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Abstract 

Kidney renal clear cell carcinoma (KIRC) exhibits pronounced immune heterogeneity, and immune 
dysregulation within the tumor microenvironment (TME) contributes to poor outcomes. Leveraging 
TCGA-KIRC RNA-seq, we stratified patients by immune-cell infiltration and immune-regulatory gene 
expression to define a poor-survival subgroup for discovery. Differential expression analysis prioritized 
lipopolysaccharide-binding protein (LBP) and generated an immune-relevant candidate set that was 
refined from 406 to 87 genes by stepwise logistic regression and then benchmarked through one million 
random 20-gene models, yielding a final 19-gene prognostic signature. Six immune-cell features associated 
with survival were identified, including higher M0 macrophages, regulatory T cells, activated CD4 
memory T cells, plasma cells, and neutrophils (worse prognosis) and resting mast cells (better prognosis). 
LBP was highly expressed in the poor-survival subgroup and functionally validated in vitro: 
RT-PCR/ELISA/Western blot and cell-based assays showed that LBP promotes tumor-cell migration and 
macrophage activation, while LBP neutralization reversed these effects, supporting its role as a mediator 
of tumor–immune crosstalk. The 19-gene panel robustly distinguished poor-survival patients, achieving 
AUC = 0.84 in TCGA-KIRC and 0.79–1.00 across three external datasets. Pathway analysis implicated 
ERK signaling, immune suppression, and chronic inflammation. These findings establish a clinically relevant 
19-gene signature and highlight LBP-driven immune dysregulation as a potential target in KIRC. 

Keywords: kidney renal clear cell carcinoma (KIRC); tumor microenvironment (TME); lipopolysaccharide-binding protein (LBP); 
prognostic gene signature 
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Introduction 
Kidney renal clear cell carcinoma (KIRC), the 

most common subtype of renal cell carcinoma, 
accounts for approximately 70–80% of all cases. 
Although the advent of targeted therapies and 
immune checkpoint inhibitors (ICIs) has improved 
outcomes in a subset of patients, those with 
advanced-stage KIRC continue to experience poor 
prognoses [1-3]. Despite being considered a highly 
immunogenic tumor, KIRC exhibits substantial 
heterogeneity in immune cell infiltration and 
therapeutic response [4, 5]. Some tumors resemble 
“cold” tumors with minimal immune cell presence, 
while others show extensive immune infiltration yet 
paradoxically associate with unfavorable survival 
outcomes [6]. These findings highlight that immune 
contexture—the composition, functional status, and 
spatial organization of immune cells—is more 
informative than mere immune cell abundance when 
assessing prognosis and treatment response [7, 8]. 
This complexity reflects the broader regulatory role of 
the tumor microenvironment (TME), which 
orchestrates tumor development, immune evasion, 
and resistance to therapy through intricate crosstalk 
between tumor, immune, and stromal components [9, 
10]. Traditionally, tumors are categorized as “hot” or 
“cold” based on immune cell infiltration levels, with 
hot tumors typically responding better to 
immunotherapy, whereas cold tumors tend to be 
resistant [11-14]. However, immune infiltration alone 
does not guarantee favorable outcomes. In certain 
cancers, increased immune cell presence has 
paradoxically correlated with worse survival, further 
emphasizing that the quality and function of immune 
components—not just their quantity—are critical 
determinants of clinical outcomes [15]. Therefore, a 
deeper understanding of immune dynamics within 
the KIRC microenvironment is urgently needed to 
identify robust prognostic biomarkers and to guide 
the development of more effective, personalized 
immunotherapeutic strategies [6, 16]. 

In this study, we aimed to identify immune- 
related molecular features associated with poor 
survival in KIRC and to investigate their potential 
mechanistic relevance. Using bulk RNA-seq data from 
TCGA-KIRC, we performed dual patient stratification 
based on immune cell composition (via CIBERSORTx) 
and immune regulatory gene expression (via Gene 
Ontology analysis). We then focused on patients 
classified into poor-prognosis groups by both 
methods to define a robust cohort for downstream 
analysis. Through systematic gene prioritization and 
statistical refinement, we constructed a 19-gene panel 
enriched for immune regulatory genes consistently 

associated with adverse outcomes. Cross-dataset 
validation and functional annotation revealed that 
these genes are involved in key processes, including 
immune suppression, inflammation, and tumor 
invasion. 

Among these, lipopolysaccharide-binding 
protein (LBP) emerged as a prominent candidate due 
to its high expression in tumors with poor survival 
rates and its centrality in the network of tumor and 
immune pathways. While traditionally known for its 
role in innate immunity, recent studies have linked 
LBP to tumor-promoting inflammation and immune 
modulation [17-19]. To explore its functional 
relevance in the KIRC microenvironment, we further 
investigated LBP’s effects using in vitro models of 
tumor–immune interaction. 

Materials and Methods 
RNA sequencing and microarray datasets 

RNA sequencing, gene expression microarray 
and clinical data were obtained from four public 
datasets: TCGA-KIRC, GSE22541, E-MTAB-1980, and 
RECA-EU. All expression data were processed using 
R (v3.6.2). 

RNA sequencing (RNA-seq) data and 
corresponding clinical information for KIRC were 
retrieved from The Cancer Genome Atlas (TCGA) 
database using the TCGAbiolinks package in R. Gene 
expression levels were normalized and reported as 
fragments per kilobase of transcript per million 
mapped reads (FPKM). A total of 539 KIRC patient 
samples were included in the analysis. To ensure 
consistent gene annotation, the expression matrix was 
mapped to Ensembl gene identifiers (ENSG) and gene 
symbols according to the GRCh38/hg38 human 
reference genome. For downstream analyses, only 
protein-coding genes were retained to improve 
biological interpretability and reduce potential 
confounding from non-coding RNAs. 

The GSE22541 and E-MTAB-1980 microarray 
datasets were downloaded from GEO and 
ArrayExpress, respectively; preprocessing details 
follow repository documentation [20]. RNA-seq data 
from the RECA-EU cohort were obtained from the 
ICGC portal and include European patients with renal 
cancer. 

Annotation of immune regulation genes using 
the Gene Ontology database 

Genes involved in immune regulation were 
identified using the Gene Ontology (GO) resource [21, 
22]. The search term “immune regulation” was 
applied under the “Ontology” subclass, and genes 
annotated with the accession ID GO:0050776 
(regulation of immune response) were selected. These 
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genes were filtered from the previously curated 
protein-coding gene list, resulting in a final set of 987 
immune regulation genes for further analysis. 

CIBERSORTx analysis for immune cell 
quantification 

Cell-type Identification by Estimating Relative 
Subsets of RNA Transcripts (CIBERSORTx) is an 
online computational tool designed to quantify 
immune cell composition based on gene expression 
data [23]. CIBERSORTx utilizes a reference gene 
matrix consisting of 547 signature genes to 
deconvolute bulk RNA-sequencing data into the 
relative proportions of 22 immune cell types. This 
approach allowed us to determine the immune cell 
content in the TME of renal cancer patients by 
applying CIBERSORTx's deconvolution algorithm to 
the mRNA expression profiles. 

Gaussian Mixture Model (GMM) clustering 
Gaussian Mixture Modeling (GMM) was applied 

as an unsupervised clustering approach to identify 
immune infiltration patterns across tumor samples. 
GMM assumes that the observed data arise from a 
mixture of multiple Gaussian distributions and is well 
suited for modeling heterogeneous and multimodal 
data structures commonly observed in immune 
deconvolution profiles. Unlike hard clustering 
methods, GMM provides probabilistic cluster 
assignments, allowing samples to exhibit gradual 
transitions between immune states rather than being 
forced into rigid cluster boundaries. 

In this study, samples were represented in a 
high-dimensional feature space defined by immune 
cell composition profiles and clustered using the 
“mclust” package in R (version 3.6.2). This approach 
enabled the identification of distinct immune 
infiltration patterns across the dataset. 

Kaplan-Meier survival analysis 
Kaplan-Meier (KM) survival analysis was 

performed to evaluate the overall survival (OS) of 
patients within distinct clusters or immune cell 
groups. For GMM-based clustering, patient groups 
were analyzed using the “survival” and “survminer” 
packages in R. 

To stratify KIRC patients based on immune 
landscape, the cohort was classified into high and low 
immune cell infiltration groups according to the 
variability in infiltration levels across 22 distinct 
immune cell types. This stratification approach is 
particularly suited for data characterized by a 
long-tailed distribution and aims to partition the 
samples into two different subgroups. The procedure 
involves initially ranking all samples based on the 

variable of interest. Subsequently, the standard 
deviation (SD) is sequentially calculated in an 
accumulative manner—from the first three samples, 
then the first four, and so forth. Since the standard 
deviation reflects the degree of dispersion within a 
potential cluster, this iterative process allows the 
construction of a simulation curve. The point at which 
the SD reaches its maximum is identified as the 
optimal cut-off, serving as the threshold to divide the 
cohort into two subgroups: one with relatively high 
infiltration values and the other with low infiltration 
values. 

Clinical data and group labels were integrated 
into the analysis, and survival curves were generated. 
Statistical significance was assessed using the 
log-rank test, with a threshold of p < 0.05 to define 
significant survival differences. 

Stepwise logistic regression algorithm 
In this study, the expression levels of immune 

regulatory genes served as independent variables, 
while patient survival status (alive vs. dead) was used 
as the binary response variable. The logistic 
regression model estimates the probability of the 
outcome using a logistic function, with model 
coefficients derived through Maximum Likelihood 
Estimation (MLE). To identify the most informative 
subset of genes associated with poor survival, we 
applied a stepwise selection algorithm that combines 
both forward selection and backward elimination. 
The procedure was initialized with a null model and 
iteratively added or removed variables based on their 
contribution to model fit. Selection criteria were based 
on either the Akaike Information Criterion (AIC) or 
variable-level p-values, and the process continued 
until no further improvement could be achieved by 
modifying the model. The stepwise regression was 
implemented in R (version 3.6.2) using the built-in 
step() function. The resulting gene subsets were used 
for downstream ROC analysis, frequency profiling, 
and prognostic panel construction. This strategy 
allowed functional diversity to be retained while 
quantitatively optimizing prognostic performance. 

Receiver operating characteristic (ROC) curve 
analysis 

For single-gene evaluation, patients were 
stratified into binary survival groups, and the ROC 
curve was generated using the R package pROC 
(version 1.18.0). For multi-gene combinations, a 
logistic regression model was constructed, and 
predicted probabilities were used to compute the 
ROC curve. In comparisons involving multiple 
models or gene sets, we generated AUC distributions 
and visualized them using ggplot2 (version 3.3.5) to 
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assess relative performance. 
Where applicable, the DeLong test was used to 

compare AUCs between different classifiers. All 
analyses were conducted using R software (version 
3.6.2), and statistical significance was defined as p < 
0.05. 

RT-PCR 
786-O or THP-1 cells (1 × 106 cells/well) were 

treated with LPS (5 ng/mL) for 12 hours. Total RNA 
was extracted using TRIzol reagent (Invitrogen, 
Gaithersburg, MD, USA) following the 
manufacturer’s instructions. The extracted RNA was 
then reverse transcribed into cDNA. To detect gene 
expression, specific primers targeting LBP and β-actin 
were used. The LBP gene was amplified using a 
forward primer with the sequence 5′-TTCGGTCAA 
CCTCCTGTTGG-3′ and a reverse primer 5′-CATGT 
TGGGGTAGAGCCTGG-3′. β-actin was used as the 
internal control, with the forward primer 5′-CACC 
ATTGGCAATGAGCGGTTC-3′ and the reverse 
primer 5′-AGGTCTTTGCGGATGTCCACGT-3′. PCR 
products were separated by agarose gel 
electrophoresis. 

Wound healing assay 
786-O cells (3 × 10⁴ cells/70 μL per well) were 

seeded into a Culture-Insert 2 Well (Ibidi, Munich, 
Germany) and incubated overnight to allow cell 
attachment. The inserts were then carefully removed 
to create a uniform cell-free gap. Cell migration into 
the gap was monitored at 0 and 24 hours using an 
inverted microscope, and representative images were 
captured at each time point. Migration was quantified 
by measuring the change in the gap width between 
the two cell fronts over time. The migration rate was 
calculated as: [(initial gap width – final gap width) / 
initial gap width] × 100. 

ELISA 
The concentration of LBP in cell culture 

supernatants was measured using commercially 
available ELISA kits (Invitrogen). Briefly, culture 
media were collected, centrifuged to remove debris, 
and added to pre-coated 96-well plates. After 
incubation and washing, detection antibodies were 
added, followed by substrate solution. Absorbance 
was measured at 450 nm using a microplate reader, 
and protein concentrations were calculated based on 
standard curves. 

Statistical analysis 
All data are presented as mean ± standard 

deviation (SD) from at least three independent 
experiments. For comparisons between two groups, 

either Student’s t-test or the Wilcoxon rank-sum test 
was applied based on the normality of the data 
distribution. For comparisons involving more than 
two groups, one-way analysis of variance (ANOVA) 
was performed, followed by appropriate post-hoc 
tests to assess pairwise group differences. A p-value of 
< 0.05 was considered statistically significant. 

Results 
Immune infiltration landscape in KIRC and its 
prognostic implications 

To explore the heterogeneity of the TME in 
KIRC, we employed CIBERSORTx to quantify 22 
immune cell types from the RNA-seq data of 
TCGA-KIRC samples. Unsupervised clustering using 
a GMM classified patients into five distinct immune 
infiltration groups (Groups A–E), each displaying 
specific immune cell enrichment patterns (Fig. S1A). 
For example, Group A showed high levels of resting 
NK cells, Group C was enriched in gamma delta T 
cells, and Groups D and E had prominent activated 
mast cells and M0 macrophages, respectively. Group 
B, the largest cluster, lacked dominance by a specific 
immune cell. 

KM survival analysis was conducted to assess 
the relationship between immune cell infiltration 
patterns and patient prognosis across the five clusters 
(Fig. 1B). Results demonstrated that patients in 
Groups D and E had significantly poorer outcomes, 
indicating a strong association between immune cell 
infiltration patterns and survival. To explore this 
further, the 22 immune cell types were stratified into 
high-infiltration and low-infiltration groups based on 
the variability in infiltration. Survival comparisons 
between these groups identified six immune cell types 
significantly associated with patient survival (Fig. 
1C). Resting mast cell infiltration was positively 
correlated with better survival outcomes, while five 
other cell types—including M0 macrophages, 
regulatory T cells (Tregs), plasma cells, activated CD4 
memory T cells, and neutrophils—were negatively 
correlated. Additionally, naïve CD4 T cells were 
excluded from statistical analysis due to insufficient 
data, while the remaining 15 immune cell types 
showed no significant association with survival (Fig. 
S1B). 

Boxplot comparisons of these immune cell 
infiltrates across the five immune clusters, 
accompanied by Wilcoxon tests, revealed distinct 
distribution patterns, further emphasizing their 
prognostic relevance (Fig. 1D). Notably, M0 
macrophages were most abundant in Groups D and E, 
linking them to tumor aggressiveness and poor 
survival outcomes. 
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Figure 1. Immune cell–based classification and its association with survival in the TCGA-KIRC cohort. (A) Analysis workflow for patient stratification based on 
tumor immune cell composition. Relative proportions of 22 immune cell types were estimated using the CIBERSORTx algorithm applied to TCGA-KIRC RNA-seq data. Patients 
were clustered into five immune subgroups (Groups A–E) using GMM, and overall survival was compared across groups. (B) Kaplan–Meier survival curves showing significant 
survival differences among the five immune subgroups (log-rank p = 0.0041). (C) Kaplan–Meier analysis identifying six immune cell types significantly associated with prognosis. 
Elevated levels of regulatory T cells, M0 macrophages, activated CD4⁺ memory T cells, plasma cells, resting mast cells, and neutrophils were each linked to shorter survival. (D) 
Boxplots illustrate the distribution of these six prognostic immune cell types across the five subgroups. Statistical comparisons were conducted using the Wilcoxon test, with 
p-values shown. 
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Figure 2. Patient stratification based on immune regulation–related gene expression in TCGA-KIRC. (A) TCGA-KIRC RNA-sequencing data were filtered for 
genes associated with the Gene Ontology term “regulation of immune response” (GO:0050776). Patients were clustered into five transcriptomic subgroups (Groups 1–5) using 
GMM based on the expression patterns of these immune regulation–related genes. (B) Kaplan–Meier survival analysis showed significant differences in overall survival among the 
five subgroups (log-rank p = 0.00029), suggesting that variation in immune regulatory gene expression is closely linked to patient prognosis in KIRC. 

 

Defining a poor-survival KIRC patient group 
for molecular interrogation 

In parallel with immune profiling, we performed 
transcriptomic clustering based on immune 
regulatory gene expression—defined by GO term 
GO:0050776—and identified five molecular 
subgroups (Groups 1–5) via GMM (Fig. 2A). KM 
analysis showed that Groups 4 and 5 had significantly 
poorer prognosis (Fig. 2B). We intersected this 
classification with the immune infiltration analysis, 
identifying 38 overlapping patients from immune 
Groups D/E and transcriptomic Groups 4/5, which 
we collectively defined as the poor-survival group. 

For tumor samples in this group, an immune 
gene index was calculated by multiplying each gene’s 
expression value by the fold change (FC) between 
tumor and adjacent normal tissues. Based on the 
calculated index, genes were ranked in descending 
order. The top 20 candidates are presented in Table 1, 
along with their detailed functional annotations, also 
listed in Table 1. Additional gene data are available in 
Supplementary Table S1. Notably, a significant drop 
in index values was observed after the fifth-ranked 
gene, leading to the selection of the top five 
candidates—LBP, COL1A1, FGA, FGB, and C3—for 
further analysis. 

KIRC patients were further stratified into 
high-expression (top one-third) and low-expression 
(bottom one-third) groups based on the expression 
levels of the five candidate genes. Survival analysis 
(Fig. 3A) revealed that the expression of LBP, 
COL1A1, and C3 was significantly associated with 
patient outcomes. Among these genes, LBP had the 

highest AUC (> 0.6) in ROC analysis (Fig. 3B), 
suggesting a closer relationship with adverse clinical 
outcomes and highlighting its potential biological 
relevance in poor-prognosis KIRC. Based on the 
immune gene index, survival correlation, and ROC 
performance, LBP was identified as the most 
influential gene and selected as the key effector for 
further investigation. Subsequently, a cohort of 38 
poor-survival KIRC patients exhibiting high LBP 
expression was defined, providing a focused 
population for downstream immunogenomic 
characterization and molecular analysis. 

Identification of core immunoregulatory genes 
associated with poor survival in high-LBP KIRC 
patients 

Given the high expression of LBP—a key 
acute-phase protein involved in immune 
responses—in poor-prognosis KIRC patients, we 
aimed to characterize the associated 
immunoregulatory landscape and identify 
co-expressed genes that may contribute to both tumor 
aggressiveness and immune suppression. To this end, 
we focused on tumor tissues from the same 38 
poor-survival patients and performed differential 
expression analysis compared to their matched 
adjacent normal tissues. This analysis identified 406 
upregulated genes (Wilcoxon test, p < 0.05; Fig. 4A). 

These 406 genes were first functionally 
annotated using GeneCards and cross-referenced 
with the DICE database to assess their immune cell–
specific expression profiles. To enrich for 
immunologically relevant candidates, we filtered for 
genes expressed in six immune cell types previously 
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linked to poor survival in KIRC—M0 macrophages, 
Tregs, neutrophils, plasma cells, activated CD4⁺ 
memory T cells, and resting mast cells. This yielded a 
refined list of 372 genes with potential 

immunoregulatory roles in tumor progression, which 
served as the foundation for subsequent modeling 
and analysis. 

 

 
Figure 3. Prognostic significance of selected immune-related genes in KIRC. (A) Kaplan–Meier survival analysis of five candidate genes (LBP, COL1A1, FGA, FGB, and 
C3) in the TCGA-KIRC cohort. High expression of LBP, COL1A1, and C3 was significantly associated with worse overall survival (p < 0.05), suggesting their involvement in poor 
prognosis. (B) ROC curve analysis showing the relative ability of each gene to distinguish between survival outcomes. LBP had the highest AUC (0.61), while the others had AUC 
values below 0.6, supporting the prioritization of LBP for further investigation despite modest standalone performance. 
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Figure 4. Systematic identification and refinement of immune-related genes associated with poor survival in KIRC. (A) Flowchart summarizing the pipeline. 
Differentially expressed immune-regulatory genes associated with poor survival were mapped to six immune cell types, yielding 372 candidates refined by stepwise logistic 
regression. (B) Prognostic relevance was compared across four sets: (1) PC: 63 literature-curated genes, (2) NC: 365 olfactory receptor genes, (3) 372 immune-related 
candidates, and (4) 87 stepwise-selected genes. One million random 20-gene combinations from each group were tested for survival prediction. (C) AUC distributions showed 
the 87-gene subset consistently outperformed others. The PC benchmark (AUC = 0.797, red arrow) was used as a threshold. (D) Genes were ranked by frequency in 
combinations exceeding the benchmark, identifying 20 top candidates (red). (E) Exhaustive modeling revealed a 19-gene panel achieved optimal performance (AUC = 0.8428). 
(F) Leave-one-gene-out analysis showed that removing any gene reduced performance, indicating synergy. NLRC3, RNF135, HHLA2, IL4, BAX, and SRC had the strongest effects. 
Red genes are upregulated in poor-survival patients, whereas green genes are downregulated. 

 
To further refine genes with the highest 

statistical association with patient outcomes, stepwise 
logistic regression was employed on this 372-gene set, 
resulting in a focused panel of 87 candidates. These 
genes served as the basis for downstream functional 
prioritization and mechanistic investigation. 

To identify which of the 87 immune-related 
candidates most significantly contribute to poor 
survival in KIRC, a large-scale benchmarking analysis 
was performed. We generated one million random 

20-gene combinations from the 87-gene subset and 
evaluated their survival-predictive performance using 
logistic regression and AUC analysis. These 
combinations were compared against two control sets, 
detailed in Table S2: a positive control (PC) of 63 
literature-curated prognostic genes [24, 25], and a 
negative control (NC) of 365 olfactory receptor genes 
unlikely to be associated with cancer outcomes (Fig. 
4B). Although the performance of candidate gene 
combinations was primarily evaluated using 
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AUC-based benchmarking, functional 
complementarity among genes was implicitly 
preserved through the upstream filtering strategy. 
Prior to random modeling, candidate genes were 
restricted to those that were (i) significantly 
upregulated in tumors from poor-survival patients, 
(ii) annotated as immune-regulatory genes 
(GO:0050776), and (iii) expressed in immune cell 

populations that were significantly associated with 
survival. This multi-layered filtering ensured that the 
resulting gene pool represented coordinated immune 
suppression, inflammatory signaling, antigen 
presentation, and tumor-intrinsic survival pathways, 
rather than redundant predictors driven by single 
mechanisms. 

 

Table 1. Top 20 immune regulation–associated genes prioritized by expression index in tumors of poor-survival KIRC 
patients. Genes were ranked based on a composite index (expression × fold change), reflecting both high abundance and upregulation in 
tumor tissues relative to adjacent normal tissues from the same patients. The table includes gene symbols, corresponding protein names, 
average expression in tumors (n = 38), fold change compared to adjacent tissues, and detailed functional descriptions. Notable genes 
include LBP (lipopolysaccharide recognition), COL1A1 (extracellular matrix remodeling), FGA/FGB (coagulation), and C3 (complement 
activation), highlighting key immune-related processes associated with poor prognosis in KIRC. Functional annotations are curated from 
UniProt. 

Gene name Protein name Gene expression Fold change Index Function 
LBP Lipopolysaccharide-binding protein 102.86 82.72 8508.58  Acts as an affinity enhancer for CD14, facilitating its association with LPS. 

Promotes the release of cytokines in response to bacterial 
lipopolysaccharide 

COL1A1 Collagen type I alpha 1 chain 281.4 16.56 4659.98  Type I collagen is a member of group I collagen (fibrillar forming collagen). 
FGA Fibrinogen alpha chain 119.28 38.54 4597.05  Cleaved by the protease thrombin to yield monomers which, together with 

fibrinogen beta (FGB) and fibrinogen gamma (FGG), polymerize to form an 
insoluble fibrin matrix. Fibrin has a major function in hemostasis as one of 
the primary components of blood clots. 

FGB Fibrinogen beta chain 243.86 17.23 4201.71  Cleaved by the protease thrombin to yield monomers which, together with 
fibrinogen alpha (FGA) and fibrinogen gamma (FGG), polymerize to form 
an insoluble fibrin matrix. Fibrin has a major function in hemostasis as one 
of the primary components of blood clots. 

C3 Complement C3 284.99 12.39 3531.03  C3 plays a central role in the activation of the complement system. 
FGG Fibrinogen gamma chain 111.66 23.23 2593.86  Together with fibrinogen alpha (FGA) and fibrinogen beta (FGB), 

polymerizes to form an insoluble fibrin matrix. Has a major function in 
hemostasis as one of the primary components of blood clots.  

CD74 HLA-DR antigens-associated invariant 
chain  

1027.66 2.45 2517.77  Plays a critical role in MHC class II antigen processing by stabilizing 
peptide-free class II alpha/beta heterodimers in a complex soon after their 
synthesis and directing transport of the complex from the endoplasmic 
reticulum to the endosomal/lysosomal system where the antigen 
processing and binding of antigenic peptides to MHC class II takes place. 
Serves as cell surface receptor for the cytokine MIF. 

HLA-B HLA class I histocompatibility antigen, B 
alpha chain 

840.9 2.89 2430.20  HLA-B belongs to the HLA class I heavy chain paralogues. 

ACTB Actin, cytoplasmic 1 1465.75 1.5 2198.63  Actin is a highly conserved protein that polymerizes to produce filaments 
that form cross-linked networks in the cytoplasm of cells 

HLA-DRA HLA class II histocompatibility antigen, 
DR alpha chain 

857.02 2.5 2142.55  An alpha chain of antigen-presenting major histocompatibility complex 
class II (MHCII) molecule. 

HLA-A HLA class I histocompatibility antigen, A 
alpha chain 

700.9 2.72 1906.45  HLA-A belongs to the HLA class I heavy chain paralogues. 

B2M Beta-2-microglobulin 878.18 2.02 1773.92  Component of the class I major histocompatibility complex (MHC). 
Involved in the presentation of peptide antigens to the immune system.  

C1QB Complement C1q subcomponent subunit 
B 

180.01 7.75 1395.08  C1q associates with the proenzymes C1r and C1s to yield C1, the first 
component of the serum complement system. The collagen-like regions of 
C1q interact with the Ca2+-dependent C1r2C1s2 proenzyme complex, and 
efficient activation of C1 takes place on interaction of the globular heads of 
C1q with the Fc regions of IgG or IgM antibody present in immune 
complexes. 

ENPP3 Ectonucleotide 
pyrophosphatase/phosphodiesterase 
family member 3 

62.94 20.35 1280.83  Hydrolase that metabolizes extracellular nucleotides, including ATP, GTP, 
UTP and CTP 

COL1A2 Collagen alpha-2(I) chain 177.99 7.03 1251.27  Type I collagen is a member of group I collagen (fibrillar forming collagen). 
C1QA Complement C1q subcomponent subunit 

A 
195.03 6.36 1240.39  the same as C1QB 

C1QC Complement C1q subcomponent subunit 
C 

174.56 6.88 1200.97  the same as C1QB 

HLA-DRB1 HLA class II histocompatibility antigen, 
DRB1 beta chain 

453.56 2.21 1002.37  A beta chain of antigen-presenting major histocompatibility complex class 
II (MHCII) molecule. 

COL3A1 Collagen alpha-1(III) chain 206.08 4.47 921.18  Collagen type III occurs in most soft connective tissues along with type I 
collagen. Involved in regulation of cortical development. 

HLA-C HLA class I histocompatibility antigen, C 
alpha chain 

484.89 1.82 882.50  HLA-C belongs to the HLA class I heavy chain paralogues. 
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The distribution of AUC scores (Fig. 4C) showed 
that gene combinations from our 87-gene subset 
consistently outperformed the PC group and far 
exceeded the NC baseline, underscoring the 
robustness of our biologically informed and 
statistically refined gene selection strategy. These 
benchmarking results served to quantitatively 
highlight genes most strongly associated with poor 
survival outcomes. 

Based on this analysis, we identified the top 20 
most frequently occurring genes among high- 
performing combinations (AUC > 0.797), suggesting 
these genes may be central contributors to the 
immunopathology of aggressive KIRC (Fig. 4D and 
Table S3). Exhaustive testing of all possible 
combinations within this 20-gene set revealed that a 
19-gene panel achieved the highest association with 
poor survival (AUC = 0.8428; Fig. 4E). To evaluate the 

contribution of individual genes to model 
performance, we conducted a leave-one-gene-out 
analysis. Notably, the exclusion of genes such as 
NLRC3, RNF135, HLA-A2, IL4, BAX, and SRC led to 
marked declines in AUC, highlighting their critical 
contribution to the overall performance of the gene 
panel and supporting their biological relevance (Fig. 
4F). The remaining genes contributed synergistically, 
suggesting that the panel reflects coordinated 
immunological dysregulation rather than isolated 
markers. 

In summary, the final 19-gene panel was selected 
to represent the key molecular features underlying 
immune suppression and tumor aggressiveness in 
poor-survival KIRC patients. Functional annotations 
of these genes are provided in Table 2, highlighting 
their diverse roles in inflammation, immune 
signaling, and tumor cell regulation. 

 

Table 2. Functional annotation of the 19-gene panel associated with poor prognosis in KIRC. For each gene in the final 
19-gene panel, both the canonical biological function and its refined role in the context of kidney renal clear cell carcinoma (KIRC) and 
immune regulation are summarized. Annotations integrate information from public databases (e.g., UniProt, GO) and literature review, 
with emphasis on immune modulation, inflammation, and tumor progression. Several genes (e.g., IL4, RNF135, NLRC3, NOD2, HHLA2) are 
involved in key immune pathways such as cytokine signaling, immune checkpoint regulation, and inflammasome activation, highlighting 
their potential roles in shaping the tumor microenvironment and influencing clinical outcomes in KIRC. 

Gene 
name 

Original function description Refined function (KIRC/Immune context) 

IL4 Cytokine involved in the differentiation of naive helper T cells (Th0 cells) to Th2 cells. Promotes Th2/Treg polarization, suppressing antitumor 
immunity. 

RNF135 E3 ubiquitin ligase involved in innate immune response and potentially cell proliferation. Enhances tumor survival through PI3K-AKT signaling and 
involved in β-catenin activation. 

NLRC3 Negative regulator of the PI3K-AKT-mTOR signaling pathway. Inhibits mTOR signaling; its downregulation facilitates tumor 
progression. 

NOD2 Recognizes bacterial molecules; triggers immune responses via NF-kB activation. Triggers NF-kB signaling and inflammasome activation in 
macrophages. 

HHLA2 Modulates T cell function; part of B7 family of immune checkpoint molecules. Immune checkpoint molecule; downregulation linked to 
immune escape. 

BAX Promotes apoptosis; regulates programmed cell death. Regulates apoptosis; associated with increased T cell death in 
tumors. 

EIF2B1 Subunit of a translation initiation factor; involved in protein synthesis and stress response. Facilitates protein synthesis and stress adaptation in immune 
cells. 

KIR2DL4 Killer cell immunoglobulin-like receptor; involved in NK and T cell activation. NK and T cell receptor; downregulation weakens cytotoxic 
responses. 

SRC Non-receptor tyrosine kinase involved in the regulation of cell growth and differentiation. Promotes tumor proliferation and metastasis via RAS-RAF-ERK 
pathway activation. 

IFNL1 Antiviral cytokine; contributes to the immune defense against viruses. Antiviral cytokine; loss reduces immune-mediated tumor 
clearance. 

PDE4B Enzyme that hydrolyzes cAMP; regulates cellular responses to hormones and 
neurotransmitters. 

Modulates cytokine release and immune response via cAMP 
degradation. 

GPS2 Inhibits inflammatory gene expression; involved in transcriptional regulation. Suppresses inflammatory gene transcription; linked to 
macrophage regulation. 

HAVCR2 Encodes TIM-3; a checkpoint receptor involved in immune regulation. Encodes TIM-3 checkpoint; immune exhaustion marker on T 
cells. 

OSCAR Activating receptor on myeloid cells; promotes immune responses. Amplifies myeloid cell activation and inflammation in TME. 
GRN Secreted protein that is involved in cell growth, survival, and repair processes. Supports tumor growth and tissue remodeling; secreted growth 

factor. 
POLR3G Subunit of RNA polymerase III; contributes to the transcription of small RNAs including 

tRNAs and 5S rRNA. 
Drives non-coding RNA expression linked to tumor 
invasiveness. 

IL27RA Receptor subunit involved in IL-27 mediated signaling; modulates immune responses. Mediates IL-27 signaling that enhances Treg cell activity. 
BTNL3 Member of the butyrophilin family; may regulate immune cell proliferation. Modulates T cell proliferation, contributing to immune 

suppression. 
FCGR1A High-affinity IgG receptor; activates phagocytosis and cytokine release. Activates macrophage phagocytosis and proinflammatory 

cytokine release. 
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Figure 5. Cross-dataset validation and cancer-type specificity of the 19-gene panel associated with poor survival in KIRC. (A) ROC curve showing that the 
19-gene panel effectively distinguishes poor-survival cases in the TCGA-KIRC cohort (AUC = 0.84), supporting its biological relevance in this population. (B) Validation across 
three independent cohorts—RECA-EU (RNA-seq, n = 91), GSE22541 (microarray, n = 68), and E-MTAB-1980 (microarray, n = 101)—demonstrated consistent associations with 
survival, underscoring the panel’s robustness across different platforms and populations. (C) Evaluation across six additional TCGA cancer types revealed that the panel's 
expression pattern was selectively informative in metabolically active tumors such as pancreatic (PAAD, AUC = 0.75), gastric (STAD, AUC = 0.75), and colon (COAD, AUC = 
0.71) adenocarcinomas, but showed minimal relevance in breast (BRCA), liver (LIHC), and lung (LUAD) cancers (AUC ≤ 0.7), highlighting its specificity to KIRC-associated 
immunopathology. 

 
Cross-platform validation of immune gene 
panel relevance 

To evaluate the consistency of the 19-gene panel 
across datasets and platforms, we assessed its 
association with survival in multiple independent 
cohorts. In the TCGA-KIRC cohort, the panel 
demonstrated strong discriminatory capacity (AUC = 
0.84; Fig. 5A). Its performance was similarly retained 
in two microarray datasets—GSE22541 (AUC = 1.0) 
and E-MTAB-1980 (AUC = 0.84)—as well as in the 
RNA-seq–based RECA-EU dataset (AUC = 0.79; Fig. 
5B). These results confirm that the selected genes are 
consistently and strongly associated with poor 
survival in KIRC across diverse technical platforms 
and patient populations. 

Specificity of immune dysregulation in KIRC 
compared to other cancers 

We next investigated whether the 19-gene panel 

was uniquely associated with KIRC or reflected a 
more general signature of aggressive cancer 
phenotypes. To this end, we applied the panel to six 
other TCGA cancer types. Moderate associations with 
poor survival were observed in pancreatic (PAAD), 
gastric (STAD), and colon adenocarcinoma (COAD) 
(AUC = 0.71–0.75), but not in lung (LUAD), liver 
(LIHC), or breast cancer (BRCA), where performance 
dropped to AUC ≤ 0.6 (Fig. 5C). These results indicate 
that the 19-gene panel retains moderate prognostic 
relevance in pancreatic, gastric, and colon 
adenocarcinomas, all of which arise from 
inflammation-prone tissues and exhibit prominent 
involvement of innate immune components, 
particularly macrophages. In contrast, limited 
performance was observed in other cancer types, 
highlighting differences in immune contexture across 
tissues. 
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Functional mapping of immune gene activity in 
poor-survival KIRC 

To better understand the biological significance 
of the 19-gene panel, we performed network analysis 
using GeneMANIA (Fig. 6A), revealing tight 
interconnectivity among genes involved in tumor 
progression, immune evasion, cell survival, and 
transcriptional regulation. 

To further investigate how these genes may 
influence the tumor microenvironment in KIRC 
patients with poor survival, we focused on three key 
cell types that play pivotal roles in tumor progression: 
tumor cells, T cells, and macrophages—all of which 
demonstrated significant associations with patient 
prognosis. In addition to the 19-gene panel, LBP was 
also included, which emerged as a top candidate of 
poor-survival KIRC patients in earlier analyses and 
exhibited functional relevance across both tumor and 
immune compartments. To delineate the 
context-specific functions of these genes within 
distinct cellular settings, we constructed three cell 
type–specific molecular pathway diagrams based on 
KEGG pathway analysis and literature evidence, 
corresponding to tumor cells, T cells, and 
macrophages. 

To facilitate interpretation of the complex 
signaling network shown in Figure 6B–6D, key 
regulatory nodes with opposing functional roles are 
highlighted below. In particular, imbalanced 
regulation within major survival pathways, such as 
PI3K–AKT signaling, provides mechanistic insight 
into tumor aggressiveness. In tumor cells (Fig. 6B), the 
19-gene panel reflected enhanced metastatic and 
survival potential. Upregulation of SRC and GRN 
activated the RAS–RAF–MEK–ERK cascade, 
promoting cytoskeletal remodeling, focal adhesion, 
and epithelial–mesenchymal transition (EMT)— 
hallmarks of metastasis and angiogenesis. GRN also 
enhanced actin remodeling through Drebrin and 
facilitated ERK-mediated oncogenic transcription 
programs. LBP, via the CD14–MD2–TLR4 complex, 
activated downstream inflammatory pathways, 
potentially contributing to tumor-promoting immune 
modulation. POLR3G supported cancer-associated 
ncRNA transcription, aiding in tumor cell migration. 
Additionally, RNF135 and NLRC3 exhibited opposing 
roles in PI3K–AKT signaling: RNF135 promoted 
survival and anti-apoptosis via β-catenin and Bcl-2, 
while downregulation of NLRC3—an immune 
checkpoint regulator—facilitated tumor progression. 
Collectively, these alterations underscore the panel’s 
relevance to tumor aggressiveness and immune 
evasion in KIRC. 

In T cells (Fig. 6C), the 19-gene panel indicated 

an immunosuppressive and dysfunctional immune 
state. Upregulation of IL4, IL27RA, and BTNL3 
promoted JAK–STAT signaling and Treg or Th2 
differentiation, thereby dampening anti-tumor 
immunity. GRN and EBI3 further activated IL10 and 
IFN-β signaling, contributing to an 
immunoregulatory environment. In contrast, 
downregulation of HAVCR2, HHLA2, and KIR2DL4— 
co-inhibitory and co-stimulatory molecules— 
suggested impaired CD8⁺ T cell proliferation and 
effector function. Notably, increased expression of 
pro-apoptotic BAX pointed to elevated T cell 
apoptosis. Meanwhile, EIF2B1 and PDE4B were 
involved in translation initiation and cytokine 
regulation, respectively, though their expression 
changes were insufficient to restore T cell function. 
RNF135 appeared to play a role in antiviral defense, 
while downregulation of NOD2 suppressed NF-κB 
activation and IL-2 production, potentially limiting 
effector T cell differentiation. Altogether, these 
alterations reflected a suppressed T cell response in 
poor-survival KIRC. 

In macrophages (Fig. 6D), the 19-gene panel 
reflected a pro-inflammatory transcriptional state 
characteristic of tumor-promoting chronic 
inflammation. FCGR1A and OSCAR stimulated ROS 
production and cytokine secretion, while NOD2 
activated inflammasome components and IL-18 
release, collectively enhancing IL-1β, IL-6, and IL-8 
expression. Upregulation of LBP further amplified 
innate immune signaling through the CD14–MD2–
TLR4 axis, activating the MyD88–IRF3 and NF-κB 
pathways. This cascade promoted transcription of 
multiple pro-inflammatory cytokines and 
transcription factors, including AP-1 and IRF3. In 
contrast, the downregulation of HAVCR2 and IFNL1 
indicated impaired antiviral and anti-tumor 
responses. Although GPS2 and EIF2B1 participated in 
transcriptional repression and translational control, 
their expression appeared insufficient to counteract 
the prevailing inflammatory milieu. These changes 
suggest a macrophage phenotype skewed toward 
tumor-supportive inflammation and immune 
dysregulation in poor-survival KIRC. 

Altogether, these 19 genes span tumor-intrinsic 
and immune-related mechanisms, highlighting their 
collective role in tumor aggression, immune evasion, 
and microenvironmental remodeling. Among them, 
LBP emerged as a top-ranked gene with strong 
mechanistic and clinical relevance, making it a 
compelling candidate for further functional validation 
in cellular models of KIRC. We next focused on 
evaluating the functional role of LBP, particularly in 
relation to tumor cell migration. 
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Figure 6. Functional dissection of the 19-gene panel across tumor cells, T cells, and macrophages. (A) GeneMANIA network illustrating functional interactions 
between the 19-gene panel and 20 additional related genes. The network reveals dense connectivity, with functional clusters annotated based on literature, including tumor 
malignancy (e.g., GRN, SRC), protein expression (e.g., EIF2B1), cell survival and apoptosis (e.g., BAX), and immune regulation (e.g., OSCAR, PDE4B). (B) Tumor cell–specific pathway 
mapping based on KEGG and literature review. Genes such as SRC, GRN, RNF135, and POLR3G contribute to epithelial–mesenchymal transition (EMT), invasion, and survival. LBP 
engages the CD14–TLR4 axis, potentially activating inflammatory signaling within tumor cells. Downregulation of NLRC3 may relieve suppression of mTOR signaling, further 
enhancing tumor aggressiveness. (C) T cell–specific functional diagram showing that IL4, IL27RA, and BTNL3 drive Treg/Th2 polarization through JAK–STAT signaling. Reduced 
expressions of HAVCR2, HHLA2, and KIR2DL4 suggests impaired cytotoxic T cell function, while BAX upregulation indicates enhanced T cell apoptosis. (D) Macrophage-related 
signaling events indicate activation of NF-κB and inflammasomes by FCGR1A, OSCAR, and NOD2, promoting a chronic inflammatory state. LBP enhances these effects by activating 
the CD14–MD2–TLR4 complex, leading to IRF3 and AP-1 signaling and increased cytokine release. Suppressed expressions of HAVCR2 and IFNL1 reflect diminished antiviral and 
anti-tumor responses, while GPS2 is involved in transcriptional control of inflammatory genes. In panels (B–D), red-colored genes represent those significantly upregulated in 
poor-survival KIRC patients compared to others, while green-colored genes are downregulated in the same comparison. Red arrows indicate pathway activation (upregulation), 
and green arrows indicate suppression (downregulation). 
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Role of LBP in tumor cell migration 
Since high migratory activity is a hallmark of 

aggressive KIRC, we examined whether LBP 
regulates the migration of 786-O cells. Experimental 
results (Fig. 7A) demonstrated that LBP significantly 
promoted 786-O cell migration, with statistical 
significance observed at both low (50 ng/mL) and 
median (100 ng/mL) doses. Figure 1 shows that high 
immune infiltration, particularly macrophages, is 
associated with poor survival in KIRC patients. 
Notably, macrophages express multiple LBP protein 
receptors, suggesting a potential role for LBP in 
modulating tumor invasion. To investigate this, 
conditioned medium (CM) from human 
monocyte-like THP-1 cells was utilized to assess its 
impact on the migration of 786-O cells. As shown in 
Figure 7B, compared to standard growth medium, 
CM from LBP/LPS-treated THP-1 cells significantly 
enhanced 786-O cell migration. Moreover, when an 

anti-LBP antibody was added to the THP-1 culture 
containing the LBP/LPS complex, the pro-migratory 
effect of the CM was markedly reduced, indicating 
that LBP modulates tumor invasion through THP-1–
secreted factors. ELISA results further revealed that 
LBP/LPS stimulation induced robust TNF-α and IL-6 
secretion from THP-1 cells, while anti-LBP antibody 
suppressed this inflammatory response (Fig. S2), 
supporting LBP’s regulatory role in the tumor 
microenvironment. 

To delineate the cellular source of LBP, we 
quantified its transcripts and protein in 786-O and 
THP-1 cells by RT-PCR, ELISA, and Western blotting. 
786-O cells showed only low LBP expression, whereas 
THP-1 cells displayed constitutive LBP expression 
that increased upon LPS stimulation. The 
dose-responsive rise in LBP protein detected by 
Western blot (β-actin loading control) is consistent 
with the RT-PCR/ELISA results (Fig. 8A, 8B, and S4). 

 

 
Figure 7. LBP enhances 786-O cancer cell migration in vitro. (A) Wound healing assay showing the effect of increasing concentrations of recombinant LBP (0–200 
ng/mL) on cancer cell migration. Migration rate was significantly increased at 50 and 100 ng/mL. (B) Migration assay using conditioned medium from THP-1 cells. Medium from 
LPS/LBP-treated THP-1 cells promoted cancer cell migration, which was attenuated by the addition of anti-LBP antibody. Images on the right correspond to treatment groups: 
(1) control medium, (2) LPS/LBP-conditioned medium, (3) LPS/LBP with anti-LBP antibody. 
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Figure 8. LPS-induced LBP expression, its impact on cell morphology, and proposed model of LBP-mediated tumor progression in KIRC. (A) RT-PCR 
analysis of LBP mRNA expression in 786-O and THP-1 cells following LPS stimulation (5 ng/mL). LBP expression was modestly increased in both cell types. β-actin served as an 
internal control. The lanes were run on the same gel but were non-adjacent and digitally rearranged. The grouping is indicated by white spaces. (B) ELISA quantification of LBP 
in cell culture supernatants confirmed LPS-induced upregulation in both 786-O and THP-1 cells. (C) Microscopy revealed morphological changes in 786-O and THP-1 cells 
following treatment with LBP or LBP/LPS, including altered cell shape and surface features. These changes were partially reversed by anti-LBP antibody, suggesting LBP-dependent 
modulation of cellular behavior. (D) Schematic model summarizing the proposed role of LBP in KIRC progression. LBP enhances macrophage activation and inflammatory 
cytokine secretion, promotes tumor cell migration and invasion, and contributes to the establishment of an aggressive, inflammation-driven tumor microenvironment associated 
with poor patient outcomes. 
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Additionally, 3D imaging analysis (Fig. 8C) 
revealed that LBP treatment induced morphological 
changes in both THP-1 and 786-O cells. In the control 
group, THP-1 cells maintained a round shape with a 
smooth surface. For THP-1 cells, LBP exposure led to 
cell contraction and dendrite formation, which were 
partially inhibited by anti-LBP antibody, suggesting a 
role of LBP in modulating cellular morphology. 
Furthermore, when LBP was co-administered with 
LPS (LBP+LPS), the morphological changes became 
more pronounced, with irregularly extended cell 
dendrite appearing at the cell periphery. Notably, 
when anti-LBP antibody was added to the 
LBP+LPS-treated cells (LBP+LPS+Ab), the cells 
partially reverted to a more contracted state. 

Similarly, in 786-O cells, LBP treatment 
promoted lamellipodia formation—a structure critical 
for motility—while anti-LBP antibody partially 
reversed this effect. These findings suggest that LBP 
influences tumor progression by modulating cell 
morphology and promoting inflammatory responses. 

Molecular mechanisms of LBP in KIRC 
 Figure 8D illustrates the proposed mechanism 

of LBP involvement in KIRC progression. In 
early-stage KIRC, immune cells such as M0 
macrophages, Tregs, activated CD4 memory T cells, 
plasma cells, and neutrophils are present within the 
tumor microenvironment. Tumor cells secrete LBP, 
which binds to bacterial LPS, promoting the activation 
and maturation of M0 macrophages. These mature 
macrophages subsequently release cytokines, such as 
TNF-α and IL-6, which contribute to the remodeling 
of the tumor microenvironment. Notably, LBP can 
also function independently of LPS to directly 
enhance tumor cell progression. Through these 
mechanisms, LBP facilitates tumor growth, promotes 
immune suppression, and drives tumor cell migration 
and invasion—factors associated with poor survival 
in KIRC patients. These findings support the 
hypothesis that LBP is a key mediator of tumor 
aggressiveness and a potential therapeutic target in 
renal cancer. 

Discussion 
This study delineates the immune and molecular 

characteristics associated with poor prognosis in 
KIRC. Through the integration of immune cell 
infiltration profiling, immune regulatory gene 
expression analysis, and functional validation of key 
mediators, we demonstrate that both immune 
suppression and chronic inflammation cooperatively 
shape the TME in aggressive disease. 

Our findings provide additional insight into how 
specific immune cell populations influence KIRC 

prognosis. Among the 22 immune cell types analyzed, 
six—resting mast cells, Tregs, plasma cells, activated 
CD4 memory T cells, M0 macrophages, and 
neutrophils—were significantly associated with 
patient survival (Fig. 1). Notably, increased 
infiltration of Tregs and M0 macrophages in the 
poor-survival group suggests their potential utility as 
negative prognostic biomarkers, consistent with 
observations in other malignancies [26-29]. 
Interestingly, not all findings conformed to classical 
immunological expectations. Activated CD4 memory 
T cells and plasma cells, typically linked to anti-tumor 
immunity, were paradoxically elevated in patients 
with poor prognosis. Similarly, HLA-related 
genes—normally associated with antigen presentation 
and immune activation—were also more highly 
expressed in this group (Table 1). These observations 
suggest a more complex immune regulatory 
environment in KIRC. Such features are increasingly 
recognized as hallmarks of immune exhaustion and 
functional reprogramming within chronically 
inflamed tumor microenvironments. We hypothesize 
that these seemingly contradictory patterns reflect an 
immunosuppressive shift within TME. Comparative 
analysis of tumor and adjacent normal tissues 
revealed a relatively higher gene index for the 
immunosuppressive cytokine TGF-β in tumors from 
poor-survival patients, while expression of interferon 
(IFN) family genes remained consistently low or 
undetectable (Table S1). This imbalance between 
immune activation and suppression implies a 
dampened anti-tumor immune response, potentially 
contributing to immune evasion and tumor 
progression. Furthermore, the elevated presence of 
activated CD4 memory T cells and plasma cells in 
poor-survival samples may reflect a functional 
reprogramming of these cells under chronic antigen 
exposure or the influence of immunosuppressive 
cytokines such as TGF-β and IL-10 [30-33]. Instead of 
mounting effective cytotoxic responses, these cells 
may adopt exhaust or regulatory phenotypes that 
support immune suppression or promote tumor 
progression. Plasma cells may also engage in 
immunoglobulin-mediated inflammatory signaling, 
indirectly contributing to a tumor-supportive 
environment [34, 35]. In contrast, the abundance of 
Tregs, M0 macrophages, and TGF-β further 
establishes a microenvironment conducive to immune 
escape. Collectively, our findings depict an 
immunosuppressive yet inflammatory TME in 
poor-prognosis KIRC—a hallmark of 
immunologically “hot but functionally ineffective” 
tumors with impaired anti-tumor surveillance. 

Further analysis identified LBP as a key 
regulator of tumor progression. While LBP has been 
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traditionally recognized for its role in innate 
immunity, accumulating evidence indicates that it 
also participates in cancer-associated inflammation 
and immune modulation. Elevated LBP expression 
has been associated with poor prognosis in 
hepatocellular carcinoma, gastric cancer, and 
colorectal cancer [36-38], and genetic variants in the 
LBP gene have also been implicated in cancer 
susceptibility [37]. In addition to its prognostic 
relevance, recent studies suggest that LBP may 
actively contribute to tumor progression by 
enhancing malignant phenotypes such as tumor cell 
proliferation, migration, and invasion, and shaping an 
inflammation-driven tumor microenvironment [17, 
39, 40]. These findings support a functional role for 
LBP beyond a passive biomarker, linking it more 
directly to tumor immunity and cancer-associated 
inflammatory signaling. Notably, intratumoral 
bacteria capable of producing lipopolysaccharide 
(LPS) may synergize with LBP to enhance tumor 
metastasis [41]. Although LBP is classically 
recognized for its role in facilitating LPS-induced 
TLR4 signaling, accumulating evidence suggests that 
LBP may also participate in LPS-independent 
inflammatory processes. Previous studies have shown 
that LBP can interact with endogenous ligands, 
including phospholipids, and modulate immune 
signaling in the absence of bacterial components, 
thereby contributing to sterile inflammation. In 
addition, LBP has been reported to influence 
downstream inflammatory pathways beyond 
canonical TLR4 activation [42, 43]. 

In this context, our in vitro observations that 
recombinant LBP promotes tumor cell migration and 
induces morphological changes, while anti-LBP 
neutralization partially reverses these effects, are 
consistent with a model in which LBP may contribute 
to tumor progression through mechanisms that are 
not strictly dependent on bacterial LPS. Although 
previous studies lacked direct evidence of LBP 
production by renal cancer cells, our findings 
demonstrate that 786-O kidney cancer cells 
endogenously express and secrete LBP (Fig. 8). This 
tumor-derived LBP may act in concert with, or 
independently of, microbial signals to amplify 
inflammatory signaling within the KIRC tumor 
microenvironment, thereby accelerating disease 
progression. Functional assays revealed that LBP 
promotes cancer cell migration and modulates 
inflammatory responses. Conditioned media from 
LPS/LBP-stimulated THP-1 monocytes enhanced the 
migratory capacity of 786-O cells, suggesting that LBP 
may also exert indirect tumor-promoting effects via 
immune cell activation (Fig. 7). These effects were 
mitigated by an anti-LBP neutralizing antibody, 

which also induced notable morphological changes in 
both THP-1 and 786-O cells, reinforcing LBP’s 
potential as a therapeutic target. Notably, such 
morphological alterations—particularly changes 
consistent with lamellipodia formation—have been 
widely associated with cytoskeletal remodeling and 
enhanced cell motility in response to inflammatory 
mediators, providing a morphological correlate to the 
increased migratory and metastatic potential inferred 
from our bioinformatics analyses. Moreover, analysis 
of the 20-gene interaction network (Table 1) using 
GeneMANIA implicated LBP in pathways related to 
extracellular matrix (ECM) remodeling, immune 
evasion, and inflammation-associated gene regulation 
(Fig. S3), which may explain its strong association 
with adverse clinical outcomes. 

Chronic inflammation is a well-established 
hallmark of cancer development and progression. 
Cytokines such as IL-1, IL-6, and TNF-α are 
upregulated in response to inflammatory stimuli and 
stimulate hepatic synthesis of acute-phase proteins 
(APPs). These proteins play multifaceted roles in 
supporting tumor progression, including immune 
suppression, angiogenesis, and metastasis [44]. For 
instance, fibrinogen (FG) facilitates pre-metastatic 
niche formation through ECM remodeling and 
pro-inflammatory signaling [45], while alpha-1 
antitrypsin (AAT) promotes M2 macrophage 
polarization and inhibits cytotoxic T cell activity [46, 
47]. Elevated C-reactive protein (CRP) levels have 
been associated with poor prognosis in colorectal, 
breast, and renal cancers [47], and haptoglobin 
(Hp)—particularly its fucosylated form—is 
implicated in tumor progression across multiple 
malignancies, including breast, lung, and liver cancers 
[47-49]. Beyond their utility as systemic inflammation 
markers, APPs reflect dynamic immune changes 
within the TME and may influence therapeutic 
outcomes. For example, increased Hp and 
ceruloplasmin (CP) levels have been associated with 
shorter progression-free survival in patients receiving 
ICIs [44]. These observations highlight the interplay 
between chronic inflammation, immune modulation, 
and therapeutic response in cancer. 

Although our primary goal was not to build a 
prediction tool, the resulting 19-gene signature 
demonstrated strong discriminatory power for poor 
survival in KIRC (Fig. 5) and was validated across 
external RNA-seq and microarray datasets 
(RECA-EU, E-MTAB-1980, GSE22541; Fig. 5). 
Notably, the panel retained moderate predictive 
capacity in other metabolically active or 
inflammation-prone cancers (PAAD, STAD, COAD), 
but not in LUAD, BRCA, or LIHC, underscoring its 
KIRC-specific context (Fig. 5). Although most genes 



Int. J. Med. Sci. 2026, Vol. 23 

 
https://www.medsci.org 

841 

within the 19-gene panel are not kidney-specific in 
terms of normal renal physiology, many are 
functionally involved in immune regulatory 
pathways that are highly relevant to renal cancer 
biology, including cytokine signaling, immune 
checkpoint regulation, and inflammasome/NF-κB–
mediated inflammatory responses that characterize 
the KIRC tumor microenvironment (Table 2). The 
partial retention of prognostic performance in 
pancreatic, gastric, and colon cancers may reflect 
shared immune microenvironmental features with 
poor-prognosis KIRC. These tumor types are 
frequently associated with chronic inflammation, 
microbial exposure, and macrophage-dominated 
immune landscapes, all of which promote sustained 
innate immune activation. In such contexts, LBP may 
act as a mediator of cancer-associated inflammation 
by amplifying macrophage-driven cytokine signaling. 
In contrast, tumor types with less prominent 
inflammatory or innate immune components, such as 
LUAD, BRCA, and LIHC, showed limited 
applicability of the signature, highlighting its 
context-dependent biological relevance. This 
specificity strengthens the biological coherence of the 
gene panel and supports its relevance in 
KIRC-focused research. 

Our study offers several contributions. First, it 
delineates the immune-suppressive architecture of 
poor-survival KIRC, supported by both cellular 
infiltration and molecular expression patterns. 
Second, it identifies LBP as a novel driver of 
tumor-promoting inflammation with both direct and 
paracrine effects. Third, it proposes a robust 19-gene 
immune signature derived from the same patient 
subset, reinforcing the mechanistic consistency of the 
observed phenomena. Importantly, while the 19-gene 
panel shows promise as a prognostic tool, its greater 
value lies in its biological insight—pinpointing 
candidate immune regulators that may underlie 
disease aggressiveness and therapeutic resistance. 

Conclusion 
This integrated study reveals that immune 

suppression, inflammation, and tumor–immune 
crosstalk collectively contribute to poor prognosis in 
KIRC. LBP acts as a tumor-promoting effector linking 
bacterial signals and immune modulation, while the 
19-gene panel offers a broader perspective on 
dysregulated immune processes in the TME. These 
findings open opportunities for personalized 
therapeutic strategies targeting the immune 
landscape of aggressive renal cancer. 
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