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Abstract

Hexavalent chromium (Cr(VI)) is a well-established environmental and occupational carcinogen, but its
time-dependent molecular effects remain poorly characterized. This study aims to elucidate the
transcriptional responses triggered by acute versus chronic Cr(VI) exposure through an integrated
analysis of two publicly available transcriptomic datasets: GSE16349 (short-term exposure, 16 hours) and
GSE24025 (long-term exposure, 4 weeks). We identified 250 differentially expressed genes across both
exposure models. MetaCore pathway enrichment analysis revealed shared activation of apoptosis,
survival signaling, DNA damage response and repair, and cell cycle progression. Notably, short-term
exposure primarily activated acute stress responses, whereas long-term exposure induced reprograms
transcription toward fibrosis, EMT, and oncogenic signaling. Protein-protein interaction (PPI) network
analysis identified potential key hub genes, with potential as biomarkers for Cr(VI) exposure monitoring.
Our findings highlight distinct molecular trajectories in response to Cr(VI) over time, providing valuable
insights into the progression from early toxic stress to chronic carcinogenic transformation. These
results advance our understanding of Cr(VI)-induced carcinogenesis and suggest these potential targets
for preventive and therapeutic interventions in exposed populations.
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1. Introduction

Chromium (Cr) is an essential trace elementinits ~ Exposure to Cr(VI) is a well-documented
trivalent form, Cr(Il) but is highly toxic and  occupational and environmental hazard, leading to
carcinogenic in its hexavalent form Cr(VI) [1, 2].  severe health risks such as oxidative stress, DNA
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damage, tumorigenesis, and immune system 2, Materials and Methods

dysfunction [3, 4]. Epidemiological studies have . . L.
linked chronic Cr(VI) exposure to multiple adverse 2.1 Data Collection and Selection Criteria
health outcomes. For instance, dermal exposure to Two publicly available Gene Expression

Cr(VI) can cause skin irritation and ulceration [5],
while workers in Cr(VI)-related industries experience
a significantly higher risk of lung cancer compared
with the general population [6]. Moreover, ingestion
of drinking water or food contaminated with
hexavalent chromium poses additional health risks
[7]. The effects of Cr(VI) on the human body vary
widely depending on exposure concentration,
duration, and biological context. However, the
comprehensive molecular characteristics
distinguishing acute from chronic Cr(VI) toxicity
remain poorly understood.

High-throughput transcriptomic analyses have
provided valuable insights into the molecular
pathways underlying Cr(VI)-induced toxicity. For
example, Cr(VI) exposure in human dermal
fibroblasts has been shown to enrich pathways
involved in apoptosis and oxidative stress [8], while
exposure of human bronchial epithelial cells promotes
carcinogenic transformation through activation of
oncogenic pathways [9]. In addition, the effects of oral
Cr(VI) exposure have been investigated in cell culture
as well as in mouse and rat models, revealing
systemic toxicity [10, 11]. Recent research has also
emphasized the roles of histone modifications and
non-coding RNAs in Cr(VI)-induced carcinogenesis,
highlighting the long-term epigenetic consequences of
exposure [12, 13].

Despite extensive research, a direct
transcriptomic comparison between short-term and
long-term Cr(VI) exposure models has not yet been
conducted. This study was designed to address this
gap. Because occupational Cr(VI) exposure commonly
leads to lung cancer as well as irritation of the skin
and airways [14], the present work focused on
transcriptomic datasets related to these tissues. Two
datasets from the Gene Expression Omnibus (GEO)
database were selected for comparative analysis:
GSE16349, representing short-term Cr(VI) exposure
(16 hours) and profiling gene expression changes in
human dermal fibroblasts [8]; and GSE24025,
representing long-term exposure (4 weeks) and
capturing transcriptomic alterations in
Cr(VI)-transformed cell colonies [9]. This comparative
analysis provides new insights into the temporal
molecular responses to Cr(VI) toxicity and identifies
potential biomarkers for occupational health risk
assessment and early detection of Cr(VI)-induced
diseases.

Omnibus (GEO) datasets from NCBI were selected to
investigate the molecular responses to Cr(VI)
exposure across different time scales. These datasets
were chosen for their well-characterized experimental
designs, relevance to Cr(VI) toxicity, and availability
of high-quality gene expression profiles. The
short-term dataset, GSE16349, contains
microarray-based expression profiles from primary
human dermal fibroblasts exposed to 5 pM Cr(VI) for
16 hours, capturing acute molecular responses [8]. The
long-term dataset, GSE24025, includes expression
profiles from immortalized epithelial cell colonies
(BEAS-2B) subjected to chronic Cr(VI) exposure (0.5
M for 4 weeks), allowing analysis of transcriptional
adaptations under prolonged exposure [9]. Raw data
were obtained as CEL files (GSE24025) or text-based
tables (GSE16349), normalized, and prepared for
downstream bioinformatics analysis using methods
described in our previous studies [15-17].

2.2 Data Preprocessing and Quality Control

For GSE24025, raw CEL files were processed
using the Affymetrix package in R. Robust
Multi-array Average (RMA) normalization was
applied to correct background noise and normalize
gene expression intensities. Gene annotation was
performed using the hugenelOstprobesetSYMBOL
function, ensuring accurate probe-to-gene mapping.
The GSE16349 dataset, available in a pre-normalized
format, was converted into log2-transformed values
to maintain consistency across datasets. To evaluate
data distribution and detect potential batch effects,
boxplots and violin plots were generated for both
datasets. Principal Component Analysis (PCA) was
performed to assess clustering patterns between
control and Cr(VI)-exposed groups. Hierarchical
clustering analysis was conducted using the
d3heatmap package, allowing visualization of gene
expression differences across conditions. The dataset
preprocessing and normalization procedures were
conducted in R Studio (version 1.2.1335) with R
version 4.0.3 following standard bioinformatics
workflows [18-20].

2.3 Differential Gene Expression Analysis and
DEG Selection

Expression matrices from GSE16349 (5 pM
Cr(VI), 16 h) and GSE24025 (0.5 pM Cr(VI), 4 weeks)
were processed and analyzed independently using
the limma package. Probe-level signals were mapped
to gene symbols, averaged across probes
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corresponding to the same gene, and transformed to
the log, scale. For GSE16349, a two-group comparison
was performed between Cr(VI)-exposed and control
samples. For GSE24025, comparisons were made
between Cr_large versus control and Cr_small versus
control groups. Moderated statistics were computed
using empirical Bayes shrinkage. Genes were
considered differentially expressed if they showed a
fold change = 1.2 with a Benjamini-Hochberg-
adjusted p < 0.05. In the long-term model, a “shared”
gene set was defined as the intersection of the
Cr_large and Cr_small DEG lists showing consistent
directions of change. “Common DEGs” across
exposure durations were defined as genes meeting the
differential expression criteria in both datasets with
concordant regulation.

2.4 Hierarchical Clustering and Principal
Component Analysis

To assess sample distribution and transcriptional
heterogeneity, hierarchical clustering analysis and
PCA were performed. Heatmaps were generated
using pheatmap in R to visualize gene expression
patterns across control and Cr(VI)-treated groups.
PCA plots were constructed using pca3d, allowing for
three-dimensional visualization of sample clustering.
The separation of Cr(VI)-exposed and control groups
provided additional validation of dataset consistency
and differential expression trends. The common DEGs
were clustered and functionally annotated using the
ClusterGVis R package (version 4.5.0) [21].
Normalized gene expression values were Z-score
transformed and subjected to hierarchical clustering
with default parameters to identify groups of genes
exhibiting similar expression patterns. The resulting
clusters were visualized as a heatmap using the
ClusterGVis, which simultaneously displays gene
expression profiles, cluster sizes, and average
expression trends. Functional enrichment of each
cluster was assessed using Gene Ontology Biological
Process (GO:BP) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) analyses implemented in the
clusterProfiler package (version 4.16.0) [22]. Enriched
terms with adjusted p<0.05 were considered
significant and summarized alongside each gene
cluster in the heatmap [23-26].

2.5 Pathway Enrichment Analysis

Biological processes associated with gene
expression profiles were identified using MetaCore
(GeneGo, St. Joseph, MN, USA). Analyses were
performed on two gene sets: (i) the DEGs shared by
short-term (GSE16349) and long-term (GSE24025)
exposure to identify core pathways, and (ii) the DEGs
specific to each dataset to capture duration-dependent

biology [27-30]. Statistical significance was assessed
with two-tailed Fisher’s exact tests (p < 0.05).

2.6 Protein-Protein Interaction (PPI) Network
Analysis

To further elucidate the Cr(VI)-responsive
molecular interaction networks, Protein-Protein
Interaction (PPI) analysis was conducted using the
STRING database (version 12.0,
https:/ /string-db.org) [31]. A total of 250 DEGs were
uploaded to STRING, with Homo sapiens selected as
the reference organism. The minimum required
interaction score was set to 0.7 (high confidence), and
active interaction sources included experimental
evidence, co-expression, and curated database
annotations. K-means clustering (k = 10) was applied
to partition the network into functionally distinct
modules. The resulting interaction network was
visualized in Cytoscape software (version 3.10.4) [32].
Network topological analysis was subsequently
conducted using the cytoHubba plugin to identify
hub genes based on three centrality measures: (1)
degree centrality, representing the number of direct
interactions; (2) betweenness centrality, indicating a
node’s control over information flow within the
network; and (3) closeness centrality. Genes ranking
within the top 10 for each measure were defined as
hub genes [33-36].

3. Results

3.1 Differential Gene Expression Analysis
Reveals Common and Distinct Responses to
Short-term and Long-term Cr(VI) Exposure

The analysis workflow of this study is illustrated
in Figure 1. To systematically compare transcriptomic
alterations induced by short-term (16 h) and
long-term (4-week) Cr(VI) exposure, we identified
differentially expressed genes (DEGs) defined by fold
change (FC) = 1.2 and Benjamini-Hochberg-adjusted
p < 0.05. In the short-term dataset (GSE16349), 5741
DEGs were detected (2825 wupregulated; 2916
downregulated). In the long-term model (GSE24025),
comparisons of Cr_large and Cr_small colonies versus
untreated controls yielded 1590 and 2359 DEGs,
respectively (Figure 2). Principal component analysis
(PCA) revealed that Cr_large and Cr_small colonies
exhibited highly similar transcriptional profiles
(Supplementary Figure S1), which was further
supported by hierarchical clustering analysis showing
consistent gene expression patterns between the two
groups (Supplementary Figure S2). Intersection
analysis identified 1134 shared DEGs (455
upregulated; 679 downregulated) between Cr_large
and Cr_small colonies, justifying their combination
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into a unified long-term Cr(VI)-treated group for
downstream analyses. To identify genes commonly
responsive to Cr(VI) exposure across different
durations, the 1134 shared DEGs from the long-term
model were compared with those from the short-term
dataset. This comparison revealed 86 genes
consistently upregulated and 164 consistently
downregulated, defining a core Cr(VI)-responsive
signature conserved between acute and chronic
exposure conditions.

To further explore distinct molecular responses
under acute and chronic Cr(VI) exposure, clusterGVis
analysis was performed to visualize gene clusters
derived from GO and KEGG enrichment results.
Specifically, 5741 DEGs from the short-term exposure
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Figure 1. Overview of the study workflow. Short-term (GSE16349, 16 h) and long-term (GSE24025, 4 weeks) Cr(VI) exposure datasets were independently analyzed to
identify DEGs. The intersection analysis defined shared DEGs and those unique to each exposure duration. Functional and network analyses were conducted using STRING for

protein-protein interactions and MetaCore for pathway enrichment.
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In the long-term model (Figure 4), five gene
clusters were identified, highlighting persistent
transcriptional reprogramming under prolonged
Cr(VI) exposure. Upregulated clusters were
significantly —enriched in mitochondrial ATP
synthesis, rRNA metabolic processes, and actin
filament organization, whereas downregulated

clusters were associated with neuroactive ligand-
receptor interaction and lipid metabolism.
Collectively, these results indicate a shift from
transient stress-related responses during short-term
exposure to sustained metabolic and structural
adaptation following chronic Cr(VI) treatment.
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3.2 Functional Pathway Enrichment Highlights
Distinct Short-term and Long-term Cr(VI)
Toxicity Mechanisms

MetaCore pathway enrichment analysis was
applied to the common DEGs to identify core
pathways activated under both short- and long-term
exposure. Among the upregulated genes, the top
enriched pathways were largely associated with
apoptosis and survival signaling (nuclear PI3K/NGF-
TrkA signaling, p53 activation, and APC-regulated
cell cycle control), DNA damage response and repair
(DNA replication initiation, mismatch repair, and
apoptosis regulation), and cell cycle progression
(initiation of mitosis and metaphase checkpoint).
Additional categories included G-protein-mediated
signaling (H-RAS, K-RAS, N-RAS, and Ga subunits),
protein folding and maturation (insulin processing,
CFTR regulation), and immune-related signaling
(Treg regulation in COPD, IL-6 signaling in
adipocytes, and CD4* T-cell memory generation).
Collectively, these findings suggest that Cr(VI)
exposure  activates  transcriptional = programs

promoting cell survival, stress adaptation, metabolic
regulation, and immune modulation, consistent with
pathways that support immune suppression and
carcinogenic transformation (Figure 5, Supplementary
Table S1). In contrast, the downregulated genes were
enriched in pathways tied to cell cycle regulation and
DNA damage checkpoints, such as ATM/ATR-
mediated G2/M control, G1/S progression,
prometaphase chromosome condensation, and
homologous recombination repair. Suppression was
also observed in WNT/ B-catenin and TGF-f signaling
(linked to hepatocellular carcinoma, lung cancer, and
pancreatic cancer), pointing to impaired regulation of
tissue homeostasis and tumor-suppressive signaling.
Additional enrichment involved immune and
inflammatory processes (IL-8 signaling, IFN-a/p-
MAPK signaling, M-CSF receptor signaling, and Th17
differentiation) as well as fibrosis/ECM remodeling
(stellate cell activation, Angiotensin II-PI3K/ERK
signaling, and EMT regulation). Together, these
results indicate that Cr(VI) exposure is associated
with downregulation of genomic maintenance,
checkpoint control, and immune surveillance, thereby
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fostering genomic instability, immune evasion, and a
tumor-permissive microenvironment (Figure 6,
Supplementary Table S2).

To  further distinguish  exposure-specific
transcriptional responses, pathway enrichment
analyses were performed on distinct DEGs from the
acute (GSE16349) and chronic (GSE24025) models. In
the acute exposure dataset (GSE16349), enriched
pathways highlighted rapid activation of oxidative
stress and hypoxia responses (ROS signaling, HIF-1
transcriptional targets, and negative regulation of
HIF1A function). Robust engagement of DNA
damage response and repair was also evident
(ATM/ATR activation, p53 signaling, and DNA
replication initiation/elongation), together with
apoptosis and survival pathways (p53- and
p73-dependent apoptosis, PDGF-PI3K/AKT-NFkB,
and mTORC1 signaling). Additional enriched
categories included cytoskeletal remodeling and
motility (Rho GTPase-regulated actin organization,
S1P1  receptor signaling, PDGF-Rho GTPase
signaling), cell cycle checkpoints (Cullinl/Rbx1 E3
ligase control, G1/S transition, mitotic control), and
oncogenic/developmental signaling
(WNT/B-catenin, NOTCH, TGF-p, and EGFR).

A  GSE16349 Gse24025

Immune-related and pro-fibrotic signaling (IL-3, IL-8,
BCR, Th2/TNF-a-induced fibrosis, stellate cell
activation) were also enriched. These results suggest
that short-term Cr(VI) exposure triggers an immediate
stress-response program characterized by ROS
production, DNA damage repair, and apoptosis
regulation, while simultaneously perturbing immune,
fibroticc, and developmental pathways. Such
responses may serve as adaptive mechanisms to
genotoxic stress but also create vulnerabilities that
predispose carcinogenesis (Supplementary Figure S3,
Supplementary Table S3). By contrast, the chronic
exposure dataset (GSE24025) revealed sustained
enrichment of fibrotic and pro-tumorigenic signaling
pathways. These included stellate cell activation and
liver fibrosis, multiple TGF-B-driven programs
(stimulation in lung, breast, pancreatic, and colorectal
cancers; SMAD signaling; Activin A signaling; and
EMT induction), and EGFR- and WNT/[B-catenin-
mediated  transcriptional  regulation.  Chronic
exposure also impacted cell cycle control, with
enrichment of G1/S regulation, APC- and
Cull/Rbx1-mediated checkpoints, senescence, and
metaphase transition. In addition, immune and
inflammation-related pathways were prominent,
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including IL-6 signaling (in breast and prostate
cancer) and Hedgehog/IGF/HGF cooperation in stem
cell regulation, suggesting acquisition of cancer
stemness traits. ECM remodeling and fibrosis-related
signatures  (fibroblast/myofibroblast  activation,
systemic sclerosis, and metalloprotease signaling)
further underscore the emergence of a fibrotic,
tumor-permissive microenvironment (Supplementary
Figure 54, Supplementary Table 54).

In summary, short-term exposure is dominated
by acute stress responses (oxidative stress, DNA
damage repair, and apoptosis), whereas long-term
exposure reprograms transcription toward fibrosis,
EMT, and oncogenic signaling. Together, these
findings capture a continuum from immediate
adaptation to chronic carcinogenic transformation.

3.3 Protein-Protein Interaction Network
Identifies Key Hub Genes in Cr(VI) Exposure

Protein-protein interaction (PPI) analysis using
the STRING database revealed a network comprising
250 nodes and 84 edges, indicating extensive
interconnectivity among the DEGs (Figure 7).
K-means clustering (k = 18) further partitioned the
network into distinct submodules, many of which
were enriched in ribosome biogenesis and protein
folding, cell-cycle regulation, sterol biosynthesis,
phosphatidylinositol phosphate metabolism, TGF-p
activation, ubiquinol biosynthesis, and
apoptosis-related pathways. The largest cluster
contained AATF, CCT4, CCT5, CCT7, EIF3D, and

HMGN4, representing a  tightly connected
chaperonin-ribosomal module central to proteostatic
control, while smaller clusters captured specialized
metabolic and signaling processes such as
LGALS3-mediated apoptosis and ferritin complex
formation, underscoring the multifaceted cellular
response to Cr(VI).

To identify key molecular mediators within this
network, topological analysis was performed using
the cytoHubba plugin in Cytoscape. Three centrality
metrics, including degree, betweenness, and
closeness, were applied to evaluate node importance
from complementary perspectives (Figure 8A-C).
Across all three analyses, RPL27A, PA2G4, and PES1
consistently emerged as core hubs, underscoring their
pivotal roles in maintaining network connectivity and
mediating adaptation to chromium exposure. In
contrast, CCT5, CCT7, and EIF3D ranked highly in
two of the three analyses, reflecting strong but
context-dependent participation in proteostasis and
chaperonin-assisted folding. The degree and closeness
networks were largely concordant, highlighting a
compact nucleolar- translational core composed of
RPL27A, PA2G4, PES1, and EIF3D, together with a
CCT chaperonin mini-cluster (CCT5, CCT7). The
betweenness map preserved this structure but
additionally elevated AATF, SDAD1, and WDR46 as
bridging nodes linking RNA-processing and
chaperone/cell-cycle modules.
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Figure 6. MetaCore pathway analysis of pathways regulated by the shared down-regulated genes from GSE16349 and GSE24025 (chromium-exposed vs
control). (A) Venn diagram showing 2752 down-regulated genes unique to GSE16349, 515 genes unique to GSE24025, and 164 down-regulated genes in both datasets. (B) Top
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10 enriched MetaCore pathways for the shared down-regulated set ranked by —loglO(p-value); (C) MetaCore process map for the top pathway, “Regulation of
metabolism-Glucocorticoid receptor signaling in glucose and lipid metabolism,” with the shared down-regulated genes mapped, highlighting modules governing lipolysis,
lipogenesis, adipogenesis, insulin signaling, and lipid homeostasis. Down-regulation was defined as log2(FC) < —1.2 with p-value < 0.05.
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Figure 7. STRING-based Protein-Protein Interaction (PPI) network of Cr(VI)-responsive genes. The network consists of 84 edges (interactions) among 250 nodes
(proteins) derived from Cr(Vl)-responsive DEGs. A high-confidence interaction score (2 0.7) was applied, and nodes are color-coded by k-means clustering (k = 18). Only

connected nodes are displayed.

When the top-ranked nodes from all three
centrality metrics were integrated, six consensus hub
genes, including RPL27A, PA2G4, PES1, CCT5, CCT7,
and EIF3D, were identified, representing genes that
combine extensive interactions (high degree and
closeness) with critical information flow across
functional =~ submodules  (high  betweenness).
Collectively, these findings define a tightly integrated
PPI network organized around two principal
functional axes: ribosome biogenesis and translation
initiation (RPL27A, PA2G4, PES1, EIF3D) and
proteostasis via the CCT foldase complex (CCTS5,
CCT7), underscoring the nucleolar-ribosomal
machinery as a central element of the cellular
response to Cr(VI)-induced stress.

4. Discussion

This study provides a comprehensive
comparative transcriptomic analysis of short-term
and long-term Cr(VI) exposure, revealing both shared
and time-dependent molecular alterations. By
integrating two independent GEO datasets
representing acute (GSE16349, 16 hours) and chronic
(GSE24025, 4 weeks) Cr(VI) exposure, we identified
250 common DEGs and uncovered distinct
transcriptional programs underlying the transition
from immediate stress responses to chronic
carcinogenic transformation. A schematic summary of
the findings is illustrated in Figure 9.
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(A)

(B) (C)

Figure 8. Identification of hub genes in the Cr(VI)-responsive PPl network. Hub genes were determined using three cytoHubba centrality metrics: (A) Degree, (B)
Betweenness, and (C) Closeness. The top 10 ranked nodes for each metric are visualized in the corresponding subnetworks. Node color intensity represents hub ranking (red
= higher centrality). Highly ranked nodes, particularly PL27A, PA2G4, and PES, formed a densely interconnected module enriched in ribosomal and nucleolar proteins, highlighting
a nucleolar-ribosome-biogenesis axis as the topological core of the network.
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Figure 9. Proposed model summarizing the molecular effects of acute and chronic hexavalent chromium (Cr(VI)) exposure.
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Our findings demonstrate that short-term Cr(VI)
exposure primarily triggers acute stress responses
characterized by activation of oxidative stress, DNA
damage repair, and apoptotic pathways. This
observation aligns with prior studies showing that
Cr(VI) rapidly generates reactive oxygen species
(ROS) and induces genotoxic stress, activating
p53-dependent and p73-mediated apoptosis signaling
[37-41]. The early upregulation of DNA repair and
checkpoint genes observed here likely reflects a
protective response aimed at maintaining genomic
stability under transient oxidative insult. In contrast,
prolonged exposure to Cr(VI) led to extensive
transcriptional reprogramming associated with
fibrosis, epithelial-mesenchymal transition (EMT),
and oncogenic signaling. Enrichment of TGF-p,
WNT/ B-catenin, and EGFR pathways in the chronic
model suggests a shift toward pro-tumorigenic and
pro-fibrotic signaling, consistent with the progression
from adaptive to maladaptive responses. These
results are consistent with previous findings that
long-term Cr(VI) exposure promotes EMT, epigenetic
alterations, and anchorage-independent growth in
human bronchial epithelial cells [42-44]. Together,
these observations suggest that sustained Cr(VI)
exposure drives a temporal continuum of molecular
events, from acute genotoxic stress to chronic
transcriptional ~ remodeling,  culminating  in
carcinogenic transformation.

PPI  network analysis  highlighted a
ribosomal-centered network dominated by RPL
family members (RPL27A), along with nucleolar
proteins such as PES1 and PA2G4. These hub genes
are well-known regulators of ribosome biogenesis,
translational control, and cell cycle progression.
Notably, RPL5 and RPL11 form part of the 5S
ribonucleoprotein complex that modulates p53
activity by sequestering MDM2, thereby linking
ribosome biogenesis stress to genome surveillance [45,
46]. Their upregulation in both acute and chronic
exposure models suggests persistent activation of
nucleolar stress signaling. The concurrent enrichment
of rRNA processing and mitochondrial translation
pathways further supports the notion that Cr(VI)
toxicity disrupts proteostasis and energy metabolism.
Given that dysregulated ribosome biogenesis is
increasingly recognized as a hallmark of cancer, the
dominance of ribosomal proteins within the Cr(VI)
PPI network underscores their potential role in
driving chronic toxicity and malignant transformation
[46-48]. Integrating functional enrichment results
across both exposure models suggests a temporal shift
in cellular priorities. During acute exposure, cells
mount a coordinated antioxidant, DNA repair, and
apoptotic response aimed at mitigating damage.

However, under sustained exposure, these defensive
mechanisms give way to pathways promoting cell
proliferation, ECM remodeling, and immune
modulation. Suppression of tumor-suppressive
signaling (WNT/B-catenin and TGF-p regulation) and
dysregulation of immune pathways (IL-6, IFN-a/p,
and Thl7 signaling) were observed, collectively
favoring a microenvironment conducive to malignant
transformation. These transcriptional transitions
reflect the biological trajectory from oxidative
stress-driven cytotoxicity to fibrotic remodeling and
eventual neoplastic progression, consistent with
epidemiological evidence linking chronic Cr(VI)
exposure to lung carcinogenesis [49, 50].

The identification of common DEGs and hub
genes across both exposure durations provides a
foundation for developing biomarkers to monitor
Cr(VI) exposure and early cellular transformation. In
particular, RPL27A and PES1 may serve as sentinel
indicators of Cr(VI)-induced nucleolar stress, while
fibrosis-related genes involved in ECM remodeling
and TGEF- signaling could mark chronic adaptation
and disease progression. Validation of these genes in
exposed human cohorts or experimental animal
models would strengthen their translational potential
for occupational health surveillance.

Despite its integrative scope, this study has
several limitations. First, the analysis relied on
pre-existing datasets derived from distinct cell types
and experimental conditions, which may introduce
confounding  biological  variability. =~ Second,
transcriptomic profiling captures only mRNA-level
changes, while Cr(VI) toxicity also involves
post-translational and epigenetic mechanisms not
addressed  here. Future studies combining
transcriptomics with proteomic and epigenomic
analyses will be essential to fully delineate the
multilayered response to Cr(VI). Experimental
validation of candidate biomarkers and hub genes in
human tissues and in vivo models will further clarify
their functional relevance and diagnostic utility.

5. Conclusion

In conclusion, this study provides a
comprehensive  comparison of transcriptomic
responses to short-term and long-term hexavalent
chromium exposure. Acute exposure primarily
activated oxidative stress, DNA repair, and apoptotic
pathways, whereas prolonged exposure promoted
transcriptional reprogramming associated with
fibrosis, epithelial-mesenchymal transition, and
oncogenic signaling. The consistent involvement of
nucleolar and ribosomal proteins highlights their
central role in stress adaptation and cellular
transformation. Together, these findings offer new
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insights into the molecular progression from early
toxic injury to chronic carcinogenesis and identify
potential biomarkers for monitoring and mitigating
Cr(VI)-induced health risks.
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