Int. J. Med. Sci. 2026, Vol. 23 146

gy, P P : : :
Rews) o e International Journal of Medical Sciences

2026; 23(1): 146-160. doi: 10.7150/ijms.116265

Research Paper

Predicting ICU mortality in patients with abdominal

aortic aneurysm: a nomogram based on MIMIC-IV and
elCU-CRD

Mengwei He#, Xiang Zhang#, Weixue Huo#, Jin Qu, Sen Wang, Zhaoxiang Zeng, Lushun Yuan™, Rui
Feng™

Department of Vascular Surgery, Intervention Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's
Republic of China.

# These authors contributed equally to this work.
P4 Corresponding authors: Lushun Yuan, Email: yuanlushun@whu.edu.com; Rui Feng, Email: rui.feng@shgh.cn

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https:/ /creativecommons.org/licenses/by/4.0/).
See https:/ /ivyspring.com/terms for full terms and conditions.

Received: 2025.04.23; Accepted: 2025.09.27; Published: 2026.01.01

Abstract

Background: Abdominal aortic aneurysm (AAA), characterized by pathological aortic dilation, carries high
mortality in intensive care unit (ICU) settings. However, existing severity scores (e.g., SAPS lll, SOFA) poorly
capture AAA-specific mortality predictors. We aimed to develop a focused prognostic tool to improve
short-term risk stratification in ICU-admitted AAA patients.

Objective: To develop and validate a machine learning-based nomogram model using the Medical Information
Mart for Intensive Care IV (MIMIC-IV; 2008-2019) and the elCU Collaborative Research Database (el CU-CRD;

2014-2015) for early mortality prediction (<7 days) in critically ill patients with AAA, addressing limitations of

conventional ICU scoring systems by integrating AAA-specific predictors and ensuring generalizability through
external validation.

Methods: Using two independent datasets from MIMIC-IV and elCU-CRD databases, we identified patients
with AAA with complete ICU records and lab data within 24 hours of admission. Critical predictors were
selected via a dual approach: least absolute shrinkage and selection operator (LASSO) regression to eliminate
collinearity and support vector machine-recursive feature elimination (SVM-RFE) to rank feature importance.
MIMIC-IV served as the training dataset, while elCU-CRD was used for external validation. A Cox
regression-based nomogram was constructed using the training set and tested for 7-, 14-, and 28-day mortality
prediction. Model performance was evaluated using area under the ROC curve (AUC), concordance index
(C-index), calibration plots, and decision curve analysis.

Results: Six key variables independently predicted mortality including age, sepsis, blood urea nitrogen (BUN),
antihypertensive drug use, average percutaneous arterial oxygen saturation (SpO:2), and anion gap. The
nomogram demonstrated optimal predictive accuracy for 7-day mortality (AUC: 0.730 [training] and 0.718
[validation]; C-indices: 0.717 and 0.731), with reduced performance for 14-day and 28-day outcomes.
Calibration curves displayed strong agreement at both 7 and 14 days, and DCA indicated that the model
provides significant clinical value. External validation in elCU-CRD mirrored these trends (7-day AUC: 0.723),
supporting model generalizability.

Conclusion: This multicohort-derived nomogram provides a simple yet reliable tool to predict early mortality
(=7 days) in critically ill AAA patients, which may guide time-sensitive interventions in critical care settings.

Keywords: abdominal aortic aneurysm; intensive care unit; mortality prediction; nomogram; risk stratification; clinical decision
support

Introduction

Abdominal aortic aneurysm (AAA) is an  overall mortality rate following AAA rupture is 80%3,
abnormal dilation of the abdominal aorta2. The  with approximately one-third of patients dying before
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reaching the hospital and 25-50% succumbing after
undergoing surgery*-¢. Given the high mortality rate,
the intensive care unit (ICU) admission rate for AAA
is significantly high78. Over the past three decades,
the introduction of endovascular aneurysm repair
(EVAR) and advancements in open surgical
techniques have led to a reported decline in AAA
mortality rates®. The mortality rate for elective open
repair of AAA is 3-5%, whereas EVAR reduces the
mortality rate to 0.5-2%1911. However, a meta-analysis
indicates that approximately 40% of AAA with
complex anatomy are managed conservatively31213,
Due to the high ICU admission rate and mortality
associated with AAA78, developing accurate and
effective predictive models to assess prognosis of
patients in ICU is particularly important for early
identification of high-risk individuals and timely
initiation of treatment.

Current scoring systems fail to bridge two
critical gaps. First, conventional ICU tools such as
OASIS, GCS, SAPS II, and SOFA4-16, are available to
stratify patients based on the severity of their
condition, but they prioritize generalized organ
dysfunction over AAA-specific risks. Second, existing
AAA-specific indices, such as Hardman Index (HI)
and the Glasgow Aneurysm Score (GAS) 2122, focused
predominantly on surgical mortality in ruptured
AAA populations 2, neglecting conservatively
managed patients. While the Society for Vascular
Surgery  (SVS)  guidelines  provide several
preoperative risk assessment indicators, including
patient age, gender, smoking history, and type of
surgery®. While these scoring systems are available to
aid clinical decision-making in AAA, there is no
conclusive evidence that they accurately predict
survival outcomes for patients with AAA2425,

This multicohort study aims to address these
limitations by developing the first mortality
prediction model tailored for ICU-admitted patients
with AAA, leveraging the complementary strengths
of the Medical Information Mart for Intensive Care IV
(MIMIC-1V; 2008-2019) and the eIlCU Collaborative
Research Database (elCU-CRD; 2014-2015)». By
systematically integrating demographic, laboratory,
and therapeutic variables through machine learning
algorithms, we seek to generate an actionable tool for
early identification of high-risk patients, irrespective
of surgical eligibility.

Materials and methods

Data source

The model was trained and internally validated
using the MIMIC-IV database (version 2.2)%, followed
by external verification using the eICU-CRD3.

MIMIC-IV comprises critical care records from Beth
Israel Deaconess Medical Center spanning 2008 to
2019, whereas eICU-CRD is a multicenter database
that encompasses over 200,000 hospitalized ICU
patients in the United States between 2014 and 2015.
Reasons for ICU admission are severe illness,
advanced age and multimorbidity. All personal
identifiers have been removed and replaced with
random codes, thereby exempting the study from
patient consent and ethical approval.

Study population and study design

The eligibility criteria for this study included: 1)
confirmed diagnosis of AAA based on ICD
(international Classification of diseases)-9 and ICD-10
codes; 2) complete medical records from ICU
admissions; and 3) availability of comprehensive data
on laboratory tests and treatment interventions.
Patients were excluded based on the following
criteria: 1) age below 18 years; 2) multiple admissions
during the study period; and 3) missing key
indicators. We analyzed data on vital signs and
laboratory results recorded within the first 24 hours of
ICU admission, with the primary outcome being
mortality during the ICU stay. Figure 1 illustrates the
patient screening process and the study design.

Data extraction

Data were extracted from the MIMIC-IV and
elCU-CRD wusing PostgreSQL tools (version 17),
Mengwei, He had the data use agreements. The data
included demographic information (such as age,
gender, and race), comorbidities (such as
hypertension, diabetes, and coronary artery disease),
laboratory test results (including complete blood
counts, biochemical markers, and arterial blood gas
analyses), and treatments (such as mechanical
ventilation, dialysis, and surgical procedures).

Statistical analyses

Descriptive baseline characteristics of the study
population were expressed as median with
interquartile range (IQR) for nonnormally distributed
variables, mean with standard deviation (SD) for
normally distributed variables, or percentages for
dichotomous variables. Comparisons between groups
were conducted using appropriate statistical tests,
including student’s t-tests for continuous variables
and chi-squared tests for categorical variables. The
significance level of p < 0.05 was considered
statistically significant.

To simplify the model and identify significant
predictive variables, we applied a stepwise feature
selection process. First, Least Absolute Shrinkage and
Selection Operator (LASSO) regression with L1
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regularization was used to shrink less significant
coefficients to zero®, while Support Vector Machine
with Recursive Feature Elimination (SVM-RFE)
identified features maximizing class boundaries. The
intersection of results from both methods was taken to
finalize key predictive variables. Subsequently,
univariable Cox regression was performed to evaluate
the association between these variables and ICU
mortality in patients with AAA, followed by
multivariable Cox regression to adjust for
confounders and identify independent predictors. A
nomogram was then created by assigning scores to
each factor based on its impact on the outcome. After
developing the nomogram, we calculated patient
scores and stratified cases into low-risk and high-risk
groups according to the median score. Differences in
outcomes between these two groups were visualized
using Kaplan-Meier (K-M) curves.

To assess the performance of the model, we
employed  several metrics, including the
Time-dependent Area Under the Curve (AUC) and
the Time-dependent Concordance Index (C-index) to
evaluate its discriminative ability. Calibration curves
were applied to evaluate the agreement between
observed and predicted probabilities, reflecting the
model's calibration and reliability. Additionally,
Decision Curve Analysis (DCA) was conducted to
assess the model's clinical utility by examining the
balance between potential benefits and harms.
Together, these methods offer a comprehensive
evaluation of the model's performance, incorporating
discrimination, calibration, and practical clinical
relevance.

All analyses were primarily conducted using R
software (version 4.2.1). The "glmnet" package was
utilized for LASSO regression®?, and the "rms"
package was used to construct the nomogram for
predicting mortality in ICU patients®. The "timeROC"

and "pec" package were employed to obtain the
time-dependent AUC and C-index respectively343>.
Calibration curves were generated using the "rms"
package’, and DCA curves were constructed using
the "rmda" package?”.

Results

Patient selection and baseline characteristics

The MIMIC-IV and eICU-CRD contained 76,540
and 200,859 ICU admissions, respectively. Figure 1
depicts the patient selection process and the flowchart
of the study cohort. A total of 623 patients with AAA
from the MIMIC-IV database, with no missing
indicators, were included for feature selection,
resulting in the identification of six mortality-related
features: blood urea nitrogen (BUN), sepsis,
antihypertensive drug use, anion gap, average
percutaneous arterial oxygen saturation (SpO.), and
age. To increase the sample size, additional patients
with missing data for other variables but complete
information on six mortality-related features were
included in the model development cohort. In total,
858 patients with AAA from the MIMIC-IV database
were randomly split into training and validation
cohorts in a 7:3 ratio. Additionally, we screened 601
patients with AAA from eICU-CRD for external
validation. Table 1 outlines the demographic and
clinical characteristics of all individuals included in
the model, covering baseline features such as
demographic factors, clinical characteristics, and
available predictive variables. Among the 858 patients
with AAA in the MIMIC-1V database, the in-hospital
mortality rate was 42.89% (368 out of 858). In contrast,
Additional  table S2.  presents data on
mortality-related features for the 601 patients with
AAA from the elCU-CRD, who had an in-hospital
mortality rate of 4.16% (25 out of 601).

Table 1. Baseline characteristics of 858 patients with AAA from the MIMIC-IV database.

Total (N=858)

Validation (N=601)

Test (N=257)

Mortality rate

Characteristics
Age

Female, No. (%)
Race, No. (%)
White

Other

Laboratory Indicators

Hematocrit (%)

Hemoglobin (g/dL)

Mean corpuscular hemoglobin (pg)

Mean corpuscular hemoglobin concentration (g/dL)

Mean corpuscular volume (fI)

42.89% (N=368)

77.29 (63.10-91.48)
277 (32.3)

647 (75.4)
211 (24.6)

35.9 (27.6-44.2)
12.7 (9.5-15.9)
30.60 (27.70-33.5)
33.2 (31.2-35.2)
92 (85-97)

42.93% (N=258)

77.37 (63.02-91.72)
190 (31.6)

464 (77.2)
137 (22.8)

38.55 (29.85-47.25)
12.7 (9.4-16.0)
30.55 (27.45-33.65)
33.1 (31.0-35.2)

92 (84-100)

42.80% (N=110)

76.90 (62.9-90.9)
87(33.9)

183 (71.2)
74 (28.8)

37.80 (30.20-45.40)
12.6 (9.7-15.5)
30.70 (31.00-36.40)
33.3 (31.9-35.2)

92 (85-99)
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Total (N=858) Validation (N=601) Num of NA Test (N=257)
Platelet (K/uL) 202.0 (100.0-302.0) 203.5 (102.5-304.5) 3 202.0 (104-300)
White blood cell (K/uL) 8.70 (4.10-13.5) 8.70 (4.10-13.3) 8.70 (3.8-13.6)
Creatinine (mg/dL) 1.10 (0.40-1.80) 1.10 (0.40-1.80) 1.10 (0.40-1.80)
Anion gap (mmol/L) 14.0 (9.0-19.0) 14.0 (9.0-19.0) 14.0 (10.0-14.0)
Red blood cell (M/uL) 3.51 (2.51-4.51) 3.55 (2.55-4.55) 4 3.44 (2.44-4.44)
Glucose (mg/dL) 128.0 (69.0-187.0) 127.0 (68.0-186.0) 1 129.0 (71.0-187)
Bicarbonate (mmol/L) 23.0 (18.0-28.0) 23.0 (18.0-28.0) 23.0 (18.0-28.0)
Bun (mg/dL) 21.0 (5.0-37.0) 21.0 (4.0-38.0) 20.0 (5.0-35.0)
Calcium (mg/dL) 8.30 (7.30-9.30) 8.30 (7.30-9.30) 40 8.30 (7.30-9.30)
Chloride (mmol/L) 105.0 (98.0-112.0) 105.0 (98.0-112.0) 105.0 (98.0-112.0)
Potassium (mmol/L) 4.20 (3.5-4.9) 4.30 (3.60-5.00) 4.20 (3.40-5.00)
International normalized ratio 1.10 (IQR=0) 1.10 (IQR=0) 12 1.10 (IQR=0)
Prothrombin time (second) 12.5 (9.5-15.5) 12.60 (9.60-15.60) 12 12.30 (9.30-15.30)
Partial thromboplastin time (s) 29.80 (21.80-37.80) 29.90 (22.90-36.90) 43 29.80 (20.80-38.80)
Sodium (mmol/L) 139.0 (135.0-143.0) 139.0 (134.0-143.0) 51 139.0 (134.0-144.0)
Mean glucose (mg/dL) 128.33 (86.33-170.33) 129.45 (87.45-171.45) 12 127.40 (87.40-167.40)
Serum creatinine baseline (mg/dL) 0.80 (0.47-1.13) 0.90 (0.56-1.24) 0.80 (0.40-1.20)
Serum creatinine min (mg/dL) 0.90 (0.40-1.40) 0.90 (0.40-1.40) 0.80 (0.30-1.30)
Serum creatinine max (mg/dL) 1.20 (0.20-2.20) 1.20 (0.20-2.20) 16 1.20 (0.20-2.20)
ICU-score
OASIS 32 (20-44) 32 (19-44) 33 (20-46)
GCs 15 (3-15) 15 (3-15) 15 (3-15)
APSTII 43 (19-67) 43 (18-68) 8 42 (19-65)
cal 7 (4-10) 7 (4-10) 7 (4-10)
GCvV 22.41 (9.41-35.41) 22.40 (8.40-36.40) 22.56 (8.56-36.56)
SOFA 4(0-9) 4(0-9) 4(0-8)
SAPS I 38 (22-54) 38 (23-53) 38 (16-54)
Vital Sign
Heart rate (beats/min) 79 (61-97) 80 (62-98) 80 (60-100)
Systolic blood pressure (mmHg) 116 (95-137) 116 (95-137) 6 115 (93-137)
Mean blood Pressure (mmHg) 76 (63-89) 76 (63-89) 76 (65-87)
Respiratory rate (breaths/min) 19 (15-23) 19 (15-23) 18 (14-22)
Temperature (°C) 36.73 (IQR=0) 36.72 (IQR=0) 31 36.73 (IQR=0)

SpO: (%)

Comorbidity

Myocardial infarct, No. (%)
Congestive heart failure, No. (%)
Cerebrovascular disease, No. (%)
Chronic pulmonary disease, No. (%)
Mild liver disease, No. (%)

Diabetes without complication, No. (%)

Diabetes with complication, No. (%)
Severe liver disease, No. (%)
Paraplegia, No. (%)

Renal disease, No. (%)

Sepsis, No. (%)

Chronic kidney disease, No. (%)

Treatments*
Surgery performed, No. (%)

Continuous Renal Replacement Therapy, No. (%)

Antihypertensive drug use, No. (%)
Dialysis present, No. (%)

Glucose lowering, No. (%)
Ventilation, No. (%)

97.0 (94.2-99.8)

227 (26.5)
257 (30.0)
158 (18.4)
321 (37.4)
61 (7.1)
134 (15.6)
57 (6.6)
12 (1.4)
31 (3.6)
242 (28.2)
482 (56.2)
241 (28.1)

3(0.3)
32(37)
754 (87.9)
26 (3.0)
14 (1.6)
737 (85.9)

96.7 (93.9-99.5)

147 (24.5)
180 (30.0)
112 (18.6)
223 (37.1)
40 (6.7)
93 (15.5)
43 (7.2)
8(1.3)

21 (3.5)
177 (29.5)
342 (56.9)
176 (29.3)

1(0.2)

22 (3.7)
535 (89.0)
19 (3.2)
10 (1.7)
509 (84.7)

97.1 (94.7-99.5)

80 (31.1)
77 (30.0)
46 (17.9)
98 (38.1)
21 (8.2)
41 (16.0)
14 (5.4)
4(1.6)

10 (3.9)
62 (25.3)
140 (54.5)
65 (25.3)

2(0.8)

10 (3.9)
219 (85.2)
7(2.7)
4(1.6)
228 (88.7)

Abbreviations: N/No: number. NA: not available. Bun: blood urea nitrogen. OASIS: Oxford Acute Severity of Illness Score. GCS: Glasgow Coma Scale. APS III: Acute
Physiology Score III. CCI: Charlson Comorbidity Index. GCV: Geriatric Comorbidity Validation Index. SOFA: Sequential Organ Failure Assessment. SAPS II: Simplified
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Acute Physiology Score II.
* All listed treatments were administered during ICU hospitalization.

Abdominal aortic aneurysm patients
A from MIMIC-IV database (N=1051)

Excluded:
1. Age < 18 (N=0Q)

y

2. Multiple ICU admissions
{N=105)

Feature selection

First ICU admissions with abdominal
aortic aneurysm (N=94186)

Nomogram construction

Excluded:
Missing indicators (N=323)

Excluded:

1.No bun data (N=20)

2.No sepsis data {(N=0)

» 3.No anti hypertension data (N=0)

4.No anion gap data (N=8)

Finally included patiants (N=623)

5.No SpO, data (N=1)
6.No age data {(N=0)

Finally included patients (N=858)

v v

Selected features (N=6)

Training group {(N=601)

Validation group {N=257)

External validation

Abdominal aortic aneurysm patients
from elCU-CRD database (N=725)

Excluded:

» 1. Age < 18 (N=0)
2. Multiple ICU admissions {N=0)

Abdominal aortic anaurysm patients
{(N=725)

Excluded:

1.No bun data (N=12)
2.No sepsis data (N=0)

» 3.No anti hypertension data (N=0)
4.No anion gap data (N=105)
5.No SpO, data (N=6)

Finally included patients (N=602)

6.No age data (N=0)

Figure 1. Flow diagram of the patient selection in MIMIC IV and elCU-CRD. Abbreviations: ICU: intensive care unit; MIMIC-IV: Medical Information Mart for Intensive

Care; elCU-CRD: elCU Collaborative Research Database.

Prognosis-associated feature selection

We used two different statistical methods to
select feature variables. The LASSO regression
algorithm identified 22 variables associated with ICU
mortality in patients with AAA from an initial set of
59 variables (Figure 2A and B). Meanwhile, the
SVM-REFE algorithm yielded 48 variables (Figure 2C
and D). By taking the intersection of the results from
both algorithms, we arrived at 19 significant variables:
age, antihypertensive drug use, BUN, Charlson
comorbidity index, anion gap, SpO», renal disease,
hemoglobin, oasis, sepsis, continuous renal
replacement therapy, chloride, average heart rate,
myocardial infarction, bicarbonate, antidiabetic drug,

diabetes with complication, cerebrovascular disease
(Figure 2E and F).

Cox regression analysis

We performed univariate Cox regression
analyses to determine the coefficients, hazard ratios
(HR), and 95% confidence intervals (CI) for a total of
19 variables (Figure 3A). The analysis revealed 11
variables that were statistically significant. We then
incorporated these 11 variables into a multivariable
Cox regression model, which identified six clinical
features significantly associated with mortality: BUN,
sepsis, antihypertensive drug use, anion gap, average
SpO,, and age (Figure 3B). Building on these results,
we developed a nomogram (Figure 3C).
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Figure 2. The selection of feature variables. A. Dotted vertical lines are drawn adopting the minimum rule and the 1 SE of the minimum rule at the suitable values log (A),
where factors are selected. B. 22 coefficients are included by LASSO coefficient profiles for clinical factors. C. Number of Features vs. 5-Fold Cross-Validation Error (SVM-RFE)
Evaluates model performance with varying feature counts. The selected model minimizes cross-validation error. D. Number of Features vs. 5-Fold Cross-Validation Accuracy
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(dead) groups highlights key predictors used in the final model. Abbreviations: LASSO: least absolute shrinkage and selection operator. CV: Cross-Validation. SVM-RFE: support
vector machine-recursive feature elimination. Bun: blood urea nitrogen. CRRT: continuous renal replacement therapy.

Model performance

To evaluate the model's performance over time,
we applied time-dependent AUC and time-dependent
C-index (Additional file 1, Additional table S2), which
allowed us to capture the dynamic changes in
mortality risk for patients with AAA during the
28-day ICU follow-up. Over the 28-day period, both

time-dependent C-index and AUC showed a gradual
decline in predictive performance. Initially, the model
demonstrated strong discrimination, with the highest
values observed on Day 1, followed by a noticeable
drop within the first 7 days. Between Days 7 and 14,
both metrics stabilized but continued to decrease
gradually. After Day 14, the decline became more
pronounced, with the lowest values recorded beyond
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Day 20,

indicating reduced long-term predictive

capability. This trend suggests that the model is most
effective for short-term mortality prediction, while its

accuracy diminishes over time, likely due to evolving
patient conditions and dynamic clinical factors in the

ICU.

A UniCox foresplot

Univariate analysis p value HR (95% CI)

Age o =0.001 1.052(1.037-1.066)
Anti hypertension St =0.001 0.378(0.270-0.527)
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Figure 3. The effect of selected factors on morality of patients with abdominal aneurysm. A. UniCox regression analysis of the selected factors in the MIMIC IV
database. B. UniCox regression analysis of the selected factors. C. The nomogram for prediction of hospital mortality among patients with abdominal aneurysm. Abbreviations:
BUN: blood urea nitrogen. CRRT: continuous renal replacement therapy. Pr: Probability. Futime: follow-up time.
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We observed significant changes in the
time-dependent AUC and C-index at 7, 14, and 28
days, therefore, these intervals were used to define
short-term, mid-term, and long-term predictions, with
calibration and decision curves plotted to evaluate
performance across these time frames. The results
showed that the model achieved its best performance
on Day 7, with a time-dependent AUC of 0.727
(Total), 0.730 (Training), and 0.718 (Validation), and a
time-dependent C-index of 0.717 (Total), 0.713
(Training), and 0.731 (Validation). By Day 14, the

predictive ability slightly declined, with a
time-dependent AUC of 0.734 (Total), 0.750
(Training), and 0.700 (Validation), and a

time-dependent C-index of 0.689 (Total), 0.696
(Training), and 0.684 (Validation). At Day 28, the
model's performance further decreased, with a

(Training), and 0.676 (Validation). This analysis
revealed that the model performs best in predicting
short-term mortality, particularly within the first 7
days. However, its predictive ability gradually
declines for medium-term (14-day) and long-term
(28-day) outcomes. These findings highlight the
necessity of dynamic monitoring and temporal
adjustments in the ICU to improve long-term
predictions (Figure 4A-C and Additional table S2).

Calibration curves indicated that the predicted
probabilities of mortality closely aligned with the
actual probabilities for both the 7-day and 14-day
predictions, although consistency decreased at 28
days (Figure 4D-F).

The DCA for the nomogram revealed that the
model demonstrated good clinical net benefit for
predicting mortality at 7 days, 14 days, and 28 days,

time-dependent AUC of 0719 (Total), 0.735  with the net benefit of the nomogram surpassing that
(Training), and 0.699 (Validation), and a  of eachindividual feature (Figure 4G-I).
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Figure 4. Model performance evaluation. A-C. The ROC curves of the nomogram for predicting in-hospital death risk of patients with AAA at 7, 14, and 28 days in the
raining cohort (A), validation cohort (B), and total dataset (C). D-F. Calibration Curves of the nomogram for predicting in-hospital death risk of patients with AAA at day 7 (D),
day 14 (E), day 28 (F). G-I. Decision curve analysis of the nomogram for predicting in-hospital death risk of patients with AAA at day 7 (G), day 14 (H), day 28 (1). Abbreviations:
ROC: receiver operating characteristic curve. AAA: abdominal aortic aneurysm. AHAs: antihypertensive agents. OS: overall survival.

https://www.medsci.org



Int. J. Med. Sci. 2026, Vol. 23

154

Training cohort

A
Strata == High risk == Low risk
1.00
=
30.75
w©
=
(=N
= 0.50
=
=
—
7]
0.25 4
p < 0.0001
0.00
0 20 40 60 80
Time (day)
Number at risk
S High risk 4300 22 8 1 0
i&» Low risk 4301 48 11 3 1
0 20 40 60 80
Time (day)
C Total
Strata == High risk == Low risk
1.00
=
= 0.75
[
£
[=]
a
‘®0.50
e
=
L5
0.25 4
p < 0.0001
0.00 A
0 20 40 60 80
Time (day)
Number at risk
S High risk 4429 29 8 1 0]
& Low risk 4429 72 18 S 2
0 20 40 60 80
Time (day)

Validation cohort

Strata == High risk == Low risk

1.00
=
= 0.75
]
€
=
® 0.50
=
=
-3
7]
0.25
p < 0.0001
0.00
0 20 40 60 80
Time (day)
Number at risk
.gH;gllll:_;k 128 4 o] 0 0
& Low risk 4129 24 7T 2 1
8] 20 40 80 80
Time (day)

Figure 5. Survival curves based on risk groups from the nomogram. A. K-M plot of training cohort. B. K-M plot of validation cohort. C. K-M plot of total dataset.

Using this model, risk scores were calculated for
all patients in the cohort (training and validation sets),
and patients were stratified into high-risk and
low-risk groups based on the median risk score. The
results demonstrated that the model effectively
distinguished between these groups, with the
high-risk group showing significantly poorer
outcomes compared to the low-risk group (Figure 5).

In the external validation using the eICU-CRD,
although the model's performance declined over the
short term, it remained acceptable for 7 days, with the
AUC decreasing from 0.935 on day 1 to 0.723 on day 7,
and the C-index dropping from 0.804 to 0.548. After
day 7, both AUC and C-index stabilized (Figure 6).
This indicates the model maintains strong predictive
accuracy for short-term mortality outcomes but
exhibits diminished performance in forecasting

longer-term endpoints, particularly beyond the
14-day timepoint. In the eIlCU-CRD cohort, the
calibration curve demonstrated close alignment
between the model's predicted 7-day mortality
probabilities and observed outcomes (Figure 7A).
DCA further revealed that the model provided
superior risk stratification and higher clinical net
benefit, supporting its utility in guiding 7-day and
14-day mortality risk stratification for patients with
AAA in the ICU (Figure 7B and C).

Using the nomogram, patients in the elCU-CRD
cohort and the combined eICU-CRD/MIMIC-IV
population were assigned risk scores and stratified
into high- versus low-risk groups using median
cutoffs. K-M  analysis demonstrated  good
discriminative capacity of the nomogram across both
the external validation cohort (elCU-CRD) and
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combined dataset, with the high-risk group exhibiting
significantly poorer outcomes compared to the
low-risk group (Figure 8).

Discussion

Our study specifically examined the mortality
risk for ICU patients with AAA, developed a novel
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population.

Our findings indicated that BUN, sepsis,
antihypertensive drug use, anion gap, average SpO,,
and age have been identified as independent risk
factors for predicting mortality in ICU patients with
AAA. Based on these factors, we developed and
validated an innovative nomogram model. The effects
of most variables align with findings from previous
studies in other domains. For instance, elevated BUN
levels are linked to severe abdominal aortic
calcification, raising cardiovascular risk and
complicating clinical management in ICU patients
with AAA 383, Despite antihypertensive medications
not reducing AAA growth, they are crucial for
managing blood pressure and lessening rupture risk,
ultimately contributing to lower mortality rates 40-42,
An increased anion gap generally indicates metabolic
acidosis and is associated with higher mortality in
AAA patients in the ICU #-46_ Additionally, low SpO,
levels signal compromised respiratory function or
inadequate oxygen supply; lower SpO, has been
linked to increased mortality and severe
complications after AAA repair #-%°. Age is also a key
determinant of mortality risk, surgical outcomes, and
treatment selection, with a 4% annual increase in
mortality risk observed for patients over 65 years 50-52,
Interestingly, the role of sepsis in our findings
contrasts with existing literature. While sepsis is
known to induce multiple organ dysfunction and
heighten cardiovascular risk in AAA
patients-significantly increasing the risks of aortic

rupture, myocardial infarction, and cerebrovascular
events -5, Our study found that the presence of
sepsis served as a protective factor for ICU patients
with AAA. To further explore this counterintuitive
association, we conducted first performed landmark
analyses to demonstrate time-dependent effect
(Additional Figure 1) and a subgroup analysis
(Additional Figure 2) stratified by illness severity
using five scoring systems (APSIII, OASIS, SAPSII,
SOFA, and Charlson Comorbidity Index). The results
revealed a time-limited (strongest within 24hours)
and severity-dependent pattern: in the most critically
ill subgroup, especially in “very high”, sepsis was
significantly associated with decreased mortality risk
(OASIS: HR = 0.47; APSIII: HR = 0.57; SOFA: HR =
0.51; SAPSII: HR= 0.50). In contrast, sepsis showed
either a neutral or elevated risk in lower severity
subgroups—for example, the OASIS medium
subgroup exhibited a hazard ratio of 1.50. These
findings support the hypothesis that early recognition
and intensive care in high-risk septic patients may
yield improved outcomes. This unexpected result
may stem from selection bias: both MIMIC-IV and
elCU-CRD focus on critically ill patients, with those
having sepsis likely identified as high-risk early on,
leading to more aggressive interventions, such as
early antibiotic administration and fluid resuscitation,
which could lower mortality rates. Additionally,
sepsis is well-studied with established management
guidelines®, potentially resulting in better
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monitoring, early  antibiotic  therapy, fluid
resuscitation and organ support for septic patients in
the ICU. This aligns with modern sepsis care
protocols, which emphasize rapid triage and resource
prioritization. Conversely, patients with lower
severity ~scores may receive less intensive
management or derive less benefit from such
interventions, contributing to the observed
heterogeneity in outcomes. Our analysis highlights
the need to interpret the impact of sepsis within the
broader clinical context of baseline severity and care
responsiveness. Further investigation into the impact
of sepsis on this specific patient population is
warranted'617,

The predictive model has several advantages,
including the incorporation of multiple clinical and
demographic variables, allowing for individualized
mortality risk assessment in ICU patients with AAA.
It demonstrates strong predictive performance for
short-term (7-day) mortality, supporting timely
clinical decision-making. Therefore, its clinical utility
is mainly limited to short-term prognostic assessment
in ICU patients with AAA. Besides, the high mortality
rate observed in the MIMIC-IV cohort reflects the
critically ill nature of ICU patients with AAA, who
were typically elderly and had multiple
comorbidities. This focus enhances the model’s
relevance for ICU populations but limits its
generalizability to non-ICU or elective surgical
cohorts. Although ICU length of stay was not
explicitly listed as a baseline characteristic in the
tables, it was in fact incorporated into our analysis as
the time variable in the Cox proportional hazards
model. Moreover, we additionally compared ICU
length of stay between patients stratified into high-
and low-risk groups based on our model scores
(Additional Figure 3). We found that high-risk
patients had a shorter median ICU stay, which is
consistent with higher early mortality. In contrast,
low-risk patients exhibited longer ICU stays, likely
reflecting prolonged survival and ongoing clinical
management. These findings support the clinical
utility of the model in early risk stratification and
outcome interpretation. In addition, external
validation shows that the model also exhibits stable
performance in eIlCU-CRD, which enhances the
reliability of the model. Another strength of our
model is the superior performance compared with
established ICU scoring systems, including APSIII,
OASIS, SOFA, Charlson Comorbidity Index, and
SAPSII. K-M survival curves demonstrated that the
nomogram provided the clearest separation between
high- and low-risk groups, whereas traditional scores
showed weaker discrimination (Additional Figure 4).
ROC curve analysis further confirmed higher AUC

values for our model, particularly in predicting 7-day
mortality (Additional Figure 5). Moreover, DCA
indicated that the nomogram yielded greater net
clinical benefit across a broad range of threshold
probabilities, especially within the clinically relevant
low-to-intermediate risk range (Additional Figure 6).
Collectively, these findings underscore the enhanced
discriminatory ability and clinical utility of the
nomogram for ICU patients with AAA. This
observation highlights a significant gap in risk
prediction for this specific cohort, as these general
scores were not designed to capture the unique
pathophysiology and high mortality risk associated
with AAA in critical care settings. Our novel
nomogram, developed specifically for this
population, successfully addressed this gap by
providing statistically = significant stratification,
thereby emphasizing the necessity and clinical
relevance of a severity predictive tool customized for
ICU patients with AAA. However, the model has
certain limitations. Firstly, the primary limitation of
this study is the reliance on publicly available
database data, without validation using in-house
datasets, which may limit the generalizability of the
model to different populations or clinical settings.
Moreover, there is a significant difference in mortality
rates between the external validation cohort from the
elCU-CRD database (4.16%) and the MIMIC-IV cohort
(42.89%). This substantial disparity may introduce
bias and impact the mode’s generalizability, as
differences in patient populations, ICU admission
criteria, and treatment protocols across databases
could influence predictive performance. Future
studies should consider adjusting for these variations
or validating the model in more diverse and
representative cohorts to enhance its robustness.
Additionally, surgical data in the MIMIC-IV
databases were inquired using standardized
procedure codes, but these records may not fully
capture operative details or long-term outcomes. As
surgical status was not identified as a significant
predictor in our analyses, the model is primarily
applicable to short-term mortality risk assessment in
ICU patients with AAA, rather than postoperative
prognosis. Moreover, we only recorded indicators
from the first day of ICU admission, which may not
reflect subsequent disease progression. The limitation
could explain why the model demonstrated good
predictive capability within 7 days but gradually
weakened for mid-term (14-day) and long-term
(28-day) predictions. Another limitation is that
although six factors were included in the model, their
relative weights were not quantified, which may
affect the interpretability and clinical applicability of
the model. The time-dependent nature of ICU
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indicators highlights the necessity for further research
to explore how these variables change at different
time points after onset and their predictive value®.
Notably, the absence of aneurysm-specific anatomical
details (e.g. aneurysm diameter, classification) in the
current datasets prevented clinically meaningful
subgroup analyses. Incorporating these
morphological parameters in future validation studies
could significantly refine risk prediction models.

Conclusion

We developed and validated nomograms based
on six factors (BUN, sepsis, antihypertensive drug
use, anion gap, SpO, and age) to predict mortality in
ICU patients with AAA. The model is simple,
practical, and based on readily available clinical data,
making it easy to apply to early risk assessment and
clinical decision-making in ICU settings. It shows
good discrimination and clinical utility at an early
stage (7-day) for identifying high-risk patients who
may benefit from closer monitoring and timely
intervention. However, the predictive power of the
model declined over time, suggesting that future
research should focus on integrating dynamic clinical
parameters to improve medium-and long-term
predictions. Despite its limitations, this nomogram
provides a valuable tool that can be used to support
personalized care and optimize outcomes for critically
ill patients with AAA. In the future, dynamic clinical
parameters and external multicenter validation will
be needed to improve the generalization ability and
long-term prediction accuracy of the model.
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