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Abstract

Colorectal cancer (CRC) represents a predominant global malignancy, characterized by increasing
incidence and mortality rates. Recent investigations have underscored the gut microbiota as a pivotal
element in the pathogenesis and progression of CRC. This review synthesizes current evidence regarding
the association between gut microbial dysbiosis and CRC, with a particular emphasis on pathogenic
bacteria such as Fusobacterium nucleatum, enterotoxigenic Bacteroides fragilis, pks * Escherichia coli, and
Enterococcus faecalis, among others. The mechanisms through which these microbes contribute to
tumorigenesis include the induction of DNA damage, the promotion of chronic inflammation, and the
induction of immunosuppression, and the production of oncogenic metabolites. Additionally, the review
examines the clinical implications of gut microbiota, highlighting their potential as non-invasive
biomarkers for early CRC detection and their impact on the efficacy and toxicity of chemotherapy,
radiotherapy, and immunotherapy. Furthermore, emerging microbiota-targeted interventions, such as
fecal microbiota transplantation, dietary modification, and probiotics, are evaluated for their therapeutic
potential. Despite substantial progress, challenges remain in standardizing microbial markers and
optimizing individualized microbiota modulation strategies. Future studies integrating multi-omics and
machine learning approaches may pave the way for microbiome-based precision medicine in CRC.
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1. Background

Cancer is one of the major global public health
challenges. The incidence of cancer has been rising

progression of colorectal cancer[8].
Gut microbes are microbial communities that

due to environmental changes, dietary habits, lifestyle
factors, and population aging. This increase poses a
significant threat to human health and results in
substantial economic losses[1]. Colorectal cancer is a
common and highly malignant tumor, ranking third
globally in incidence and second in mortality among
all cancer types. The latest statistics estimate that, in
2022, there were approximately 1.9 million new cases
of colorectal cancer and 0.9 million related deaths
worldwide[2]. The development of colorectal cancer is
influenced by multiple factors, including age, gender,
lifestyle,  obesity, diet, and environmental
conditions[3-7]. Recent research has increasingly
highlighted the role of gut microbiota in the onset and

reside in the human gut, along with the gut
environment, forming the gut microbiome. Literature
reports that the human gut hosts trillions of microbial
cells from over a thousand species, including bacteria,
fungi, archaea, protists, and viruses, with bacteria
being the most abundant[9]. The vast and complex
gut microbiota contains a collective microbial genome
far larger than the human genome, encoding over 3
million genes, often referred to as the “second
genome” of the human body[10, 11]. Certain strains of
gut microbiota play key roles in digestion, the
production of beneficial metabolites, immunity
regulation, and defense against pathogenic
microorganisms. An imbalance in the gut microbiome
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can lead to digestive disorders, including ulcerative
colitis, Crohn’s disease, and irritable bowel
syndrome[12-14]. The majority of human gut
microbiota resides in the colon, the most common site
for digestive tract tumors. Studies have shown that
colorectal cancer patients exhibit significant
alterations in their gut microbiota[15]. Compared to
healthy individuals, these patients have marked
differences in species composition and microbial
abundance, including an increased abundance of
cancer-associated microbes and a decrease in the
abundance of protective microbes[16]. These suggest
that imbalances in gut microbiota composition may be
closely  associated  with  colorectal  cancer
development. However, it remains unclear whether
the alterations in gut microbiota are a cause or a
consequence of colorectal carcinogenesis. The
interaction between gut microbiota and colorectal
cancer has become a prominent research topic in
recent years.

Advances in genome sequencing and
bioinformatics, particularly the development of 16S
rRNA gene sequencing and metagenomic sequencing
technologies, have revolutionized scientific research.
These innovations have significantly enhanced our
ability to study complex gut microbiota, improving
the identification of intestinal microorganisms and
enabling deeper exploration of the relationship
between gut microbiota and tumors. This paper
reviews recent research on gut microbiota and
colorectal cancer, analyzing future research directions
to offer new insights for colorectal cancer treatment.

2. Intestinal flora associated with
colorectal cancer development

Increasing studies have shown a close link
between gut microbiota and colorectal carcinogenesis.
However, the specific microbial species driving
colorectal  carcinogenesis, and their causal
relationships with CRC initiation/progression,
remain to be fully delineated. Advances in genomics
and bioinformatics have significantly enhanced the
study of bacterial flora. Recent studies highlight the
roles of Fusobacterium nucleatum (F. nucleatum),
enterotoxigenic Bacteroides fragilis (B. fragilis), pks*
Escherichia coli (E. coli), and Enterococcus faecalis (E.
faecalis) in colorectal cancer development[17-19]
(Figure 1). This section summarizes recent studies on
the intestinal flora associated with colorectal cancer
(Table 1).

2.1 Fusobacterium nucleatum

Fusobacterium nucleatum is a Gram-negative
anaerobic bacterium that primarily colonizes the oral
cavity and acts as a conditionally pathogenic

organism. Early studies on F. nucleatum —a common
member of the oral microbiota—focused on its role in
oral diseases, particularly its pro-inflammatory effects
and impact on immune cell function, which are
closely linked to periodontitis and oral tumor
progression. However, with the progress of research,
the contribution of F. nucleatum to colorectal cancer
has attracted attention. A 2012 study first observed
that F. nucleatum signals were enriched in tumor
tissues compared to adjacent normal tissues[29], and
its abundance increased as colorectal cancer
progressed from early to advanced stages[30]. The
abundance of F. nucleatum was significantly correlated
with colorectal cancer prognosis, with higher levels
associated with poorer outcomes[31, 32]. Specifically,
F. nucleatum-high cases showed a 58% increased risk
of CRC-specific mortality compared with F.
nucleatum-negative cases[33]. F. nucleatum
accumulates in CRC tissues via binding of its Fap2
protein to Gal-GalNAc residues on tumor cell
surfaces[34]. F. nucleatum proteins FadA promote
colorectal cancer by binding to E-cadherin,
respectively, activating [-catenin signaling and
enhancing tumor proliferation[35, 36]. F. nucleatum
has also been shown to activate the NF-xB pathway in
colorectal cancer cells via the ALPK1 receptor,
inducing ICAM1 expression and enhancing cancer
cell invasiveness and metastasis[37]. F. nucleatum can
promote colorectal cancer liver metastasis via the
miR-5692a/IL-8 axis by inducing
epithelial-mesenchymal transition[38]. F. nucleatum
upregulates integrin a5 (ITGA5) in colorectal cancer
by activating E-cadherin/KLF4 signaling in a
Ca?*-dependent manner. This process enhances tumor
growth and metastasis, which can be attenuated by
targeting ITGAS5 or KLF4[39].

2.2 Enterotoxigenic Bacteroides fragilis

Bacteroides fragilis is a common Gram-negative
bacillus, classified into enterotoxigenic and
non-toxin-producing  strains. Enterotoxigenic B.
fragilis secretes a 20-kDa metalloprotease toxin,
known as B. fragilis toxin. This strain can disrupt the
intestinal barrier, promoting inflammation and
disease progression[40, 41]. A strong association
between enterotoxigenic B. fragilis and colorectal
cancer has also been reported[42-44]. When B. fragilis
colonizes the colon, it produces large amounts of
toxins that damage the intestinal mucosa and activate
STAT3 in the epithelial cells. STAT3 activation is
closely linked to inflammation, cell proliferation,

angiogenesis, and cancer development and
metastasis. Long-term activation of STAT3 by
enterotoxigenic B. fragilis maintains a
pro-carcinogenic  inflammatory environment in
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colorectal cells, significantly increasing their
likelihood of becoming cancerous[45].
Enterotoxigenic B. fragilis secretes toxins that cleave
E-cadherin on colonic cells, disrupting epithelial cell
connections. This damage promotes bacterial
translocation and activates the Wnt/p-catenin
signaling pathway, which contributes to colorectal
carcinogenesis[46]. Furthermore, enterotoxigenic B.
fragilis activates Toll-like receptor 4 (TLR4) in
colorectal cancer cells, upregulating JMJD2B
expression through the TLR4-NFAT5-dependent
signaling pathway. This results in high NONAG
expression and the acquisition of tumor stem cell
characteristics[47].

2.3 pks* Escherichia coli

Escherichia coli, a common commensal bacterium
in the human intestinal tract, includes certain strains

capable of causing disease under specific conditions.
Analysis of colorectal cancer tissue samples has
revealed a significant enrichment of E. coli within
tumor tissues, with its abundance correlating with
cancer stage and prognosis. Notably, some E. coli
strains harbor polyketide synthase (pks) gene islands,
which encode colibactin—a genotoxic small molecule
that interacts with DNA, inducing damage through its
molecular warhead structure[25, 48]. The prevalence
of pks™ E. coli is higher in CRC patients compared to
healthy individuals, suggesting a potential role in
tumorigenesis[49]. Emerging evidence indicates that
pks* E. coli promotes CRC development by inducing
DNA damage, cell cycle arrest, chromosomal
aberrations, and cellular senescence in colorectal
cells[50, 51].
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Figure 1. Microbial Species Contributing to Colorectal Carcinogenesis.
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Table 1. Pathogenic Gut Bacteria in Colorectal Cancer Development

Classification Bacteria Influence

Mechanisms

Fusobacteriota Fusobacterium nucleatum
immune response;

promotes inflammation

Bacteroidota Enterotoxigenic Bacteroides Produces B. fragilis toxin (BFT);
fragilis Disrupts epithelial barrier;
Triggers Th17 inflammation

Proteobacteria pks* Escherichia coli Produces colibactin;

Induces DNA double-strand breaks

Firmicutes Enterococcus faecalis

Adbheres to the epithelium; modulates

Activates -catenin signaling via FadA binding to E-cadherin, leading to
upregulation of Cyclin D1[20];

Suppresses immune cytotoxicity via Fap2-TIGIT interaction;

Induces a stem-like phenotype and chemoresistance[21]

BFT cleaves E-cadherin and activates 3-catenin signaling[22];
Induces IL-17-mediated inflammation[23];
Activates STAT3 in epithelial cells, leading to upregulation of ZEB2[24]

Colibactin alkylates host DNA[25], causes genomic instability and
specific mutation signatures;
Promotes carcinogenesis

Produces reactive oxygen species (ROS); Secretes superoxide that causes DNA strand breaks;

Induces DNA damage and macrophage Promotes tumor-associated inflammation via COX-2/PGE2

activation

Campylobacterota Campylobacter jejuni Adheres to mucosa;

Secretes cytolethal distending toxin

Firmicutes Peptostreptococcus

anaerobius

Alters lipid metabolism;
Activates TLR2/4 signaling

CDT induces DNA damage and cell cycle arrest;

Disrupts epithelial integrity;

Promotes IL-8-driven inflammatory response

Activates PI3K-Akt pathway via a2/p1 integrin, leading to increased
cell proliferation[26];

Enhances ROS production and cholesterol biosynthesis[27];
Facilitates tumor-promoting microenvironment[28]

2.4 Enterococcus faecalis

Enterococcus ~ faecalis is the predominant
enterococcal species in the human gut, colonizing
from the neonatal period and playing a crucial role in
intestinal development. In neonates, E. faecalis exhibits
anti-inflammatory properties and supports colonic
maturation by inducing intestinal epithelial cells to
secrete IL-10, thereby suppressing inflammation and
reducing  IL-8  production. Due to its
immunomodulatory effects, E. faecalis has been
utilized in the treatment of chronic sinusitis,
bronchitis, and acute diarrhea in children. However,
its role in colorectal cancer remains controversial[52].
Some studies suggest that E. faecalis may exert
protective effects against CRC, as evidenced by the E.
faecalis EC-12 strain’s ability to inhibit P-catenin
signaling and suppress tumorigenesis in colorectal
cells[53]. Conversely, other studies report a higher
abundance of E. faecalis in CRC patients compared to
healthy individuals, implicating a potential
pro-tumorigenic role[54]. E. faecalis promotes cell
proliferation and angiogenesis in CRC via producing
biliverdin. Biliverdin can significantly increase the
expression levels of IL-8 and VEGFA by regulating
the PI3K/AKT/mTOR signaling pathway[55].
Moreover, E. faecalis has been shown to generate
reactive oxygen species, leading to colonic DNA
damage, genetic instability, and CRC progression[56].
Further research is needed to elucidate the precise role
of E. faecalis in CRC development.

2.5 Other strains of bacteria

In addition to  Fusobacterium  nucleatum,
enterotoxigenic Bacteroides fragilis, pks* Escherichia coli,
and Enterococcus faecalis, other bacterial strains are
also associated with colorectal carcinogenesis, such as

Campylobacter  jejuni. This bacterium produces
cytolethal distending toxin (CDT), which are
homologous to DNA enzymes and can induce DNA
double-strand breaks, leading to gene mutations and
chromosomal aberrations that promote colorectal
cancer development[57]. Furthermore, the use of
rapamycin inhibits the tumor-promoting activity of
Campylobacter jejuni[58]. Peptostreptococcus anaerobius
interacts with a2/f1 integrins on colorectal cancer
cells via the surface protein PCWBR2. This interaction
selectively enriches on the mucosal surface of
colorectal cancer, activating the PI3K-Akt signaling
pathway and significantly enhancing the proliferative
capacity of colorectal cancer cells[26]. The
composition of the intestinal flora is diverse, and the
interactions between different strains and between
strains and the human body are complex. Further
studies are needed to elucidate the relationship
between = common  strains and  colorectal
carcinogenesis.

3. Mechanisms of colorectal cancer
occurrence and development caused by
intestinal flora

The development of colorectal cancer is a
multifactorial process influenced by genetic,
environmental, dietary, and lifestyle factors. Its
initiation and progression result from the complex
interplay of these elements. The critical role of the gut
microbiota in CRC pathogenesis is well-established;
however, the precise mechanisms through which
microbial communities contribute to colorectal
carcinogenesis remain incompletely understood and
are an active area of investigation. This section
provides an overview of the key mechanisms
implicated in CRC development based on current
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Figure 2. Key Mechanisms of Gut Microbiota Implicated in CRC Development.

enferotoxigenic Bacteroides fragilis Fusobacterium nucleatum

L ’U“E'J&U!f[' UL
o=

metalloprotense (wain

]

tumor \
stem ecll

.

STAT3

Wal/B-culenin

|
|
1
1
I
|
|
: ‘ ALPKIACAMI|  [milk-3692a11.-§|
1
I
1
1
!
I
|

(inflammation (‘ﬂrcmngenesli metastasis

research findings (Figure 2).

3.1 Direct action leading to DNA damage

Colorectal cancer is driven by the accumulation
of mutations in proto-oncogenes and oncogenes, with
the "adenoma-carcinoma sequence" model describing
chromosomal instability as a key feature of disease
progression. In this model, genetic mutations lead to
hyperplasia and dysplasia of the colonic epithelium,
ultimately resulting in malignant transformation.
Emerging evidence suggests that specific bacterial
strains within the gut microbiota contribute to CRC
development by inducing DNA damage in colorectal
epithelial cells[59]. For instance, co-culture of
Fusobacterium nucleatum with CRC cells leads to
significant DNA damage and upregulation of the
DNA repair factor Chk2[60]. Similarly, Escherichia coli
harboring pks* alkylate adenine residues in DNA,
causing double-strand breaks and cross-linking[61].
Whole-genome sequencing of colonic organoids
exposed to colibactin has revealed distinct mutational
signatures, further supporting the role of pks* E. coli in
colorectal carcinogenesis[62]. Additionally, both pks*
E. coli and enterotoxigenic Bacteroides fragilis induce
8-oxoguanine DNA lesions, which are closely linked
to CRC initiation[63]. Toxins secreted by
enterotoxigenic B. fragilis upregulate spermine

oxidase in colonic cells, promoting ROS production
and subsequent DNA damage[64]. Likewise,
Campylobacter jejuni produces toxins with DNase
activity, leading to DNA double-strand breaks, gene
mutations, and chromosomal aberrations, thereby
contributing to CRC progression[65].

3.2 Inducing chronic inflammation

Chronic inflammation is a well-established risk
factor for tumorigenesis, particularly in colorectal
cancer. Persistent intestinal inflammation and poorly
controlled inflammatory bowel disease significantly
elevate the risk of colorectal carcinogenesis.
Pro-inflammatory cytokines such as TNF-a, IL-8, and
IL-17 play a crucial role in CRC development and
progression[66]. Gut microorganisms contribute to
intestinal inflammation by interacting with pattern
recognition receptors via surface-associated molecular
signatures, triggering the secretion of inflammatory
mediators through innate immune signaling
pathways.  Enterotoxigenic  Bacteroides  fragilis
promotes colonic inflammation by activating STAT3
in colonic epithelial cells and inducing IL-17
production. Additionally, its toxin activates the NF-xB
pathway via E-cadherin in intestinal epithelial cells,
leading to  excessive IL-8 secretion and
inflammation[67]. Similarly, Peptostreptococcus
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anaerobius has been shown to disrupt the intestinal
barrier, and promote macrophage pyroptosis and
IL-13 secretion via the TLR2/4-NF-xB-NLRP3
signaling pathway[68]. While intestinal inflammation
is a natural component of tissue repair following
microbial ~ dysbiosis, chronic and unresolved
inflammation can create a  pro-tumorigenic
environment, thereby increasing the risk of CRC
development.

3.3 Influence of intestinal metabolites

The gut microbiota colonizes the human
intestine and generates a diverse array of metabolites
that directly interact with the host, playing a critical
role in  colorectal cancer initiation and
progression[69].  Enterococcus  faecalis  produces
biliverdin, which alleviates cell cycle arrest in CRC
cells, thereby promoting proliferation and colony
formation. Additionally, biliverdin induces
angiogenesis and accelerates tumor progression by
activating the PI3K/AKT/mTOR signaling pathway,
leading to the upregulation of IL-8 and VEGFA in
CRC cells[55]. Bile acids, another key class of
microbial metabolites, are synthesized as primary bile
acids in hepatocytes and subsequently converted into
secondary bile acids by the intestinal microbiota,
particularly under a high-fat diet[70]. Secondary bile
acids, including deoxycholic acid, lithocholic acid,
taurolithocholic acid, and their derivatives, exhibit
pro-tumorigenic effects by inducing ROS formation,
causing DNA damage and gene mutations, disrupting
mitosis, and activating the EGFR and NF-«xB
pathways[71]. Additionally, sulfate-reducing bacteria
in the gut metabolize intestinal sulfate into hydrogen
sulfide, which induces DNA damage, oxidative stress,

inflammation, and colonic mucosal
hyperproliferation,  thereby = promoting = CRC
development[72]. In contrast, dietary fiber

metabolism by gut microbiota produces short-chain
fatty acids (SCFAs), such as acetate, propionate, and
butyrate, which exert beneficial effects. Among these,
butyrate possesses potent anti-inflammatory and
antitumor properties by inhibiting histone deacetylase
(HDAC), a key regulator of oncogenic gene
expression. A decline in butyrate-producing bacteria,
such as Clostridium butyricum and Faecalibacterium
prausnitzii, has been associated with an increased risk
of CRC[73].

3.4 Regulation of the body's immunity

The immune system plays a crucial role in
defending against pathogens and surveilling
malignant cells, eliminating cancerous tissues.
However, tumor cells can evade immune detection by
altering their molecular phenotypes, secreting

68
immunosuppressive  cytokines, and recruiting
regulatory immune cells. Intestinal microbiota

influence cytokine expression and activate specific
immune cell populations, thereby modulating both
local and systemic immune responses to tumors. The
abundance of F. nucleatum is inversely correlated with
CD3* T cell infiltration in colorectal tumors|[74].
Through activation of the NF-xB pathway, F.
nucleatum upregulates miR-1322 in colorectal cancer
cells, leading to increased CCL20 secretion and the
induction of M2 macrophage polarization[75]. M2
macrophages, which suppress T cell-mediated
antitumor immunity via Arg-1 expression, are closely
linked to tumor proliferation, metastasis, and
angiogenesis[76]. In colorectal cancer patients with
microsatellite instability, F. nucleatum abundance is
strongly associated with immune responses. Tumors
with high F. nucleatum levels exhibit increased
proliferation, invasiveness, and distinct immune
microenvironment alterations, including reduced
FoxP3*+ T-cell infiltration and enhanced M2
macrophage polarization, which collectively impair
immunotherapy efficacy[77]. Enterotoxigenic
Bacteroides fragilis activates STAT3 signaling in colonic
mucosal immune cells, upregulating IL-17A and
promoting the infiltration of pro-tumorigenic Th17
cells[23]. Moreover, Streptococcus bovis stimulates
colorectal cancer cells to secrete cytokines such as
IL-6, Scybl, Ptgs2, IL-13, TNF, and CCL2, thereby
recruiting CD11b* TLR-4* immune cells to the tumor
site, establishing an immunosuppressive
microenvironment that fosters colorectal cancer
progression[78] Peptostreptococcus  anaerobius
promotes colorectal cancer progression and resistance
to anti-PD-1 therapy by activating integrin
a2pfl-NF-xB  signaling to  recruit CXCR2*
myeloid-derived suppressor cells (MDSCs) and
directly enhancing MDSC immunosuppressive
activity via lytC_22-Slamf4 interactions[28].

4. Clinical application and treatment
strategies

4.1 Early screening and diagnosis of colorectal
cancer

Colorectal cancer is often asymptomatic in its
early stages, leading to late-stage diagnoses and poor
prognoses. Early screening is crucial for timely
intervention, significantly reducing mortality and
improving patient survival rates[79]. Currently, the
fecal occult blood test (FOBT) and colonoscopy are the
primary screening methods for CRC, and their
combined use has been shown to reduce CRC-related
mortality by 16%[80]. However, FOBT has limited
specificity, necessitating confirmatory colonoscopy
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for positive cases. Although colonoscopy remains the
gold standard due to its high detection accuracy, its
invasiveness, high cost, and associated risks, such as
perforation and hemorrhage, limit its widespread
acceptance and feasibility for large-scale population
screening. Therefore, there is an urgent need for a
non-invasive, highly sensitive, and specific screening
method to enhance early CRC detection and improve
clinical outcomes.

The intestinal flora in colorectal cancer patients
differs significantly from that in healthy individuals,
with a notable increase in strains associated with
carcinogenesis and a decrease in protective strains.
This suggests that intestinal flora could serve as an
early marker for colorectal cancer screening[81].
Recent studies have explored the use of intestinal
microorganisms to distinguish colorectal cancer
patients from healthy individuals. F. nucleatum is
significantly enriched in colorectal cancer tissues,
detected in 74% of cases, whereas its abundance in
peri-tumoral tissues is much lower—about 1/250 of
that in cancerous tissues[82]. In colorectal cancer
patients, detection rates of pks* Escherichia coli and
enterotoxigenic  Bacteroides  fragilis  are  also
significantly higher than in healthy individuals,
suggesting that F. nucleatum, pks* Escherichia coli,
and enterotoxigenic Bacteroides fragilis could serve as
potential  biomarkers for  colorectal cancer
screening[83]. In colorectal cancer screening, testing
for F. nucleatum abundance combined with fecal
immunochemical test (FIT) offers similar specificity
but a 26% increase in sensitivity compared to FIT
alone. A recent meta-analysis found that F. nucleatum
had a sensitivity of 71%, specificity of 76%, and an
AUC of 0.80 for diagnosing colorectal cancer,
indicating its potential as a biomarker for
non-invasive screening[84].

Beyond the microbiome itself, microbial
metabolites also hold promise as potential biomarkers
for colorectal cancer screening. Notably, short-chain
fatty acids, which possess anticancer properties, are
significantly reduced in the feces of CRC patients
compared to healthy individuals[85]. Moreover,
alterations in the levels of amino acids such as proline
and cysteine have been observed in CRC samples[86].
A fecal metabolomic analysis using gas
chromatography-mass spectrometry further revealed
decreased levels of fructose, linoleic acid, and niacin,
alongside elevated concentrations of proline and
uridine in CRC patients[87]. These findings highlight
the potential of fecal metabolites as non-invasive
biomarkers for CRC detection, offering new avenues
for early diagnosis and screening.

In conclusion, the composition of gut microbiota
differs significantly between colorectal cancer patients

and healthy individuals, with distinct pathogenic
bacterial signatures associated with disease
progression. Integrating gut microbial screening—a
rapid and non-invasive diagnostic approach—with
existing colorectal cancer screening methods can
improve both sensitivity and specificity, offering a
promising strategy for early detection and
intervention.

4.2 Influence of intestinal flora on clinical
treatment efficacy

Colorectal cancer is currently managed through

a multimodal approach that includes surgical
intervention, chemotherapy, radiotherapy,
immunotherapy, and other treatment

modalities[88-91]. Given the significant relationship
between gut microbiota and colorectal cancer
development, as well as their impact on treatment
outcomes, there has been growing interest in
researching this connection. Numerous studies have
demonstrated that gut microbiota can influence the
efficacy of chemotherapy, radiotherapy, and
immunotherapy in the treatment of colorectal
cancer[92, 93].

4.2.1 Chemotherapy

Intestinal flora can influence the efficacy of
chemotherapeutic drugs by regulating their
metabolism in colorectal cancer cells. In colorectal
cancer patients treated with 5-fluorouracil after
radical surgery, the abundance of Fusobacterium
nucleatum is correlated with chemoresistance. Further
studies demonstrated that Fusobacterium nucleatum
upregulated the expression of BIRC3 via the
TLR4/NF-xB signaling pathway, which directly
inhibited apoptosis by suppressing the cysteine
asparaginase cascade, thereby contributing to drug
resistance in colorectal cancer cells[94]. Fusobacterium
nucleatum can also inhibit the expression of miR-18a
and miR-4802 via the TLR4/MYDS88 innate immune
signaling pathway, leading to increased expression of
ULK1 and ATG7, which activate autophagy and
contribute to drug resistance to oxaliplatin and
5-fluorouracil in colorectal cancer cells[95]. In
addition to influencing drug resistance by affecting
drug metabolism and response, some bacterial strains
can directly alter chemotherapeutic drugs, rendering
them inactive and reducing their antitumor efficacy.
Literature reports indicate that in the presence of
specific y-Proteobacteria or Escherichia coli in tumors,
gemcitabine is converted into its inactive form by

cytidine deaminase, reducing its anticancer
efficacy[96].
Intestinal  flora  not only  influences

chemotherapy efficacy but also plays a significant role
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in chemotherapy-related adverse effects.
Approximately 30% of chemotherapy patients
experience chemotherapy-related pain.
Chemotherapy-induced  peripheral = neuropathy

causes neuropathic pain that can persist for months or
even years, limiting chemotherapy dosages and
hindering optimal therapeutic outcomes. Intestinal
flora plays a crucial role in chemotherapy-induced
mechanical pain hypersensitivity; oxaliplatin-induced
hypersensitivity was reduced in germ-free mice and
in mice pretreated with antibiotics. This is mainly due
to the interaction between bacterial LPS and TLR4 on
macrophages, which stimulates the secretion of
inflammatory factors in response to oxaliplatin,
leading to mechanical pain hypersensitivity[97, 98].
Irinotecan, a DNA topoisomerase I inhibitor, blocks
DNA replication and RNA synthesis. It is a first-line
treatment for advanced colorectal cancer but causes
serious gastrointestinal side effects, including
mucositis and delayed diarrhea. In vivo, irinotecan is
converted to SN38, which inhibits DNA
topoisomerase I and tumor proliferation. SN38 is then
cleared via the gastrointestinal tract by binding to
glucuronic acid, forming the inactive SN38-G.
However, [-glucuronidase produced by intestinal
commensal bacteria removes glucuronic acid from
SN38-G, reactivating SN38 and causing intestinal
epithelial damage and hemorrhagic diarrhea. In the
human gut, B-glucuronidase is primarily expressed
by Enterococcus faecalis. Diarrhea caused by irinotecan
can be prevented by selectively inhibiting this
enzyme, allowing for dose intensification and
improving irinotecan effectiveness[99].

4.2.2 Radiotherapy

Radiotherapy can rapidly and persistently alter
the composition of the intestinal flora, increasing the
abundance of Bacteroides and decreasing Clostridium in
the intestines of mice treated with systemic
radiotherapy compared to controls[100]. A study
found that vancomycin treatment, which alters the
Gram-positive flora in the intestinal microbiota,
significantly enhanced both the direct and distant
antitumor effects of radiotherapy by remodeling the
tumor microenvironment and promoting antigen
presentation in the draining lymph nodes[101].
Beyond influencing tumor sensitivity to radiotherapy,
intestinal flora also impacts radiotherapy toxicity.
Germ-free mice receiving lethal whole-body
irradiation showed reduced endothelial and
lymphocyte apoptosis in the small intestinal villi
compared to conventionally reared mice, and were
significantly more resistant to radiation enteritis. This
resistance was linked to the Fiaf factor, a
fibrinogen/angiopoietin-like protein typically

secreted by small intestinal villous epithelial cells, but
inhibited by intestinal flora. Numerous studies have
shown that modulating the specific microbial
composition of the gut through flora transplantation
can either exacerbate or alleviate intestinal radiation
damage[102, 103].

4.2.3 Immunotherapy

The advent of immunotherapy  has
revolutionized cancer treatment, yielding remarkable
therapeutic success across multiple malignancies.
Immunotherapy is primarily indicated for patients
with microsatellite instability-high (MSI-H) and
mismatch repair-deficient (AMMR) CRC. With its
growing application, the impact of gut microbiota on
immunotherapy efficacy has garnered increasing
attention. Clinical studies have demonstrated a strong
correlation between gut microbiome composition and
the response to immune checkpoint inhibitors
(ICIs)[104, 105]. Preclinical models further support
these findings, showing that increasing the abundance
of Lactobacillus rhamnosus GG in the gut enhances
dendritic cell and CD8* T-cell infiltration into
colorectal tumors. This bacterium activates the
cGAS/STING signaling pathway in dendritic cells,
induces IFN-y secretion, and potentiates the efficacy
of PD-1 blockade therapy[106]. Additionally,
Bifidobacterium pseudolongum, Lactobacillus johnsonii,
and Olsenella have been shown to improve ICI
response in various murine cancer models, with the
gut microbiota-derived metabolite inosine playing a
pivotal role in immune activation[107]. Fusobacterium
nucleatum promotes colorectal cancer by inducing an
ALPK1-dependent pro-inflammatory response and
upregulating PD-L1 expression[108]. Moreover, a
clinical study investigating regorafenib combined
with toripalimab in metastatic colorectal cancer
revealed that patients with high F. nucleatum
abundance had a lower immunotherapy response rate
and shorter median progression-free survival
compared to those with lower F. nucleatum levels[109].

4.3 Interventions for intestinal flora

Intestinal flora significantly impacts the efficacy
of chemotherapy, radiotherapy, and immunotherapy
in colorectal cancer. Modulating the composition of
the gut flora can influence the effectiveness of CRC
therapies, making this approach a potential
therapeutic strategy[110].

Fecal microbiota transplantation (FMT) involves
transferring the gut microbial community from a
donor to a patient[111]. This approach reduces
competitive inhibition in the recipient's microbiome
while enhancing overall diversity and stability,
offering advantages over targeting the abundance of a
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single microbial species. FMT is widely used to treat
Clostridioides difficile (C. difficile) infections and
inflammatory bowel disease[112, 113]. While FMT has
shown promise in enhancing the efficacy of ICI in
melanoma patients[114], conclusive data on FMT's
efficacy in colorectal cancer clinical trials is lacking.
Some  preclinical studies demonstrate that
transplanting feces from colorectal cancer patients
into mice elevated intestinal inflammatory factors and
increased the occurrence of high-grade dysplasia and
polyps, indicating that the microbiota of colorectal
cancer patients promotes carcinogenesis in animal
models[115].  Conversely,  transplanting  gut
microbiota from healthy mice increased resistance to
carcinogen-induced colorectal cancer in recipient
mice[116]. Although FMT's safety and efficacy in
treating C. difficile infections are well-documented,
potential risks such as pathogen transmission remain,
and its use in immunocompromised colorectal cancer
patients is still controversial.

Diet is one of the most significant factors
affecting gut microbial composition, with a direct
correlation between gut flora and dietary substrates.
The gut microbiota rapidly alters in response to
dietary modifications[117]. Dietary fiber modifies gut
microbiota composition by enhancing the abundance
of probiotics like Bifidobacteria and Lactobacillus, while
also increasing butyrate levels, which possess
anticancer properties, via microbial
fermentation[118]. In contrast, red meat and
processed meat consumption is linked to a higher risk
of colorectal cancer, classified as carcinogenic, and
reducing red meat and processed meat intake can
significantly lower colorectal cancer incidence[119,
120]. Modulating patients' intestinal flora through
dietary interventions seems to be a safe, feasible, and
cost-effective approach[121]. However, if a healthy
diet cannot be sustained following dietary changes,
gut microbiota composition may revert to its original
state. Changing long-term dietary habits is
challenging and difficult to monitor, highlighting the
need for scientifically sound and easily
implementable dietary regimens.

Probiotics are microorganisms that confer health
benefits, and when administered in adequate
amounts, they can restore the balance of intestinal
flora and enhance overall health. Preclinical studies
indicate that genera such as Bifidobacterium and
Lactobacillus spp. can exert tumor-suppressive effects
by inhibiting cell proliferation, inducing apoptosis in
tumor cells, enhancing antitumor immunity, and
producing anticancer compounds[122]. However,
questions regarding which probiotic strains to use for
treating colorectal cancer, the optimal ratios of each
strain, the appropriate dosages, and potential pitfalls

remain unresolved.

Prebiotics (e.g., inulin, fructo-oligosaccharides)
represent another critical intervention, as they
selectively stimulate the growth of beneficial taxa
(e.g., Bifidobacterium spp.) to restore gut microbial
homeostasis. Recent trials have shown prebiotic
supplementation reduces CRC-associated
inflammation = markers[123],  supporting their
potential as adjuvant therapies.

5. Summary and Outlook

The critical role of intestinal flora in colorectal
carcinogenesis, progression, and treatment has been
recognized and validated by previous studies. The
identification =~ of  colorectal  cancer-associated
pathogenic bacteria and metabolic markers, along
with the elucidation of flora-host interaction
mechanisms, contributes to early screening, diagnosis,
and treatment of colorectal cancer, offering novel
insights into innovative diagnostic and therapeutic
approaches.

Differences in gut flora between colorectal cancer
patients and healthy individuals highlight their
potential as screening markers, and advances in
microbiological testing technology have facilitated
their clinical application. Although some studies have
shown promising results by combining gut flora
testing with existing colorectal cancer screening
techniques, leading to significant improvements in
sensitivity and specificity, challenges related to
reproducibility and standardization persist. These
challenges arise from the complexity of the intestinal
microbiota and the influence of environmental and
genetic factors. Designing an optimal combination of
biomarkers and validating them across diverse
populations to develop a safe and cost-effective
clinical screening technique remains a significant
research challenge.

Numerous methods can influence the
composition of gut flora, many of which have been
explored in clinical trials, including probiotics,
prebiotics, antibiotics, FMT, dietary modifications,
and physical activity. However, the optimal approach
to manipulate the microbiota remains to be
determined. It remains unclear which method —fecal
microbiota transplantation, dietary modification, or
probiotic intervention—is superior. The criteria for
utilizing FMT and probiotic supplementation in
colorectal cancer patients, along with potential
contraindications, are still under investigation.
Further research is necessary to identify which strains
are effective for «clinical wuse, the optimal
administration rates, and appropriate dosages.
Individual differences in probiotic colonization within
the intestinal mucosa exist, highlighting the need for
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comprehensive analysis of a patient's microbiome,
metabolome, and dietary factors. This approach can
facilitate the design of individualized treatments
through microbial modification.

Although numerous studies have demonstrated
an association between intestinal flora and colorectal
cancer, research on fungi, viruses, and
protozoa —non-bacterial components of the intestinal
microbiota—remains limited. This gap is primarily
due to the low abundance of these non-bacterial
components in the intestinal tract and the challenges
associated with their detection and investigation. The
gut microecology represents a complex and balanced
system in which each component interacts with one
another. Focusing exclusively on the bacterial
components may lead to a one-sided understanding,
leaving many questions regarding the roles of
non-bacterial components unresolved.

Given the vast number and complex, variable
composition of intestinal flora, elucidating the
relationship between gut microbiota and the
occurrence and progression of colorectal cancer
remains a challenging task. Advances in sequencing
genomics, bioinformatics analysis technologies, and
cultivation techniques may lead to breakthroughs in
future research. Integrative multi-omics approaches
(e.g., metagenomics + metabolomics +
transcriptomics) can be used to construct robust gut
microbial diagnostic models for early CRC, while

machine learning algorithms can  optimize
personalized FMT regimens by predicting patient
response based on baseline microbial
composition[124, 125].
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