

In this study, the expression levels of immune
regulatory genes served as independent variables,
while patient survival status (alive vs. dead) was used
as the binary response variable. The logistic
regression model estimates the probability of the
outcome using a logistic function, with model
coefficients derived through Maximum Likelihood
Estimation (MLE). To identify the most informative
subset of genes associated with poor survival, we
applied a stepwise selection algorithm that combines
both forward selection and backward elimination.
The procedure was initialized with a null model and
iteratively added or removed variables based on their
contribution to model fit. Selection criteria were based
on either the Akaike Information Criterion (AIC) or
variable-level p-values, and the process continued
until no further improvement could be achieved by
modifying the model. The stepwise regression was
implemented in R (version 3.6.2) using the built-in
step() function. The resulting gene subsets were used
for downstream ROC analysis, frequency profiling,
and prognostic panel construction. This strategy
allowed functional diversity to be retained while
quantitatively optimizing prognostic performance.

Receiver operating characteristic (ROC) curve
analysis

For single-gene evaluation, patients were
stratified into binary survival groups, and the ROC
curve was generated using the R package pROC
(version 1.18.0). For multi-gene combinations, a
logistic regression model was constructed, and
predicted probabilities were used to compute the
ROC curve. In comparisons involving multiple
models or gene sets, we generated AUC distributions
and visualized them using ggplot2 (version 3.3.5) to
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assess relative performance.

Where applicable, the DeLong test was used to
compare AUCs between different classifiers. All
analyses were conducted using R software (version
3.6.2), and statistical significance was defined as p <
0.05.

RT-PCR

786-O or THP-1 cells (1 x 10° cells/well) were
treated with LPS (5 ng/mL) for 12 hours. Total RNA
was extracted using TRIzol reagent (Invitrogen,
Gaithersburg, MD,  USA)  following  the
manufacturer’s instructions. The extracted RNA was
then reverse transcribed into cDNA. To detect gene
expression, specific primers targeting LBP and p-actin
were used. The LBP gene was amplified using a
forward primer with the sequence 5-TTCGGTCAA
CCTCCTGTTGG-3'" and a reverse primer 5-CATGT
TGGGGTAGAGCCTGG-3'. B-actin was used as the
internal control, with the forward primer 5-CACC
ATTGGCAATGAGCGGTTC-3' and the reverse
primer 5'-AGGTCTTTGCGGATGTCCACGT-3'. PCR
products were separated by agarose gel
electrophoresis.

Wound healing assay

786-O cells (3 x 10* cells/70 pL per well) were
seeded into a Culture-Insert 2 Well (Ibidi, Munich,
Germany) and incubated overnight to allow cell
attachment. The inserts were then carefully removed
to create a uniform cell-free gap. Cell migration into
the gap was monitored at 0 and 24 hours using an
inverted microscope, and representative images were
captured at each time point. Migration was quantified
by measuring the change in the gap width between
the two cell fronts over time. The migration rate was
calculated as: [(initial gap width - final gap width) /
initial gap width] x 100.

ELISA

The concentration of LBP in cell culture
supernatants was measured using commercially
available ELISA kits (Invitrogen). Briefly, culture
media were collected, centrifuged to remove debris,
and added to pre-coated 96-well plates. After
incubation and washing, detection antibodies were
added, followed by substrate solution. Absorbance
was measured at 450 nm using a microplate reader,
and protein concentrations were calculated based on
standard curves.

Statistical analysis

All data are presented as mean * standard
deviation (SD) from at least three independent
experiments. For comparisons between two groups,

either Student’s f-test or the Wilcoxon rank-sum test
was applied based on the normality of the data
distribution. For comparisons involving more than
two groups, one-way analysis of variance (ANOVA)
was performed, followed by appropriate post-hoc
tests to assess pairwise group differences. A p-value of
< 0.05 was considered statistically significant.

Results

Immune infiltration landscape in KIRC and its
prognostic implications

To explore the heterogeneity of the TME in
KIRC, we employed CIBERSORTx to quantify 22
immune cell types from the RNA-seq data of
TCGA-KIRC samples. Unsupervised clustering using
a GMM classified patients into five distinct immune
infiltration groups (Groups A-E), each displaying
specific immune cell enrichment patterns (Fig. S1A).
For example, Group A showed high levels of resting
NK cells, Group C was enriched in gamma delta T
cells, and Groups D and E had prominent activated
mast cells and M0 macrophages, respectively. Group
B, the largest cluster, lacked dominance by a specific
immune cell.

KM survival analysis was conducted to assess
the relationship between immune cell infiltration
patterns and patient prognosis across the five clusters
(Fig. 1B). Results demonstrated that patients in
Groups D and E had significantly poorer outcomes,
indicating a strong association between immune cell
infiltration patterns and survival. To explore this
further, the 22 immune cell types were stratified into
high-infiltration and low-infiltration groups based on
the variability in infiltration. Survival comparisons
between these groups identified six immune cell types
significantly associated with patient survival (Fig.
1C). Resting mast cell infiltration was positively
correlated with better survival outcomes, while five
other cell types—including MO macrophages,
regulatory T cells (Tregs), plasma cells, activated CD4
memory T cells, and neutrophils—were negatively
correlated. Additionally, naive CD4 T cells were
excluded from statistical analysis due to insufficient
data, while the remaining 15 immune cell types
showed no significant association with survival (Fig.
S1B).

Boxplot comparisons of these immune cell
infiltrates across the five immune clusters,
accompanied by Wilcoxon tests, revealed distinct
distribution patterns, further emphasizing their
prognostic relevance (Fig. 1D). Notably, MO0
macrophages were most abundant in Groups D and E,
linking them to tumor aggressiveness and poor
survival outcomes.
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Figure 1. Immune cell-based classification and its association with survival in the TCGA-KIRC cohort. (A) Analysis workflow for patient stratification based on
tumor immune cell composition. Relative proportions of 22 immune cell types were estimated using the CIBERSORTx algorithm applied to TCGA-KIRC RNA-seq data. Patients
were clustered into five immune subgroups (Groups A-E) using GMM, and overall survival was compared across groups. (B) Kaplan—Meier survival curves showing significant
survival differences among the five immune subgroups (log-rank p = 0.0041). (C) Kaplan—Meier analysis identifying six immune cell types significantly associated with prognosis.
Elevated levels of regulatory T cells, MO macrophages, activated CD4* memory T cells, plasma cells, resting mast cells, and neutrophils were each linked to shorter survival. (D)
Boxplots illustrate the distribution of these six prognostic immune cell types across the five subgroups. Statistical comparisons were conducted using the Wilcoxon test, with

p-values shown.
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Figure 2. Patient stratification based on immune regulation-related gene expression in TCGA-KIRC. (A) TCGA-KIRC RNA-sequencing data were filtered for
genes associated with the Gene Ontology term “regulation of immune response” (GO:0050776). Patients were clustered into five transcriptomic subgroups (Groups 1-5) using
GMM based on the expression patterns of these immune regulation—related genes. (B) Kaplan—Meier survival analysis showed significant differences in overall survival among the
five subgroups (log-rank p = 0.00029), suggesting that variation in immune regulatory gene expression is closely linked to patient prognosis in KIRC.

Defining a poor-survival KIRC patient group
for molecular interrogation

In parallel with immune profiling, we performed
transcriptomic  clustering based on immune
regulatory gene expression—defined by GO term
GO:0050776 —and ~ identified  five  molecular
subgroups (Groups 1-5) via GMM (Fig. 2A). KM
analysis showed that Groups 4 and 5 had significantly
poorer prognosis (Fig. 2B). We intersected this
classification with the immune infiltration analysis,
identifying 38 overlapping patients from immune
Groups D/E and transcriptomic Groups 4/5, which
we collectively defined as the poor-survival group.

For tumor samples in this group, an immune
gene index was calculated by multiplying each gene’s
expression value by the fold change (FC) between
tumor and adjacent normal tissues. Based on the
calculated index, genes were ranked in descending
order. The top 20 candidates are presented in Table 1,
along with their detailed functional annotations, also
listed in Table 1. Additional gene data are available in
Supplementary Table S1. Notably, a significant drop
in index values was observed after the fifth-ranked
gene, leading to the selection of the top five
candidates—LBP, COL1A1, FGA, FGB, and C3—for
further analysis.

KIRC patients were further stratified into
high-expression (top one-third) and low-expression
(bottom one-third) groups based on the expression
levels of the five candidate genes. Survival analysis
(Fig. 3A) revealed that the expression of LBP,
COL1A1, and C3 was significantly associated with
patient outcomes. Among these genes, LBP had the

highest AUC (> 0.6) in ROC analysis (Fig. 3B),
suggesting a closer relationship with adverse clinical
outcomes and highlighting its potential biological
relevance in poor-prognosis KIRC. Based on the
immune gene index, survival correlation, and ROC
performance, LBP was identified as the most
influential gene and selected as the key effector for
further investigation. Subsequently, a cohort of 38
poor-survival KIRC patients exhibiting high LBP
expression was defined, providing a focused
population for downstream immunogenomic
characterization and molecular analysis.

Identification of core immunoregulatory genes
associated with poor survival in high-LBP KIRC
patients

Given the high expression of LBP—a key
acute-phase  protein  involved in  immune
responses—in poor-prognosis KIRC patients, we
aimed to characterize the associated
immunoregulatory ~ landscape @ and  identify
co-expressed genes that may contribute to both tumor
aggressiveness and immune suppression. To this end,
we focused on tumor tissues from the same 38
poor-survival patients and performed differential
expression analysis compared to their matched
adjacent normal tissues. This analysis identified 406
upregulated genes (Wilcoxon test, p < 0.05; Fig. 4A).

These 406 genes were first functionally
annotated using GeneCards and cross-referenced
with the DICE database to assess their immune cell-
specific ~expression profiles. To enrich for
immunologically relevant candidates, we filtered for
genes expressed in six immune cell types previously
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linked to poor survival in KIRC—MO0 macrophages,
Tregs, neutrophils, plasma cells, activated CD4*
memory T cells, and resting mast cells. This yielded a
list

immunoregulatory roles in tumor progression, which
served as the foundation for subsequent modeling
and analysis.
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Figure 3. Prognostic significance of selected immune-related genes in KIRC. (A) Kaplan-Meier survival analysis of five candidate genes (LBP, COLIAI, FGA, FGB, and
C3) in the TCGA-KIRC cohort. High expression of LBP, COLIALI, and C3 was significantly associated with worse overall survival (p < 0.05), suggesting their involvement in poor
prognosis. (B) ROC curve analysis showing the relative ability of each gene to distinguish between survival outcomes. LBP had the highest AUC (0.61), while the others had AUC
values below 0.6, supporting the prioritization of LBP for further investigation despite modest standalone performance.
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Figure 4. Systematic identification and refinement of immune-related genes associated with poor survival in KIRC. (A) Flowchart summarizing the pipeline.
Differentially expressed immune-regulatory genes associated with poor survival were mapped to six immune cell types, yielding 372 candidates refined by stepwise logistic
regression. (B) Prognostic relevance was compared across four sets: (1) PC: 63 literature-curated genes, (2) NC: 365 olfactory receptor genes, (3) 372 immune-related
candidates, and (4) 87 stepwise-selected genes. One million random 20-gene combinations from each group were tested for survival prediction. (C) AUC distributions showed
the 87-gene subset consistently outperformed others. The PC benchmark (AUC = 0.797, red arrow) was used as a threshold. (D) Genes were ranked by frequency in
combinations exceeding the benchmark, identifying 20 top candidates (red). (E) Exhaustive modeling revealed a 19-gene panel achieved optimal performance (AUC = 0.8428).
(F) Leave-one-gene-out analysis showed that removing any gene reduced performance, indicating synergy. NLRC3, RNF135, HHLA2, IL4, BAX, and SRC had the strongest effects.
Red genes are upregulated in poor-survival patients, whereas green genes are downregulated.

To further refine genes with the highest
statistical association with patient outcomes, stepwise
logistic regression was employed on this 372-gene set,
resulting in a focused panel of 87 candidates. These
genes served as the basis for downstream functional
prioritization and mechanistic investigation.

To identify which of the 87 immune-related
candidates most significantly contribute to poor
survival in KIRC, a large-scale benchmarking analysis
was performed. We generated one million random

20-gene combinations from the 87-gene subset and
evaluated their survival-predictive performance using
logistic regression and AUC analysis. These
combinations were compared against two control sets,
detailed in Table S2: a positive control (PC) of 63
literature-curated prognostic genes [24, 25], and a
negative control (NC) of 365 olfactory receptor genes
unlikely to be associated with cancer outcomes (Fig.
4B). Although the performance of candidate gene
combinations was primarily evaluated using
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AUC-based benchmarking, functional
complementarity among genes was implicitly
preserved through the upstream filtering strategy.
Prior to random modeling, candidate genes were
restricted to those that were (i) significantly
upregulated in tumors from poor-survival patients,
(i) annotated as immune-regulatory genes
(GO:0050776), and (iii) expressed in immune cell

populations that were significantly associated with
survival. This multi-layered filtering ensured that the
resulting gene pool represented coordinated immune
suppression, inflammatory signaling, antigen
presentation, and tumor-intrinsic survival pathways,
rather than redundant predictors driven by single
mechanisms.

Table 1. Top 20 immune regulation-associated genes prioritized by expression index in tumors of poor-survival KIRC
patients. Genes were ranked based on a composite index (expression X fold change), reflecting both high abundance and upregulation in
tumor tissues relative to adjacent normal tissues from the same patients. The table includes gene symbols, corresponding protein names,
average expression in tumors (n = 38), fold change compared to adjacent tissues, and detailed functional descriptions. Notable genes
include LBP (lipopolysaccharide recognition), COLIAI (extracellular matrix remodeling), FGA/FGB (coagulation), and C3 (complement
activation), highlighting key immune-related processes associated with poor prognosis in KIRC. Functional annotations are curated from

Function

UniProt.

Gene name Protein name Gene expression Fold change Index

LBP Lipopolysaccharide-binding protein 102.86 82.72

COL1A1  Collagen type I alpha 1 chain 2814 16.56

FGA Fibrinogen alpha chain 119.28 38.54

FGB Fibrinogen beta chain 243.86 17.23

c3 Complement C3 284.99 12.39

FGG Fibrinogen gamma chain 111.66 23.23

CD74 HLA-DR antigens-associated invariant 1027.66 2.45
chain

HLA-B HLA class I histocompatibility antigen, B 840.9 2.89
alpha chain

ACTB Actin, cytoplasmic 1 1465.75 1.5

HLA-DRA HLA class I histocompatibility antigen, ~ 857.02 25
DR alpha chain

HLA-A HLA class I histocompatibility antigen, A 700.9 2.72
alpha chain

B2M Beta-2-microglobulin 878.18 2.02

C1QB Complement Clq subcomponent subunit 180.01 7.75
B

ENPP3 Ectonucleotide 62.94 20.35
pyrophosphatase/phosphodiesterase
family member 3

COL1A2  Collagen alpha-2(I) chain 177.99 7.03

C1QA Complement C1q subcomponent subunit 195.03 6.36
A

C1QC Complement C1q subcomponent subunit 174.56 6.88
C

HLA-DRB1 HLA class II histocompatibility antigen, ~ 453.56 221
DRBI1 beta chain

COL3A1  Collagen alpha-1(III) chain 206.08 4.47

HLA-C HLA class I histocompatibility antigen, C  484.89 1.82

alpha chain

8508.58 Acts as an affinity enhancer for CD14, facilitating its association with LPS.
Promotes the release of cytokines in response to bacterial
lipopolysaccharide

4659.98 Type I collagen is a member of group I collagen (fibrillar forming collagen).

4597.05 Cleaved by the protease thrombin to yield monomers which, together with
fibrinogen beta (FGB) and fibrinogen gamma (FGG), polymerize to form an
insoluble fibrin matrix. Fibrin has a major function in hemostasis as one of
the primary components of blood clots.

4201.71 Cleaved by the protease thrombin to yield monomers which, together with
fibrinogen alpha (FGA) and fibrinogen gamma (FGG), polymerize to form
an insoluble fibrin matrix. Fibrin has a major function in hemostasis as one
of the primary components of blood clots.

3531.03 C3 plays a central role in the activation of the complement system.

2593.86 Together with fibrinogen alpha (FGA) and fibrinogen beta (FGB),
polymerizes to form an insoluble fibrin matrix. Has a major function in
hemostasis as one of the primary components of blood clots.

2517.77 Plays a critical role in MHC class II antigen processing by stabilizing
peptide-free class II alpha/beta heterodimers in a complex soon after their
synthesis and directing transport of the complex from the endoplasmic
reticulum to the endosomal/lysosomal system where the antigen
processing and binding of antigenic peptides to MHC class II takes place.
Serves as cell surface receptor for the cytokine MIF.

2430.20 HLA-B belongs to the HLA class I heavy chain paralogues.

2198.63 Actin is a highly conserved protein that polymerizes to produce filaments
that form cross-linked networks in the cytoplasm of cells

2142.55 An alpha chain of antigen-presenting major histocompatibility complex
class I (MHCII) molecule.

1906.45 HLA-A belongs to the HLA class I heavy chain paralogues.

1773.92 Component of the class I major histocompatibility complex (MHC).
Involved in the presentation of peptide antigens to the immune system.

1395.08 Clq associates with the proenzymes Clr and Cls to yield C1, the first
component of the serum complement system. The collagen-like regions of
Clq interact with the Ca2+-dependent C1r2C1s2 proenzyme complex, and
efficient activation of C1 takes place on interaction of the globular heads of
Clq with the Fc regions of IgG or IgM antibody present in immune
complexes.

1280.83 Hydrolase that metabolizes extracellular nucleotides, including ATP, GTP,
UTP and CTP

1251.27 Type I collagen is a member of group I collagen (fibrillar forming collagen).
1240.39 the same as C1QB

1200.97 the same as C1QB

1002.37 A beta chain of antigen-presenting major histocompatibility complex class
II (MHCII) molecule.

Collagen type III occurs in most soft connective tissues along with type I
collagen. Involved in regulation of cortical development.

921.18

882.50 HLA-C belongs to the HLA class I heavy chain paralogues.
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The distribution of AUC scores (Fig. 4C) showed
that gene combinations from our 87-gene subset
consistently outperformed the PC group and far
exceeded the NC baseline, underscoring the
robustness of our biologically informed and
statistically refined gene selection strategy. These
benchmarking results served to quantitatively
highlight genes most strongly associated with poor
survival outcomes.

Based on this analysis, we identified the top 20
most frequently occurring genes among high-
performing combinations (AUC > 0.797), suggesting
these genes may be central contributors to the
immunopathology of aggressive KIRC (Fig. 4D and
Table S3). Exhaustive testing of all possible
combinations within this 20-gene set revealed that a
19-gene panel achieved the highest association with
poor survival (AUC = 0.8428; Fig. 4E). To evaluate the

contribution of individual genes to model
performance, we conducted a leave-one-gene-out
analysis. Notably, the exclusion of genes such as
NLRC3, RNF135, HLA-A2, IL4, BAX, and SRC led to
marked declines in AUC, highlighting their critical
contribution to the overall performance of the gene
panel and supporting their biological relevance (Fig.
4F). The remaining genes contributed synergistically,
suggesting that the panel reflects coordinated
immunological dysregulation rather than isolated
markers.

In summary, the final 19-gene panel was selected
to represent the key molecular features underlying
immune suppression and tumor aggressiveness in
poor-survival KIRC patients. Functional annotations
of these genes are provided in Table 2, highlighting
their diverse roles in inflammation, immune
signaling, and tumor cell regulation.

Table 2. Functional annotation of the 19-gene panel associated with poor prognosis in KIRC. For each gene in the final
19-gene panel, both the canonical biological function and its refined role in the context of kidney renal clear cell carcinoma (KIRC) and
immune regulation are summarized. Annotations integrate information from public databases (e.g., UniProt, GO) and literature review,
with emphasis on immune modulation, inflammation, and tumor progression. Several genes (e.g., IL4, RNFI35, NLRC3, NOD2, HHLA2) are
involved in key immune pathways such as cytokine signaling, immune checkpoint regulation, and inflammasome activation, highlighting
their potential roles in shaping the tumor microenvironment and influencing clinical outcomes in KIRC.

Gene Original function description Refined function (KIRC/Immune context)

name

1L4 Cytokine involved in the differentiation of naive helper T cells (ThO cells) to Th2 cells. Promotes Th2/Treg polarization, suppressing antitumor
immunity.

RNF135 E3 ubiquitin ligase involved in innate immune response and potentially cell proliferation. Enhances tumor survival through PI3K-AKT signaling and

NLRC3  Negative regulator of the PI3K-AKT-mTOR signaling pathway.

NOD2 Recognizes bacterial molecules; triggers immune responses via NF-kB activation.

HHLA2 Modulates T cell function; part of B7 family of immune checkpoint molecules.

BAX Promotes apoptosis; regulates programmed cell death.

EIF2B1  Subunit of a translation initiation factor; involved in protein synthesis and stress response.

KIR2DLA4 Killer cell immunoglobulin-like receptor; involved in NK and T cell activation.

involved in B-catenin activation.

Inhibits mTOR signaling; its downregulation facilitates tumor
progression.

Triggers NF-kB signaling and inflammasome activation in
macrophages.

Immune checkpoint molecule; downregulation linked to
immune escape.

Regulates apoptosis; associated with increased T cell death in
tumors.

Facilitates protein synthesis and stress adaptation in immune
cells.

NK and T cell receptor; downregulation weakens cytotoxic

responses.

SRC Non-receptor tyrosine kinase involved in the regulation of cell growth and differentiation. Promotes tumor proliferation and metastasis via RAS-RAF-ERK
pathway activation.

IFNL1 Antiviral cytokine; contributes to the immune defense against viruses. Antiviral cytokine; loss reduces immune-mediated tumor

PDE4B Enzyme that hydrolyzes cAMP; regulates cellular responses to hormones and
neurotransmitters.
GPS2 Inhibits inflammatory gene expression; involved in transcriptional regulation.

HAVCR2 Encodes TIM-3; a checkpoint receptor involved in immune regulation.

OSCAR  Activating receptor on myeloid cells; promotes immune responses.

GRN Secreted protein that is involved in cell growth, survival, and repair processes.

POLR3G  Subunit of RNA polymerase III; contributes to the transcription of small RNAs including

tRNAs and 55 rRNA.
IL27RA  Receptor subunit involved in IL-27 mediated signaling; modulates immune responses.
BTNL3  Member of the butyrophilin family; may regulate immune cell proliferation.

FCGR1A High-affinity IgG receptor; activates phagocytosis and cytokine release.

clearance.

Modulates cytokine release and immune response via cAMP
degradation.

Suppresses inflammatory gene transcription; linked to
macrophage regulation.

Encodes TIM-3 checkpoint; immune exhaustion marker on T
cells.

Amplifies myeloid cell activation and inflammation in TME.

Supports tumor growth and tissue remodeling; secreted growth
factor.

Drives non-coding RNA expression linked to tumor
invasiveness.

Mediates IL-27 signaling that enhances Treg cell activity.
Modulates T cell proliferation, contributing to immune
suppression.

Activates macrophage phagocytosis and proinflammatory
cytokine release.
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Figure 5. Cross-dataset validation and cancer-type specificity of the 19-gene panel associated with poor survival in KIRC. (A) ROC curve showing that the
19-gene panel effectively distinguishes poor-survival cases in the TCGA-KIRC cohort (AUC = 0.84), supporting its biological relevance in this population. (B) Validation across
three independent cohorts—RECA-EU (RNA-seq, n = 91), GSE22541 (microarray, n = 68), and E-MTAB-1980 (microarray, n = 101)—demonstrated consistent associations with
survival, underscoring the panel’s robustness across different platforms and populations. (C) Evaluation across six additional TCGA cancer types revealed that the panel's
expression pattern was selectively informative in metabolically active tumors such as pancreatic (PAAD, AUC = 0.75), gastric (STAD, AUC = 0.75), and colon (COAD, AUC =
0.71) adenocarcinomas, but showed minimal relevance in breast (BRCA), liver (LIHC), and lung (LUAD) cancers (AUC < 0.7), highlighting its specificity to KIRC-associated

immunopathology.

Cross-platform validation of immune gene
panel relevance

To evaluate the consistency of the 19-gene panel
across datasets and platforms, we assessed its
association with survival in multiple independent
cohorts. In the TCGA-KIRC cohort, the panel
demonstrated strong discriminatory capacity (AUC =
0.84; Fig. 5A). Its performance was similarly retained
in two microarray datasets —GSE22541 (AUC = 1.0)
and E-MTAB-1980 (AUC = 0.84)—as well as in the
RNA-seq-based RECA-EU dataset (AUC = 0.79; Fig.
5B). These results confirm that the selected genes are
consistently and strongly associated with poor
survival in KIRC across diverse technical platforms
and patient populations.

Specificity of immune dysregulation in KIRC
compared to other cancers

We next investigated whether the 19-gene panel

was uniquely associated with KIRC or reflected a
more general signature of aggressive cancer
phenotypes. To this end, we applied the panel to six
other TCGA cancer types. Moderate associations with
poor survival were observed in pancreatic (PAAD),
gastric (STAD), and colon adenocarcinoma (COAD)
(AUC = 0.71-0.75), but not in lung (LUAD), liver
(LIHC), or breast cancer (BRCA), where performance
dropped to AUC < 0.6 (Fig. 5C). These results indicate
that the 19-gene panel retains moderate prognostic
relevance in pancreaticc gastricc, and colon
adenocarcinomas, all of which arise from
inflammation-prone tissues and exhibit prominent
involvement of innate immune components,
particularly macrophages. In contrast, limited
performance was observed in other cancer types,
highlighting differences in immune contexture across
tissues.
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Functional mapping of immune gene activity in
poor-survival KIRC

To better understand the biological significance
of the 19-gene panel, we performed network analysis
using GeneMANIA (Fig. 6A), revealing tight
interconnectivity among genes involved in tumor
progression, immune evasion, cell survival, and
transcriptional regulation.

To further investigate how these genes may
influence the tumor microenvironment in KIRC
patients with poor survival, we focused on three key
cell types that play pivotal roles in tumor progression:
tumor cells, T cells, and macrophages—all of which
demonstrated significant associations with patient
prognosis. In addition to the 19-gene panel, LBP was
also included, which emerged as a top candidate of
poor-survival KIRC patients in earlier analyses and
exhibited functional relevance across both tumor and
immune compartments. To  delineate  the
context-specific functions of these genes within
distinct cellular settings, we constructed three cell
type-specific molecular pathway diagrams based on
KEGG pathway analysis and literature evidence,
corresponding to tumor cells, T cells, and
macrophages.

To facilitate interpretation of the complex
signaling network shown in Figure 6B-6D, key
regulatory nodes with opposing functional roles are
highlighted below. In particular, imbalanced
regulation within major survival pathways, such as
PIBK-AKT signaling, provides mechanistic insight
into tumor aggressiveness. In tumor cells (Fig. 6B), the
19-gene panel reflected enhanced metastatic and
survival potential. Upregulation of SRC and GRN
activated the RAS-RAF-MEK-ERK cascade,
promoting cytoskeletal remodeling, focal adhesion,
and epithelial-mesenchymal transition (EMT)—
hallmarks of metastasis and angiogenesis. GRN also
enhanced actin remodeling through Drebrin and
facilitated ERK-mediated oncogenic transcription
programs. LBP, via the CD14-MD2-TLR4 complex,
activated downstream inflammatory pathways,
potentially contributing to tumor-promoting immune
modulation. POLR3G supported cancer-associated
ncRNA transcription, aiding in tumor cell migration.
Additionally, RNF135 and NLRC3 exhibited opposing
roles in PI3K-AKT signaling: RNF135 promoted
survival and anti-apoptosis via [-catenin and Bcl-2,
while downregulation of NLRC3—an immune
checkpoint regulator —facilitated tumor progression.
Collectively, these alterations underscore the panel’s
relevance to tumor aggressiveness and immune
evasion in KIRC.

In T cells (Fig. 6C), the 19-gene panel indicated

an immunosuppressive and dysfunctional immune
state. Upregulation of IL4, IL27RA, and BTNL3
promoted JAK-STAT signaling and Treg or Th2
differentiation, thereby dampening anti-tumor
immunity. GRN and EBI3 further activated IL10 and
IFN-p signaling, contributing to an
immunoregulatory  environment. In  contrast,
downregulation of HAVCR2, HHLA2, and KIR2DL4 —
co-inhibitory and  co-stimulatory = molecules—
suggested impaired CD8" T cell proliferation and
effector function. Notably, increased expression of
pro-apoptotic BAX pointed to elevated T cell
apoptosis. Meanwhile, EIF2B1 and PDE4B were
involved in translation initiation and cytokine
regulation, respectively, though their expression
changes were insufficient to restore T cell function.
RNF135 appeared to play a role in antiviral defense,
while downregulation of NOD2 suppressed NF-«xB
activation and IL-2 production, potentially limiting
effector T cell differentiation. Altogether, these
alterations reflected a suppressed T cell response in
poor-survival KIRC.

In macrophages (Fig. 6D), the 19-gene panel
reflected a pro-inflammatory transcriptional state
characteristic of tumor-promoting chronic
inflammation. FCGRIA and OSCAR stimulated ROS
production and cytokine secretion, while NOD2
activated inflammasome components and IL-18
release, collectively enhancing IL-1p, IL-6, and IL-8
expression. Upregulation of LBP further amplified
innate immune signaling through the CD14-MD2-
TLR4 axis, activating the MyD88-IRF3 and NF-kB
pathways. This cascade promoted transcription of
multiple pro-inflammatory cytokines and
transcription factors, including AP-1 and IRF3. In
contrast, the downregulation of HAVCR2 and IFNL1
indicated impaired antiviral and anti-tumor
responses. Although GPS2 and EIF2B1 participated in
transcriptional repression and translational control,
their expression appeared insufficient to counteract
the prevailing inflammatory milieu. These changes
suggest a macrophage phenotype skewed toward
tumor-supportive  inflammation and immune
dysregulation in poor-survival KIRC.

Altogether, these 19 genes span tumor-intrinsic
and immune-related mechanisms, highlighting their
collective role in tumor aggression, immune evasion,
and microenvironmental remodeling. Among them,
LBP emerged as a top-ranked gene with strong
mechanistic and clinical relevance, making it a
compelling candidate for further functional validation
in cellular models of KIRC. We next focused on
evaluating the functional role of LBP, particularly in
relation to tumor cell migration.
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Figure 6. Functional dissection of the 19-gene panel across tumor cells, T cells, and macrophages. (A) GeneMANIA network illustrating functional interactions
between the 19-gene panel and 20 additional related genes. The network reveals dense connectivity, with functional clusters annotated based on literature, including tumor
malignancy (e.g., GRN, SRC), protein expression (e.g., EIF2B1), cell survival and apoptosis (e.g., BAX), and immune regulation (e.g., OSCAR, PDE4B). (B) Tumor cell-specific pathway
mapping based on KEGG and literature review. Genes such as SRC, GRN, RNF135, and POLR3G contribute to epithelial-mesenchymal transition (EMT), invasion, and survival. LBP
engages the CD14-TLR4 axis, potentially activating inflammatory signaling within tumor cells. Downregulation of NLRC3 may relieve suppression of mTOR signaling, further
enhancing tumor aggressiveness. (C) T cell-specific functional diagram showing that IL4, IL27RA, and BTNL3 drive Treg/Th2 polarization through JAK-STAT signaling. Reduced
expressions of HAVCR2, HHLA2, and KIR2DL4 suggests impaired cytotoxic T cell function, while BAX upregulation indicates enhanced T cell apoptosis. (D) Macrophage-related
signaling events indicate activation of NF-kB and inflammasomes by FCGRIA, OSCAR, and NOD2, promoting a chronic inflammatory state. LBP enhances these effects by activating
the CD14-MD2-TLR4 complex, leading to IRF3 and AP-1 signaling and increased cytokine release. Suppressed expressions of HAVCR2 and IFNL] reflect diminished antiviral and
anti-tumor responses, while GPS2 is involved in transcriptional control of inflammatory genes. In panels (B—D), red-colored genes represent those significantly upregulated in

poor-survival KIRC patients compared to others, while green-colored genes are downregulated in the same comparison. Red arrows indicate pathway activation (upregulation),
and green arrows indicate suppression (downregulation).
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Role of LBP in tumor cell migration

Since high migratory activity is a hallmark of
aggressive KIRC, we examined whether LBP
regulates the migration of 786-O cells. Experimental
results (Fig. 7A) demonstrated that LBP significantly
promoted 786-O cell migration, with statistical
significance observed at both low (50 ng/mL) and
median (100 ng/mL) doses. Figure 1 shows that high
immune infiltration, particularly macrophages, is
associated with poor survival in KIRC patients.
Notably, macrophages express multiple LBP protein
receptors, suggesting a potential role for LBP in
modulating tumor invasion. To investigate this,
conditioned  medium (CM) from  human
monocyte-like THP-1 cells was utilized to assess its
impact on the migration of 786-O cells. As shown in
Figure 7B, compared to standard growth medium,
CM from LBP/LPS-treated THP-1 cells significantly
enhanced 786-O cell migration. Moreover, when an
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anti-LBP antibody was added to the THP-1 culture
containing the LBP/LPS complex, the pro-migratory
effect of the CM was markedly reduced, indicating
that LBP modulates tumor invasion through THP-1-
secreted factors. ELISA results further revealed that
LBP/LPS stimulation induced robust TNF-a and IL-6
secretion from THP-1 cells, while anti-LBP antibody
suppressed this inflammatory response (Fig. S2),
supporting LBP’s regulatory role in the tumor
microenvironment.

To delineate the cellular source of LBP, we
quantified its transcripts and protein in 786-O and
THP-1 cells by RT-PCR, ELISA, and Western blotting.
786-O cells showed only low LBP expression, whereas
THP-1 cells displayed constitutive LBP expression
that increased upon LPS stimulation. The
dose-responsive rise in LBP protein detected by
Western blot (B-actin loading control) is consistent
with the RT-PCR/ELISA results (Fig. 8A, 8B, and 54).

1: Medium from growth medium of THP-1 cells
2: Medium from LPS/LBP complex treated THP-1 cells
3: Medium from LPS/LBP complex and anti-LBP antibody treated THP-1 cells

Figure 7. LBP enhances 786-O cancer cell migration in vitro. (A) Wound healing assay showing the effect of increasing concentrations of recombinant LBP (0-200
ng/mL) on cancer cell migration. Migration rate was significantly increased at 50 and 100 ng/mL. (B) Migration assay using conditioned medium from THP-1 cells. Medium from
LPS/LBP-treated THP-1 cells promoted cancer cell migration, which was attenuated by the addition of anti-LBP antibody. Images on the right correspond to treatment groups:

(1) control medium, (2) LPS/LBP-conditioned medium, (3) LPS/LBP with anti-LBP antibody.
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Figure 8. LPS-induced LBP expression, its impact on cell morphology, and proposed model of LBP-mediated tumor progression in KIRC. (A) RT-PCR
analysis of LBP mRNA expression in 786-O and THP-1 cells following LPS stimulation (5 ng/mL). LBP expression was modestly increased in both cell types. B-actin served as an
internal control. The lanes were run on the same gel but were non-adjacent and digitally rearranged. The grouping is indicated by white spaces. (B) ELISA quantification of LBP
in cell culture supernatants confirmed LPS-induced upregulation in both 786-O and THP-1 cells. (C) Microscopy revealed morphological changes in 786-O and THP-1 cells
following treatment with LBP or LBP/LPS, including altered cell shape and surface features. These changes were partially reversed by anti-LBP antibody, suggesting LBP-dependent
modulation of cellular behavior. (D) Schematic model summarizing the proposed role of LBP in KIRC progression. LBP enhances macrophage activation and inflammatory
cytokine secretion, promotes tumor cell migration and invasion, and contributes to the establishment of an aggressive, inflammation-driven tumor microenvironment associated

with poor patient outcomes.
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Additionally, 3D imaging analysis (Fig. 8C)
revealed that LBP treatment induced morphological
changes in both THP-1 and 786-O cells. In the control
group, THP-1 cells maintained a round shape with a
smooth surface. For THP-1 cells, LBP exposure led to
cell contraction and dendrite formation, which were
partially inhibited by anti-LBP antibody, suggesting a
role of LBP in modulating cellular morphology.
Furthermore, when LBP was co-administered with
LPS (LBP+LPS), the morphological changes became
more pronounced, with irregularly extended cell
dendrite appearing at the cell periphery. Notably,
when anti-LBP antibody was added to the
LBP+LPS-treated cells (LBP+LPS+Ab), the cells
partially reverted to a more contracted state.

Similarly, in 786-O cells, LBP treatment
promoted lamellipodia formation —a structure critical
for motility —while anti-LBP antibody partially
reversed this effect. These findings suggest that LBP
influences tumor progression by modulating cell
morphology and promoting inflammatory responses.

Molecular mechanisms of LBP in KIRC

Figure 8D illustrates the proposed mechanism
of LBP involvement in KIRC progression. In
early-stage KIRC, immune cells such as MO
macrophages, Tregs, activated CD4 memory T cells,
plasma cells, and neutrophils are present within the
tumor microenvironment. Tumor cells secrete LBP,
which binds to bacterial LPS, promoting the activation
and maturation of MO macrophages. These mature
macrophages subsequently release cytokines, such as
TNF-a and IL-6, which contribute to the remodeling
of the tumor microenvironment. Notably, LBP can
also function independently of LPS to directly
enhance tumor cell progression. Through these
mechanisms, LBP facilitates tumor growth, promotes
immune suppression, and drives tumor cell migration
and invasion—factors associated with poor survival
in KIRC patients. These findings support the
hypothesis that LBP is a key mediator of tumor
aggressiveness and a potential therapeutic target in
renal cancer.

Discussion

This study delineates the immune and molecular
characteristics associated with poor prognosis in
KIRC. Through the integration of immune cell
infiltration profiling, immune regulatory gene
expression analysis, and functional validation of key
mediators, we demonstrate that both immune
suppression and chronic inflammation cooperatively
shape the TME in aggressive disease.

Our findings provide additional insight into how
specific immune cell populations influence KIRC

prognosis. Among the 22 immune cell types analyzed,
six—resting mast cells, Tregs, plasma cells, activated
CD4 memory T cells, MO macrophages, and
neutrophils—were significantly associated with
patient survival (Fig. 1). Notably, increased
infiltration of Tregs and MO macrophages in the
poor-survival group suggests their potential utility as
negative prognostic biomarkers, consistent with
observations in other malignancies [26-29].
Interestingly, not all findings conformed to classical
immunological expectations. Activated CD4 memory
T cells and plasma cells, typically linked to anti-tumor
immunity, were paradoxically elevated in patients
with poor prognosis. Similarly, HLA-related
genes —normally associated with antigen presentation
and immune activation—were also more highly
expressed in this group (Table 1). These observations
suggest a more complex immune regulatory
environment in KIRC. Such features are increasingly
recognized as hallmarks of immune exhaustion and
functional  reprogramming  within  chronically
inflamed tumor microenvironments. We hypothesize
that these seemingly contradictory patterns reflect an
immunosuppressive shift within TME. Comparative
analysis of tumor and adjacent normal tissues
revealed a relatively higher gene index for the
immunosuppressive cytokine TGF-p in tumors from
poor-survival patients, while expression of interferon
(IFN) family genes remained consistently low or
undetectable (Table S1). This imbalance between
immune activation and suppression implies a
dampened anti-tumor immune response, potentially
contributing to immune evasion and tumor
progression. Furthermore, the elevated presence of
activated CD4 memory T cells and plasma cells in
poor-survival samples may reflect a functional
reprogramming of these cells under chronic antigen
exposure or the influence of immunosuppressive
cytokines such as TGF- and IL-10 [30-33]. Instead of
mounting effective cytotoxic responses, these cells
may adopt exhaust or regulatory phenotypes that
support immune suppression or promote tumor
progression. Plasma cells may also engage in
immunoglobulin-mediated inflammatory signaling,
indirectly ~contributing to a tumor-supportive
environment [34, 35]. In contrast, the abundance of
Tregs, MO macrophages, and TGF-p further
establishes a microenvironment conducive to immune
escape. Collectively, our findings depict an
immunosuppressive yet inflammatory TME in
poor-prognosis KIRC—a hallmark of
immunologically “hot but functionally ineffective”
tumors with impaired anti-tumor surveillance.
Further analysis identified LBP as a key
regulator of tumor progression. While LBP has been
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traditionally recognized for its role in innate
immunity, accumulating evidence indicates that it
also participates in cancer-associated inflammation
and immune modulation. Elevated LBP expression
has been associated with poor prognosis in
hepatocellular carcinoma, gastric cancer, and
colorectal cancer [36-38], and genetic variants in the
LBP gene have also been implicated in cancer
susceptibility [37]. In addition to its prognostic
relevance, recent studies suggest that LBP may
actively contribute to tumor progression by
enhancing malignant phenotypes such as tumor cell
proliferation, migration, and invasion, and shaping an
inflammation-driven tumor microenvironment [17,
39, 40]. These findings support a functional role for
LBP beyond a passive biomarker, linking it more
directly to tumor immunity and cancer-associated
inflammatory signaling. Notably, intratumoral
bacteria capable of producing lipopolysaccharide
(LPS) may synergize with LBP to enhance tumor
metastasis [41]. Although LBP is classically
recognized for its role in facilitating LPS-induced
TLR4 signaling, accumulating evidence suggests that
LBP may also participate in LPS-independent
inflammatory processes. Previous studies have shown
that LBP can interact with endogenous ligands,
including phospholipids, and modulate immune
signaling in the absence of bacterial components,
thereby contributing to sterile inflammation. In
addition, LBP has been reported to influence
downstream  inflammatory  pathways beyond
canonical TLR4 activation [42, 43].

In this context, our in vitro observations that
recombinant LBP promotes tumor cell migration and
induces morphological changes, while anti-LBP
neutralization partially reverses these effects, are
consistent with a model in which LBP may contribute
to tumor progression through mechanisms that are
not strictly dependent on bacterial LPS. Although
previous studies lacked direct evidence of LBP
production by renal cancer cells, our findings
demonstrate that 786-O kidney cancer cells
endogenously express and secrete LBP (Fig. 8). This
tumor-derived LBP may act in concert with, or
independently of, microbial signals to amplify
inflammatory signaling within the KIRC tumor
microenvironment, thereby accelerating disease
progression. Functional assays revealed that LBP
promotes cancer cell migration and modulates
inflammatory responses. Conditioned media from
LPS/LBP-stimulated THP-1 monocytes enhanced the
migratory capacity of 786-O cells, suggesting that LBP
may also exert indirect tumor-promoting effects via
immune cell activation (Fig. 7). These effects were
mitigated by an anti-LBP neutralizing antibody,

which also induced notable morphological changes in
both THP-1 and 786-O cells, reinforcing LBP’s
potential as a therapeutic target. Notably, such
morphological  alterations— particularly  changes
consistent with lamellipodia formation—have been
widely associated with cytoskeletal remodeling and
enhanced cell motility in response to inflammatory
mediators, providing a morphological correlate to the
increased migratory and metastatic potential inferred
from our bioinformatics analyses. Moreover, analysis
of the 20-gene interaction network (Table 1) using
GeneMANIA implicated LBP in pathways related to
extracellular matrix (ECM) remodeling, immune
evasion, and inflammation-associated gene regulation
(Fig. S3), which may explain its strong association
with adverse clinical outcomes.

Chronic inflammation is a well-established
hallmark of cancer development and progression.
Cytokines such as IL-1, IL-6, and TNF-a are
upregulated in response to inflammatory stimuli and
stimulate hepatic synthesis of acute-phase proteins
(APPs). These proteins play multifaceted roles in
supporting tumor progression, including immune
suppression, angiogenesis, and metastasis [44]. For
instance, fibrinogen (FG) facilitates pre-metastatic
niche formation through ECM remodeling and
pro-inflammatory signaling [45], while alpha-1
antitrypsin  (AAT) promotes M2 macrophage
polarization and inhibits cytotoxic T cell activity [46,
47]. Elevated C-reactive protein (CRP) levels have
been associated with poor prognosis in colorectal,
breast, and renal cancers [47], and haptoglobin
(Hp) —particularly  its  fucosylated  form-—is
implicated in tumor progression across multiple
malignancies, including breast, lung, and liver cancers
[47-49]. Beyond their utility as systemic inflammation
markers, APPs reflect dynamic immune changes
within the TME and may influence therapeutic
outcomes. For example, increased Hp and
ceruloplasmin (CP) levels have been associated with
shorter progression-free survival in patients receiving
ICIs [44]. These observations highlight the interplay
between chronic inflammation, immune modulation,
and therapeutic response in cancer.

Although our primary goal was not to build a
prediction tool, the resulting 19-gene signature
demonstrated strong discriminatory power for poor
survival in KIRC (Fig. 5) and was validated across
external RNA-seq and microarray datasets
(RECA-EU, E-MTAB-1980, GSE22541; Fig. 5).
Notably, the panel retained moderate predictive
capacity in other metabolically active or
inflammation-prone cancers (PAAD, STAD, COAD),
but not in LUAD, BRCA, or LIHC, underscoring its
KIRC-specific context (Fig. 5). Although most genes
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within the 19-gene panel are not kidney-specific in
terms of normal renal physiology, many are
functionally involved in immune regulatory
pathways that are highly relevant to renal cancer
biology, including cytokine signaling, immune
checkpoint regulation, and inflammasome/NF-kB-
mediated inflammatory responses that characterize
the KIRC tumor microenvironment (Table 2). The
partial retention of prognostic performance in
pancreatic, gastric, and colon cancers may reflect
shared immune microenvironmental features with
poor-prognosis KIRC. These tumor types are
frequently associated with chronic inflammation,
microbial exposure, and macrophage-dominated
immune landscapes, all of which promote sustained
innate immune activation. In such contexts, LBP may
act as a mediator of cancer-associated inflammation
by amplifying macrophage-driven cytokine signaling.
In contrast, tumor types with less prominent
inflammatory or innate immune components, such as

LUAD, BRCA, and LIHC, showed Ilimited
applicability of the signature, highlighting its
context-dependent  biological relevance.  This

specificity strengthens the biological coherence of the
gene panel and supports its relevance in
KIRC-focused research.

Our study offers several contributions. First, it
delineates the immune-suppressive architecture of
poor-survival KIRC, supported by both cellular
infiltration and molecular expression patterns.
Second, it identifies LBP as a novel driver of
tumor-promoting inflammation with both direct and
paracrine effects. Third, it proposes a robust 19-gene
immune signature derived from the same patient
subset, reinforcing the mechanistic consistency of the
observed phenomena. Importantly, while the 19-gene
panel shows promise as a prognostic tool, its greater
value lies in its biological insight—pinpointing
candidate immune regulators that may underlie
disease aggressiveness and therapeutic resistance.

Conclusion

This integrated study reveals that immune
suppression, inflammation, and tumor-immune
crosstalk collectively contribute to poor prognosis in
KIRC. LBP acts as a tumor-promoting effector linking
bacterial signals and immune modulation, while the
19-gene panel offers a broader perspective on
dysregulated immune processes in the TME. These
findings open opportunities for personalized
therapeutic  strategies targeting the immune
landscape of aggressive renal cancer.
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