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Abstract 

Background: Abdominal aortic aneurysm (AAA), characterized by pathological aortic dilation, carries high 
mortality in intensive care unit (ICU) settings. However, existing severity scores (e.g., SAPS III, SOFA) poorly 
capture AAA-specific mortality predictors. We aimed to develop a focused prognostic tool to improve 
short-term risk stratification in ICU-admitted AAA patients. 
Objective: To develop and validate a machine learning-based nomogram model using the Medical Information 
Mart for Intensive Care IV (MIMIC-IV; 2008-2019) and the eICU Collaborative Research Database (eICU-CRD; 
2014-2015) for early mortality prediction (≤7 days) in critically ill patients with AAA, addressing limitations of 
conventional ICU scoring systems by integrating AAA-specific predictors and ensuring generalizability through 
external validation. 
Methods: Using two independent datasets from MIMIC-IV and eICU-CRD databases, we identified patients 
with AAA with complete ICU records and lab data within 24 hours of admission. Critical predictors were 
selected via a dual approach: least absolute shrinkage and selection operator (LASSO) regression to eliminate 
collinearity and support vector machine-recursive feature elimination (SVM-RFE) to rank feature importance. 
MIMIC-IV served as the training dataset, while eICU-CRD was used for external validation. A Cox 
regression-based nomogram was constructed using the training set and tested for 7-, 14-, and 28-day mortality 
prediction. Model performance was evaluated using area under the ROC curve (AUC), concordance index 
(C-index), calibration plots, and decision curve analysis. 
Results: Six key variables independently predicted mortality including age, sepsis, blood urea nitrogen (BUN), 
antihypertensive drug use, average percutaneous arterial oxygen saturation (SpO2), and anion gap. The 
nomogram demonstrated optimal predictive accuracy for 7-day mortality (AUC: 0.730 [training] and 0.718 
[validation]; C-indices: 0.717 and 0.731), with reduced performance for 14-day and 28-day outcomes. 
Calibration curves displayed strong agreement at both 7 and 14 days, and DCA indicated that the model 
provides significant clinical value. External validation in eICU-CRD mirrored these trends (7-day AUC: 0.723), 
supporting model generalizability. 
Conclusion: This multicohort-derived nomogram provides a simple yet reliable tool to predict early mortality 
(≤7 days) in critically ill AAA patients, which may guide time-sensitive interventions in critical care settings. 
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Introduction 
Abdominal aortic aneurysm (AAA) is an 

abnormal dilation of the abdominal aorta1,2. The 
overall mortality rate following AAA rupture is 80%3, 
with approximately one-third of patients dying before 
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reaching the hospital and 25-50% succumbing after 
undergoing surgery4–6. Given the high mortality rate, 
the intensive care unit (ICU) admission rate for AAA 
is significantly high7,8. Over the past three decades, 
the introduction of endovascular aneurysm repair 
(EVAR) and advancements in open surgical 
techniques have led to a reported decline in AAA 
mortality rates9. The mortality rate for elective open 
repair of AAA is 3-5%, whereas EVAR reduces the 
mortality rate to 0.5-2%10,11.However, a meta-analysis 
indicates that approximately 40% of AAA with 
complex anatomy are managed conservatively3,12,13. 
Due to the high ICU admission rate and mortality 
associated with AAA7,8, developing accurate and 
effective predictive models to assess prognosis of 
patients in ICU is particularly important for early 
identification of high-risk individuals and timely 
initiation of treatment.  

Current scoring systems fail to bridge two 
critical gaps. First, conventional ICU tools such as 
OASIS, GCS, SAPS II, and SOFA14–16, are available to 
stratify patients based on the severity of their 
condition, but they prioritize generalized organ 
dysfunction over AAA-specific risks. Second, existing 
AAA-specific indices, such as Hardman Index (HI) 
and the Glasgow Aneurysm Score (GAS) 21,22, focused 
predominantly on surgical mortality in ruptured 
AAA populations 23, neglecting conservatively 
managed patients. While the Society for Vascular 
Surgery (SVS) guidelines provide several 
preoperative risk assessment indicators, including 
patient age, gender, smoking history, and type of 
surgery5. While these scoring systems are available to 
aid clinical decision-making in AAA, there is no 
conclusive evidence that they accurately predict 
survival outcomes for patients with AAA24,25.  

This multicohort study aims to address these 
limitations by developing the first mortality 
prediction model tailored for ICU-admitted patients 
with AAA, leveraging the complementary strengths 
of the Medical Information Mart for Intensive Care IV 
(MIMIC-IV; 2008-2019) and the eICU Collaborative 
Research Database (eICU-CRD; 2014-2015)29. By 
systematically integrating demographic, laboratory, 
and therapeutic variables through machine learning 
algorithms, we seek to generate an actionable tool for 
early identification of high-risk patients, irrespective 
of surgical eligibility.  

Materials and methods 
Data source 

The model was trained and internally validated 
using the MIMIC-IV database (version 2.2)30, followed 
by external verification using the eICU-CRD31. 

MIMIC-IV comprises critical care records from Beth 
Israel Deaconess Medical Center spanning 2008 to 
2019, whereas eICU-CRD is a multicenter database 
that encompasses over 200,000 hospitalized ICU 
patients in the United States between 2014 and 2015. 
Reasons for ICU admission are severe illness, 
advanced age and multimorbidity. All personal 
identifiers have been removed and replaced with 
random codes, thereby exempting the study from 
patient consent and ethical approval.  

Study population and study design 
The eligibility criteria for this study included: 1) 

confirmed diagnosis of AAA based on ICD 
(international Classification of diseases)-9 and ICD-10 
codes; 2) complete medical records from ICU 
admissions; and 3) availability of comprehensive data 
on laboratory tests and treatment interventions. 
Patients were excluded based on the following 
criteria: 1) age below 18 years; 2) multiple admissions 
during the study period; and 3) missing key 
indicators. We analyzed data on vital signs and 
laboratory results recorded within the first 24 hours of 
ICU admission, with the primary outcome being 
mortality during the ICU stay. Figure 1 illustrates the 
patient screening process and the study design. 

Data extraction 
Data were extracted from the MIMIC-IV and 

eICU-CRD using PostgreSQL tools (version 17), 
Mengwei, He had the data use agreements. The data 
included demographic information (such as age, 
gender, and race), comorbidities (such as 
hypertension, diabetes, and coronary artery disease), 
laboratory test results (including complete blood 
counts, biochemical markers, and arterial blood gas 
analyses), and treatments (such as mechanical 
ventilation, dialysis, and surgical procedures).  

Statistical analyses 
Descriptive baseline characteristics of the study 

population were expressed as median with 
interquartile range (IQR) for nonnormally distributed 
variables, mean with standard deviation (SD) for 
normally distributed variables, or percentages for 
dichotomous variables. Comparisons between groups 
were conducted using appropriate statistical tests, 
including student’s t-tests for continuous variables 
and chi-squared tests for categorical variables. The 
significance level of p < 0.05 was considered 
statistically significant. 

To simplify the model and identify significant 
predictive variables, we applied a stepwise feature 
selection process. First, Least Absolute Shrinkage and 
Selection Operator (LASSO) regression with L1 
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regularization was used to shrink less significant 
coefficients to zero32, while Support Vector Machine 
with Recursive Feature Elimination (SVM-RFE) 
identified features maximizing class boundaries. The 
intersection of results from both methods was taken to 
finalize key predictive variables. Subsequently, 
univariable Cox regression was performed to evaluate 
the association between these variables and ICU 
mortality in patients with AAA, followed by 
multivariable Cox regression to adjust for 
confounders and identify independent predictors. A 
nomogram was then created by assigning scores to 
each factor based on its impact on the outcome. After 
developing the nomogram, we calculated patient 
scores and stratified cases into low-risk and high-risk 
groups according to the median score. Differences in 
outcomes between these two groups were visualized 
using Kaplan-Meier (K-M) curves. 

To assess the performance of the model, we 
employed several metrics, including the 
Time-dependent Area Under the Curve (AUC) and 
the Time-dependent Concordance Index (C-index) to 
evaluate its discriminative ability. Calibration curves 
were applied to evaluate the agreement between 
observed and predicted probabilities, reflecting the 
model's calibration and reliability. Additionally, 
Decision Curve Analysis (DCA) was conducted to 
assess the model's clinical utility by examining the 
balance between potential benefits and harms. 
Together, these methods offer a comprehensive 
evaluation of the model's performance, incorporating 
discrimination, calibration, and practical clinical 
relevance. 

All analyses were primarily conducted using R 
software (version 4.2.1). The "glmnet" package was 
utilized for LASSO regression32, and the "rms" 
package was used to construct the nomogram for 
predicting mortality in ICU patients33. The "timeROC" 

and "pec" package were employed to obtain the 
time-dependent AUC and C-index respectively34,35. 
Calibration curves were generated using the "rms" 
package36, and DCA curves were constructed using 
the "rmda" package37. 

Results 
Patient selection and baseline characteristics 

The MIMIC-IV and eICU-CRD contained 76,540 
and 200,859 ICU admissions, respectively. Figure 1 
depicts the patient selection process and the flowchart 
of the study cohort. A total of 623 patients with AAA 
from the MIMIC-IV database, with no missing 
indicators, were included for feature selection, 
resulting in the identification of six mortality-related 
features: blood urea nitrogen (BUN), sepsis, 
antihypertensive drug use, anion gap, average 
percutaneous arterial oxygen saturation (SpO2), and 
age. To increase the sample size, additional patients 
with missing data for other variables but complete 
information on six mortality-related features were 
included in the model development cohort. In total, 
858 patients with AAA from the MIMIC-IV database 
were randomly split into training and validation 
cohorts in a 7:3 ratio. Additionally, we screened 601 
patients with AAA from eICU-CRD for external 
validation. Table 1 outlines the demographic and 
clinical characteristics of all individuals included in 
the model, covering baseline features such as 
demographic factors, clinical characteristics, and 
available predictive variables. Among the 858 patients 
with AAA in the MIMIC-IV database, the in-hospital 
mortality rate was 42.89% (368 out of 858). In contrast, 
Additional table S2. presents data on 
mortality-related features for the 601 patients with 
AAA from the eICU-CRD, who had an in-hospital 
mortality rate of 4.16% (25 out of 601). 

 

Table 1. Baseline characteristics of 858 patients with AAA from the MIMIC-IV database. 

 Total (N=858) Validation (N=601) Num of NA Test (N=257) 
Mortality rate 42.89% (N=368) 42.93% (N=258)  42.80% (N=110) 
     
Characteristics     
Age 77.29 (63.10-91.48) 77.37 (63.02-91.72)  76.90 (62.9-90.9) 
Female, No. (%) 277 (32.3) 190 (31.6)  87 (33.9) 
Race, No. (%)     
 White 647 (75.4) 464 (77.2)  183 (71.2) 
 Other 211 (24.6) 137 (22.8)  74 (28.8) 
     
Laboratory Indicators     
Hematocrit (%) 35.9 (27.6-44.2) 38.55 (29.85-47.25)  37.80 (30.20-45.40) 
Hemoglobin (g/dL) 12.7 (9.5-15.9) 12.7 (9.4-16.0)  12.6 (9.7-15.5) 
Mean corpuscular hemoglobin (pg) 30.60 (27.70-33.5) 30.55 (27.45-33.65)  30.70 (31.00-36.40) 
Mean corpuscular hemoglobin concentration (g/dL) 33.2 (31.2-35.2) 33.1 (31.0-35.2)  33.3 (31.9-35.2) 
Mean corpuscular volume (fl) 92 (85-97) 92 (84-100)  92 (85-99) 
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 Total (N=858) Validation (N=601) Num of NA Test (N=257) 
Platelet (K/uL) 202.0 (100.0-302.0) 203.5 (102.5-304.5) 3 202.0 (104-300) 
White blood cell (K/uL)  8.70 (4.10-13.5) 8.70 (4.10-13.3)  8.70 (3.8-13.6) 
Creatinine (mg/dL) 1.10 (0.40-1.80) 1.10 (0.40-1.80)  1.10 (0.40-1.80) 
Anion gap (mmol/L) 14.0 (9.0-19.0) 14.0 (9.0-19.0)  14.0 (10.0-14.0) 
Red blood cell (M/uL) 3.51 (2.51-4.51) 3.55 (2.55-4.55) 4 3.44 (2.44-4.44) 
Glucose (mg/dL) 128.0 (69.0-187.0) 127.0 (68.0-186.0) 1 129.0 (71.0-187) 
Bicarbonate (mmol/L) 23.0 (18.0-28.0) 23.0 (18.0-28.0)  23.0 (18.0-28.0) 
Bun (mg/dL) 21.0 (5.0-37.0) 21.0 (4.0-38.0)  20.0 (5.0-35.0) 
Calcium (mg/dL) 8.30 (7.30-9.30) 8.30 (7.30-9.30) 40 8.30 (7.30-9.30) 
Chloride (mmol/L) 105.0 (98.0-112.0) 105.0 (98.0-112.0)  105.0 (98.0-112.0) 
Potassium (mmol/L) 4.20 (3.5-4.9) 4.30 (3.60-5.00)  4.20 (3.40-5.00) 
International normalized ratio 1.10 (IQR=0) 1.10 (IQR=0) 12 1.10 (IQR=0) 
Prothrombin time (second) 12.5 (9.5-15.5) 12.60 (9.60-15.60) 12 12.30 (9.30-15.30) 
Partial thromboplastin time (s) 29.80 (21.80-37.80) 29.90 (22.90-36.90) 43 29.80 (20.80-38.80) 
Sodium (mmol/L) 139.0 (135.0-143.0) 139.0 (134.0-143.0) 51 139.0 (134.0-144.0) 
Mean glucose (mg/dL) 128.33 (86.33-170.33) 129.45 (87.45-171.45) 12 127.40 (87.40-167.40) 
Serum creatinine baseline (mg/dL) 0.80 (0.47-1.13) 0.90 (0.56-1.24)  0.80 (0.40-1.20) 
Serum creatinine min (mg/dL) 0.90 (0.40-1.40) 0.90 (0.40-1.40)  0.80 (0.30-1.30) 
Serum creatinine max (mg/dL) 1.20 (0.20-2.20) 1.20 (0.20-2.20) 16 1.20 (0.20-2.20) 
     
ICU-score     
OASIS 32 (20-44) 32 (19-44)  33 (20-46) 
GCS 15 (3-15) 15 (3-15)  15 (3-15) 
APS III 43 (19-67) 43 (18-68) 8 42 (19-65) 
CCI 7 (4-10) 7 (4-10)  7 (4-10) 
GCV 22.41 (9.41-35.41) 22.40 (8.40-36.40) 2 22.56 (8.56-36.56) 
SOFA 4 (0-9) 4 (0-9) 8 4 (0-8) 
SAPS II 38 (22-54) 38 (23-53)  38 (16-54) 
     
Vital Sign     
Heart rate (beats/min) 79 (61-97) 80 (62-98)  80 (60-100) 
Systolic blood pressure (mmHg) 116 (95-137) 116 (95-137) 6 115 (93-137) 
Mean blood Pressure (mmHg) 76 (63-89) 76 (63-89)  76 (65-87) 
Respiratory rate (breaths/min) 19 (15-23) 19 (15-23)  18 (14-22) 
Temperature (℃) 36.73 (IQR=0) 36.72 (IQR=0) 31 36.73 (IQR=0) 
SpO2 (%) 97.0 (94.2-99.8) 96.7 (93.9-99.5)  97.1 (94.7-99.5) 
     
Comorbidity     
Myocardial infarct, No. (%) 227 (26.5) 147 (24.5)  80 (31.1) 
Congestive heart failure, No. (%) 257 (30.0) 180 (30.0)  77 (30.0) 
Cerebrovascular disease, No. (%) 158 (18.4) 112 (18.6)  46 (17.9) 
Chronic pulmonary disease, No. (%) 321 (37.4) 223 (37.1)  98 (38.1) 
Mild liver disease, No. (%) 61 (7.1) 40 (6.7)  21 (8.2) 
Diabetes without complication, No. (%) 134 (15.6) 93 (15.5)  41 (16.0) 
Diabetes with complication, No. (%) 57 (6.6) 43 (7.2)  14 (5.4) 
Severe liver disease, No. (%) 12 (1.4) 8 (1.3)  4 (1.6) 
Paraplegia, No. (%) 31 (3.6) 21 (3.5)  10 (3.9) 
Renal disease, No. (%) 242 (28.2) 177 (29.5)  62 (25.3) 
Sepsis, No. (%) 482 (56.2) 342 (56.9)  140 (54.5) 
Chronic kidney disease, No. (%) 241 (28.1) 176 (29.3)  65 (25.3) 
     
Treatments*     
Surgery performed, No. (%) 3 (0.3) 1 (0.2)  2 (0.8) 
Continuous Renal Replacement Therapy, No. (%) 32 (3.7) 22 (3.7)  10 (3.9) 
Antihypertensive drug use, No. (%) 754 (87.9) 535 (89.0)  219 (85.2) 
Dialysis present, No. (%) 26 (3.0) 19 (3.2)  7 (2.7) 
Glucose lowering, No. (%) 14 (1.6) 10 (1.7)  4 (1.6) 
Ventilation, No. (%) 737 (85.9) 509 (84.7)  228 (88.7) 

Abbreviations: N/No: number. NA: not available. Bun: blood urea nitrogen. OASIS: Oxford Acute Severity of Illness Score. GCS: Glasgow Coma Scale. APS III: Acute 
Physiology Score III. CCI: Charlson Comorbidity Index. GCV: Geriatric Comorbidity Validation Index. SOFA: Sequential Organ Failure Assessment. SAPS II: Simplified 
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Acute Physiology Score II. 
* All listed treatments were administered during ICU hospitalization. 

 
 

 
Figure 1. Flow diagram of the patient selection in MIMIC IV and eICU-CRD. Abbreviations: ICU: intensive care unit; MIMIC-IV: Medical Information Mart for Intensive 
Care; eICU-CRD: eICU Collaborative Research Database. 

 

Prognosis-associated feature selection 
We used two different statistical methods to 

select feature variables. The LASSO regression 
algorithm identified 22 variables associated with ICU 
mortality in patients with AAA from an initial set of 
59 variables (Figure 2A and B). Meanwhile, the 
SVM-RFE algorithm yielded 48 variables (Figure 2C 
and D). By taking the intersection of the results from 
both algorithms, we arrived at 19 significant variables: 
age, antihypertensive drug use, BUN, Charlson 
comorbidity index, anion gap, SpO2, renal disease, 
hemoglobin, oasis, sepsis, continuous renal 
replacement therapy, chloride, average heart rate, 
myocardial infarction, bicarbonate, antidiabetic drug, 

diabetes with complication, cerebrovascular disease 
(Figure 2E and F). 

Cox regression analysis 
We performed univariate Cox regression 

analyses to determine the coefficients, hazard ratios 
(HR), and 95% confidence intervals (CI) for a total of 
19 variables (Figure 3A). The analysis revealed 11 
variables that were statistically significant. We then 
incorporated these 11 variables into a multivariable 
Cox regression model, which identified six clinical 
features significantly associated with mortality: BUN, 
sepsis, antihypertensive drug use, anion gap, average 
SpO2, and age (Figure 3B). Building on these results, 
we developed a nomogram (Figure 3C). 
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Figure 2. The selection of feature variables. A. Dotted vertical lines are drawn adopting the minimum rule and the 1 SE of the minimum rule at the suitable values log (λ), 
where factors are selected. B. 22 coefficients are included by LASSO coefficient profiles for clinical factors. C. Number of Features vs. 5-Fold Cross-Validation Error (SVM-RFE) 
Evaluates model performance with varying feature counts. The selected model minimizes cross-validation error. D. Number of Features vs. 5-Fold Cross-Validation Accuracy 
(SVM-RFE). Shows model accuracy improvement with increasing feature numbers. Best accuracy was achieved with 48 features. E. Feature Selection Summary. The intersection 
of the results from both algorithms resulted in 19 variables. F. Heatmap of Selected Features Visual representation of variable distribution between survival (alive) and mortality 
(dead) groups highlights key predictors used in the final model. Abbreviations: LASSO: least absolute shrinkage and selection operator. CV: Cross-Validation. SVM-RFE: support 
vector machine-recursive feature elimination. Bun: blood urea nitrogen. CRRT: continuous renal replacement therapy. 

 

Model performance 
To evaluate the model's performance over time, 

we applied time-dependent AUC and time-dependent 
C-index (Additional file 1, Additional table S2), which 
allowed us to capture the dynamic changes in 
mortality risk for patients with AAA during the 
28-day ICU follow-up. Over the 28-day period, both 

time-dependent C-index and AUC showed a gradual 
decline in predictive performance. Initially, the model 
demonstrated strong discrimination, with the highest 
values observed on Day 1, followed by a noticeable 
drop within the first 7 days. Between Days 7 and 14, 
both metrics stabilized but continued to decrease 
gradually. After Day 14, the decline became more 
pronounced, with the lowest values recorded beyond 
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Day 20, indicating reduced long-term predictive 
capability. This trend suggests that the model is most 
effective for short-term mortality prediction, while its 

accuracy diminishes over time, likely due to evolving 
patient conditions and dynamic clinical factors in the 
ICU.  

 

 
Figure 3. The effect of selected factors on morality of patients with abdominal aneurysm. A. UniCox regression analysis of the selected factors in the MIMIC IV 
database. B. UniCox regression analysis of the selected factors. C. The nomogram for prediction of hospital mortality among patients with abdominal aneurysm. Abbreviations: 
BUN: blood urea nitrogen. CRRT: continuous renal replacement therapy. Pr: Probability. Futime: follow-up time. 
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We observed significant changes in the 
time-dependent AUC and C-index at 7, 14, and 28 
days, therefore, these intervals were used to define 
short-term, mid-term, and long-term predictions, with 
calibration and decision curves plotted to evaluate 
performance across these time frames. The results 
showed that the model achieved its best performance 
on Day 7, with a time-dependent AUC of 0.727 
(Total), 0.730 (Training), and 0.718 (Validation), and a 
time-dependent C-index of 0.717 (Total), 0.713 
(Training), and 0.731 (Validation). By Day 14, the 
predictive ability slightly declined, with a 
time-dependent AUC of 0.734 (Total), 0.750 
(Training), and 0.700 (Validation), and a 
time-dependent C-index of 0.689 (Total), 0.696 
(Training), and 0.684 (Validation). At Day 28, the 
model's performance further decreased, with a 
time-dependent AUC of 0.719 (Total), 0.735 
(Training), and 0.699 (Validation), and a 
time-dependent C-index of 0.673 (Total), 0.682 

(Training), and 0.676 (Validation). This analysis 
revealed that the model performs best in predicting 
short-term mortality, particularly within the first 7 
days. However, its predictive ability gradually 
declines for medium-term (14-day) and long-term 
(28-day) outcomes. These findings highlight the 
necessity of dynamic monitoring and temporal 
adjustments in the ICU to improve long-term 
predictions (Figure 4A-C and Additional table S2). 

Calibration curves indicated that the predicted 
probabilities of mortality closely aligned with the 
actual probabilities for both the 7-day and 14-day 
predictions, although consistency decreased at 28 
days (Figure 4D-F). 

The DCA for the nomogram revealed that the 
model demonstrated good clinical net benefit for 
predicting mortality at 7 days, 14 days, and 28 days, 
with the net benefit of the nomogram surpassing that 
of each individual feature (Figure 4G-I).  

 

 
Figure 4. Model performance evaluation. A-C. The ROC curves of the nomogram for predicting in-hospital death risk of patients with AAA at 7, 14, and 28 days in the 
raining cohort (A), validation cohort (B), and total dataset (C). D-F. Calibration Curves of the nomogram for predicting in-hospital death risk of patients with AAA at day 7 (D), 
day 14 (E), day 28 (F). G-I. Decision curve analysis of the nomogram for predicting in-hospital death risk of patients with AAA at day 7 (G), day 14 (H), day 28 (I). Abbreviations: 
ROC: receiver operating characteristic curve. AAA: abdominal aortic aneurysm. AHAs: antihypertensive agents. OS: overall survival. 
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Figure 5. Survival curves based on risk groups from the nomogram. A. K-M plot of training cohort. B. K-M plot of validation cohort. C. K-M plot of total dataset. 

 
Using this model, risk scores were calculated for 

all patients in the cohort (training and validation sets), 
and patients were stratified into high-risk and 
low-risk groups based on the median risk score. The 
results demonstrated that the model effectively 
distinguished between these groups, with the 
high-risk group showing significantly poorer 
outcomes compared to the low-risk group (Figure 5). 

In the external validation using the eICU-CRD, 
although the model's performance declined over the 
short term, it remained acceptable for 7 days, with the 
AUC decreasing from 0.935 on day 1 to 0.723 on day 7, 
and the C-index dropping from 0.804 to 0.548. After 
day 7, both AUC and C-index stabilized (Figure 6). 
This indicates the model maintains strong predictive 
accuracy for short-term mortality outcomes but 
exhibits diminished performance in forecasting 

longer-term endpoints, particularly beyond the 
14-day timepoint. In the eICU-CRD cohort, the 
calibration curve demonstrated close alignment 
between the model's predicted 7-day mortality 
probabilities and observed outcomes (Figure 7A). 
DCA further revealed that the model provided 
superior risk stratification and higher clinical net 
benefit, supporting its utility in guiding 7-day and 
14-day mortality risk stratification for patients with 
AAA in the ICU (Figure 7B and C).  

Using the nomogram, patients in the eICU-CRD 
cohort and the combined eICU-CRD/MIMIC-IV 
population were assigned risk scores and stratified 
into high- versus low-risk groups using median 
cutoffs. K-M analysis demonstrated good 
discriminative capacity of the nomogram across both 
the external validation cohort (eICU-CRD) and 
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combined dataset, with the high-risk group exhibiting 
significantly poorer outcomes compared to the 
low-risk group (Figure 8). 

Discussion 
Our study specifically examined the mortality 

risk for ICU patients with AAA, developed a novel 

predictive model based on real-time clinical data from 
ICU patients using stepwise comprehensive analyses, 
which can aid healthcare providers in better assessing 
the mortality risk for patients with AAA and 
optimizing treatment decisions. 

 

 
Figure 6. Time-dependent AUC and C-index of eICU-CRD. Abbreviations: AUC: area under the curve. 

 

 
Figure 7. The external model performance evaluation based on the eICU-CRD. A. Calibration Curves of the model at 7-day. B-C. Decision Curve Analysis of the 
model at 7-day and 14-day. 
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Figure 8. K-M analysis of patients with AAA of two databases. A. K-M plot of patients from eICU-CRD cohort. B. K-M plot of patients from eICU-CRD and MIMIC-IV 
population. 

 
Our findings indicated that BUN, sepsis, 

antihypertensive drug use, anion gap, average SpO2, 
and age have been identified as independent risk 
factors for predicting mortality in ICU patients with 
AAA. Based on these factors, we developed and 
validated an innovative nomogram model. The effects 
of most variables align with findings from previous 
studies in other domains. For instance, elevated BUN 
levels are linked to severe abdominal aortic 
calcification, raising cardiovascular risk and 
complicating clinical management in ICU patients 
with AAA 38,39. Despite antihypertensive medications 
not reducing AAA growth, they are crucial for 
managing blood pressure and lessening rupture risk, 
ultimately contributing to lower mortality rates 40–42. 
An increased anion gap generally indicates metabolic 
acidosis and is associated with higher mortality in 
AAA patients in the ICU 43–46. Additionally, low SpO₂ 
levels signal compromised respiratory function or 
inadequate oxygen supply; lower SpO₂ has been 
linked to increased mortality and severe 
complications after AAA repair 47–49. Age is also a key 
determinant of mortality risk, surgical outcomes, and 
treatment selection, with a 4% annual increase in 
mortality risk observed for patients over 65 years 50–52. 
Interestingly, the role of sepsis in our findings 
contrasts with existing literature. While sepsis is 
known to induce multiple organ dysfunction and 
heighten cardiovascular risk in AAA 
patients-significantly increasing the risks of aortic 

rupture, myocardial infarction, and cerebrovascular 
events 53–56. Our study found that the presence of 
sepsis served as a protective factor for ICU patients 
with AAA. To further explore this counterintuitive 
association, we conducted first performed landmark 
analyses to demonstrate time-dependent effect 
(Additional Figure 1) and a subgroup analysis 
(Additional Figure 2) stratified by illness severity 
using five scoring systems (APSIII, OASIS, SAPSII, 
SOFA, and Charlson Comorbidity Index). The results 
revealed a time-limited (strongest within 24hours) 
and severity-dependent pattern: in the most critically 
ill subgroup, especially in “very high”, sepsis was 
significantly associated with decreased mortality risk 
(OASIS: HR = 0.47; APSIII: HR = 0.57; SOFA: HR = 
0.51; SAPSII: HR= 0.50). In contrast, sepsis showed 
either a neutral or elevated risk in lower severity 
subgroups—for example, the OASIS medium 
subgroup exhibited a hazard ratio of 1.50. These 
findings support the hypothesis that early recognition 
and intensive care in high-risk septic patients may 
yield improved outcomes. This unexpected result 
may stem from selection bias: both MIMIC-IV and 
eICU-CRD focus on critically ill patients, with those 
having sepsis likely identified as high-risk early on, 
leading to more aggressive interventions, such as 
early antibiotic administration and fluid resuscitation, 
which could lower mortality rates. Additionally, 
sepsis is well-studied with established management 
guidelines57,58, potentially resulting in better 
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monitoring, early antibiotic therapy, fluid 
resuscitation and organ support for septic patients in 
the ICU. This aligns with modern sepsis care 
protocols, which emphasize rapid triage and resource 
prioritization. Conversely, patients with lower 
severity scores may receive less intensive 
management or derive less benefit from such 
interventions, contributing to the observed 
heterogeneity in outcomes. Our analysis highlights 
the need to interpret the impact of sepsis within the 
broader clinical context of baseline severity and care 
responsiveness. Further investigation into the impact 
of sepsis on this specific patient population is 
warranted16,17. 

The predictive model has several advantages, 
including the incorporation of multiple clinical and 
demographic variables, allowing for individualized 
mortality risk assessment in ICU patients with AAA. 
It demonstrates strong predictive performance for 
short-term (7-day) mortality, supporting timely 
clinical decision-making. Therefore, its clinical utility 
is mainly limited to short-term prognostic assessment 
in ICU patients with AAA. Besides, the high mortality 
rate observed in the MIMIC-IV cohort reflects the 
critically ill nature of ICU patients with AAA, who 
were typically elderly and had multiple 
comorbidities. This focus enhances the model’s 
relevance for ICU populations but limits its 
generalizability to non-ICU or elective surgical 
cohorts. Although ICU length of stay was not 
explicitly listed as a baseline characteristic in the 
tables, it was in fact incorporated into our analysis as 
the time variable in the Cox proportional hazards 
model. Moreover, we additionally compared ICU 
length of stay between patients stratified into high- 
and low-risk groups based on our model scores 
(Additional Figure 3). We found that high-risk 
patients had a shorter median ICU stay, which is 
consistent with higher early mortality. In contrast, 
low-risk patients exhibited longer ICU stays, likely 
reflecting prolonged survival and ongoing clinical 
management. These findings support the clinical 
utility of the model in early risk stratification and 
outcome interpretation. In addition, external 
validation shows that the model also exhibits stable 
performance in eICU-CRD, which enhances the 
reliability of the model. Another strength of our 
model is the superior performance compared with 
established ICU scoring systems, including APSIII, 
OASIS, SOFA, Charlson Comorbidity Index, and 
SAPSII. K-M survival curves demonstrated that the 
nomogram provided the clearest separation between 
high- and low-risk groups, whereas traditional scores 
showed weaker discrimination (Additional Figure 4). 
ROC curve analysis further confirmed higher AUC 

values for our model, particularly in predicting 7-day 
mortality (Additional Figure 5). Moreover, DCA 
indicated that the nomogram yielded greater net 
clinical benefit across a broad range of threshold 
probabilities, especially within the clinically relevant 
low-to-intermediate risk range (Additional Figure 6). 
Collectively, these findings underscore the enhanced 
discriminatory ability and clinical utility of the 
nomogram for ICU patients with AAA. This 
observation highlights a significant gap in risk 
prediction for this specific cohort, as these general 
scores were not designed to capture the unique 
pathophysiology and high mortality risk associated 
with AAA in critical care settings. Our novel 
nomogram, developed specifically for this 
population, successfully addressed this gap by 
providing statistically significant stratification, 
thereby emphasizing the necessity and clinical 
relevance of a severity predictive tool customized for 
ICU patients with AAA. However, the model has 
certain limitations. Firstly, the primary limitation of 
this study is the reliance on publicly available 
database data, without validation using in-house 
datasets, which may limit the generalizability of the 
model to different populations or clinical settings. 
Moreover, there is a significant difference in mortality 
rates between the external validation cohort from the 
eICU-CRD database (4.16%) and the MIMIC-IV cohort 
(42.89%). This substantial disparity may introduce 
bias and impact the mode’s generalizability, as 
differences in patient populations, ICU admission 
criteria, and treatment protocols across databases 
could influence predictive performance. Future 
studies should consider adjusting for these variations 
or validating the model in more diverse and 
representative cohorts to enhance its robustness. 
Additionally, surgical data in the MIMIC-IV 
databases were inquired using standardized 
procedure codes, but these records may not fully 
capture operative details or long-term outcomes. As 
surgical status was not identified as a significant 
predictor in our analyses, the model is primarily 
applicable to short-term mortality risk assessment in 
ICU patients with AAA, rather than postoperative 
prognosis. Moreover, we only recorded indicators 
from the first day of ICU admission, which may not 
reflect subsequent disease progression. The limitation 
could explain why the model demonstrated good 
predictive capability within 7 days but gradually 
weakened for mid-term (14-day) and long-term 
(28-day) predictions. Another limitation is that 
although six factors were included in the model, their 
relative weights were not quantified, which may 
affect the interpretability and clinical applicability of 
the model. The time-dependent nature of ICU 
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indicators highlights the necessity for further research 
to explore how these variables change at different 
time points after onset and their predictive value59. 
Notably, the absence of aneurysm-specific anatomical 
details (e.g. aneurysm diameter, classification) in the 
current datasets prevented clinically meaningful 
subgroup analyses. Incorporating these 
morphological parameters in future validation studies 
could significantly refine risk prediction models. 

Conclusion 
We developed and validated nomograms based 

on six factors (BUN, sepsis, antihypertensive drug 
use, anion gap, SpO2, and age) to predict mortality in 
ICU patients with AAA. The model is simple, 
practical, and based on readily available clinical data, 
making it easy to apply to early risk assessment and 
clinical decision-making in ICU settings. It shows 
good discrimination and clinical utility at an early 
stage (7-day) for identifying high-risk patients who 
may benefit from closer monitoring and timely 
intervention. However, the predictive power of the 
model declined over time, suggesting that future 
research should focus on integrating dynamic clinical 
parameters to improve medium-and long-term 
predictions. Despite its limitations, this nomogram 
provides a valuable tool that can be used to support 
personalized care and optimize outcomes for critically 
ill patients with AAA. In the future, dynamic clinical 
parameters and external multicenter validation will 
be needed to improve the generalization ability and 
long-term prediction accuracy of the model. 
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