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Abstract 

Developmental dysplasia of the hip (DDH) is a common pediatric orthopedic disorder that can lead to 
lifelong disability if undetected. Ultrasound is the primary diagnostic modality but is subject to operator 
dependence and inter-observer variability. To address this challenge, we propose an attention-enhanced 
YOLOv11 framework for automated DDH classification. A dataset of 6,075 hip ultrasound images was 
preprocessed with augmentation and dimensionality reduction via UMAP. The model integrates 
Cross-Stage Partial (CSP) modules and C2PSA spatial attention to improve feature extraction, and was 
trained using Focal Loss and IoU Loss. It achieved 95.05% accuracy with an inference speed of 11.5 ms per 
image, substantially outperforming MobileNetV3 and ShuffleNetV2. Grad-CAM visualizations confirmed 
that the model consistently attends to the acetabular roof and femoral head, landmarks central to Graf 
classification, thereby enhancing clinical interpretability. These findings demonstrate that the proposed 
framework combines technical robustness with clinical relevance. Future work will emphasize 
multi-center validation and multimodal integration to ensure generalizability and support widespread 
clinical adoption. 

Keywords: Developmental Dysplasia of the Hip (DDH), Ultrasound Imaging, Deep Learning, YOLOv11, Medical Image 
Classification, Automated Diagnosis. 

1. Introduction 
Developmental Dysplasia of the Hip (DDH) is a 

prevalent pediatric orthopedic disorder that impairs 
hip joint development in infants [1]. If undiagnosed or 
untreated, DDH may progress to hip joint instability, 
impaired mobility, and early-onset osteoarthritis, 
ultimately diminishing quality of life. Timely and 
accurate diagnosis is therefore essential to enable 
early intervention and prevent long-term 
complications. Ultrasound, particularly the Graf 
classification system, remains the standard diagnostic 
modality, as it assesses hip joint alignment through 
key anatomical angles [2]. However, this approach 

requires substantial clinical expertise, rendering it 
highly susceptible to inter-observer variability [3]. 
Moreover, variations in image quality and infant 
positioning further complicate interpretation, often 
leading to diagnostic inconsistencies [4]. Given the 
high prevalence of DDH and the limitations of 
manual ultrasound interpretation, there is a pressing 
need for an automated, deep learning-based 
classification system to enhance diagnostic accuracy 
and efficiency. 

Recent advances in deep learning have shown 
substantial promise in automating medical image 

 
Ivyspring  

International Publisher 



Int. J. Med. Sci. 2025, Vol. 22 

 
https://www.medsci.org 

4237 

analysis [5]. Convolutional Neural Networks (CNNs), 
particularly architectures such as U-Net and Fully 
Convolutional Networks (FCNs), have achieved high 
accuracy in segmentation tasks across diverse medical 
imaging modalities [6]. Nevertheless, most existing 
deep learning approaches for DDH diagnosis have 
focused on segmentation rather than direct 
classification, and their success often relies on large, 
expertly annotated datasets that are both costly and 
time-consuming to obtain [7]. Furthermore, 
CNN-based models must contend with challenges 
such as dataset imbalance, variability in image 
quality, and limited availability of labeled samples [8]. 
To address these challenges, this study introduces an 
automated DDH classification framework based on 
YOLOv11, a state-of-the-art real-time object detection 
model [9]. Unlike conventional CNN-based 
segmentation networks, YOLOv11 provides an 
efficient and unified approach to simultaneously 
detecting and classifying DDH-related hip structures 
in ultrasound images, thereby improving diagnostic 
accuracy and consistency [10]. In addition, the 
framework leverages data augmentation to mitigate 
class imbalance and employs UMAP for dataset 
visualization [11]. By integrating advanced attention 
mechanisms and optimized convolutional layers, the 
proposed method enhances both feature 
representation and classification reliability. 

In summary, this study makes the following 
contributions. First, we propose an automated DDH 
classification framework based on YOLOv11, 
optimized for real-time ultrasound diagnosis. Second, 
we introduce a preprocessing pipeline that combines 
UMAP-based visualization with data augmentation to 
alleviate class imbalance and enhance model 
robustness. Third, we integrate advanced spatial 
attention mechanisms (C2PSA) into the YOLOv11 
architecture to strengthen anatomical feature 
recognition. Finally, we validate the proposed model 
against lightweight benchmark networks, 
demonstrating superior accuracy and inference speed 
suitable for clinical application. 

The remainder of this paper is organized as 
follows. Section 2 reviews related work on DDH 
diagnosis and deep learning in medical imaging. 
Section 3 describes the proposed methodology, 
including dataset acquisition, preprocessing, and 
model architecture. Section 4 presents experimental 
results and performance analyses. Section 5 discusses 
the findings and their clinical implications, and 
Section 6 concludes the study with future research 
directions. 

2. Related Work 
2.1 Ultrasound-Based DDH Diagnosis and Graf 
Classification 

Due to the inherent challenges of accurately 
delineating the proximal femur and acetabular 
margin in neonatal hip X-ray imaging [12], ultrasound 
has become the preferred modality for diagnosing 
developmental dysplasia of the hip (DDH) [13]. 
Although its role in large-scale screening programs 
remains debated [14], ultrasound continues to be 
widely adopted across Europe [15]. Several diagnostic 
approaches have been developed, including the Graf, 
Harcke, Terjesen, and Suzuki methods, with the Graf 
technique being the most widely accepted for 
screening, diagnosis, and treatment monitoring of 
DDH [16]. 

The Graf method relies on predefined 
anatomical landmarks within the hip joint, identifying 
five critical points: the iliac outer edge, the lower limb 
of the ilium, the transition point where the bony 
acetabular roof curves toward the ilium, the center of 
the labrum, and the femoral head [17]. By 
constructing three intersecting lines—the baseline, the 
bony roof line, and the soft tissue covering line—two 
key angles can be measured: the α angle (bony roof 
angle) and the β angle (cartilage roof angle) [18, 19]. 
These parameters enable the classification of neonatal 
hips into distinct categories: 
• Type I (Normal Hip): α > 60° 
• Type IIa/IIb (Immature Hip): 50° ≤ α ≤ 59° 
• Type IIc/D (Dysplastic Hip): α < 50° 
• Type III/IV (Dislocated Hip): α < 43° [20-22]. 

Ultrasound imaging offers significant 
advantages, including ease of operation, 
reproducibility, and the absence of ionizing radiation 
[23]. However, the accuracy of the Graf method 
depends heavily on strict adherence to standardized 
imaging protocols [24]. Failure to capture the 
standard plane can result in measurement errors and 
subjective interpretation, thereby reducing the 
reliability of α and β angle assessments [25, 26]. These 
limitations underscore the importance of developing 
automated image analysis techniques to improve 
diagnostic precision and consistency. 

2.2 Deep Learning for Medical Image Analysis 
Deep learning has revolutionized medical image 

analysis, demonstrating remarkable performance in 
segmentation, classification, and anomaly detection 
tasks across diverse clinical domains [27–29]. While 
the concept of artificial neural networks (ANNs) 
originated in 1943 [30, 31], the advent of deep learning 
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in 2006 enabled the development of multi-layer 
network architectures with enhanced representational 
capacity [32]. Among these, Convolutional Neural 
Networks (CNNs) have driven major breakthroughs 
in applications such as disease diagnosis, semantic 
segmentation, and object detection [33–35]. 

CNN-based approaches have become the 
dominant paradigm in medical imaging [36, 37], 
leveraging hierarchical feature extraction to achieve 
high precision in identifying and localizing 
pathological structures [38]. However, these methods 
often require large-scale, expert-labeled datasets, 
making data annotation labor-intensive and 
time-consuming [39–41]. This challenge highlights the 
need for scalable, automated, and real-time 
classification systems that can reduce reliance on 
manual labeling while maintaining diagnostic 
accuracy [42, 43]. 

2.3 Deep Learning for DDH Classification 
Convolutional Neural Networks (CNNs) have 

shown encouraging results in ultrasound-based DDH 
classification, particularly for segmenting femoral 
head and acetabular structures [44]. Early studies 
primarily employed conventional machine learning 
techniques; however, the introduction of Fully 
Convolutional Networks (FCNs), U-Net, and 
transformer-based architectures has substantially 
improved segmentation accuracy in recent years [45, 
46]. Despite these advances, most existing methods 
continue to emphasize segmentation rather than 
direct classification of DDH severity. 

For reliable classification, access to sufficiently 
large and high-quality labeled datasets is essential 
[47]. Yet, training on imbalanced datasets frequently 
results in biased predictions, as underrepresented 
classes are inadequately learned [48]. Moreover, 
medical ultrasound images often suffer from noise, 
speckle artifacts, and incomplete anatomical 
visualization, all of which degrade CNN performance 
[49, 50]. Preprocessing techniques such as noise 
reduction and data augmentation can mitigate these 
limitations, but they inevitably increase 
computational complexity [48–50]. These challenges 
underscore the necessity for more robust, efficient, 
and clinically applicable classification frameworks 
tailored to DDH diagnosis. 

2.4 YOLO-based Medical Image Classification 
The You Only Look Once (YOLO) family of 

models has been widely adopted for real-time object 
detection and classification across diverse domains, 
including medical imaging [51]. Recent iterations such 
as YOLOv4, YOLOv5, and YOLOv8 have introduced 
optimized backbone networks, attention mechanisms, 

and enhanced feature fusion modules, leading to 
notable improvements in both accuracy and 
computational efficiency [52, 53]. Unlike conventional 
CNN-based classification approaches, YOLO 
simultaneously performs object localization and 
classification in a single forward pass, making it 
highly suitable for time-sensitive diagnostic 
applications. 

The latest version, YOLOv11, incorporates 
Cross-Stage Partial (CSP) connections, C2PSA spatial 
attention mechanisms, and efficient convolutional 
blocks, enabling superior feature extraction while 
maintaining lightweight computational demands [54]. 
This architecture has already been applied 
successfully in tasks such as chest X-ray 
interpretation, ultrasound imaging, and medical 
anomaly detection, where it has consistently 
outperformed lightweight models such as MobileNet 
and ShuffleNet in terms of classification accuracy and 
inference speed [55-62]. 

Traditional ultrasound-based DDH diagnosis 
remains dependent on manual interpretation, which 
is inherently variable across operators. By contrast, 
YOLO-based automated classification provides a fast, 
accurate, and scalable alternative, ideally suited for 
real-time clinical applications. Building on these 
advances, the present study leverages YOLOv11 for 
DDH classification, aiming to address persistent 
challenges such as dataset imbalance, image noise, 
and diagnostic inconsistency. 

3. Methodology 
3.1 Data Acquisition 

Ultrasound images used in this study were 
acquired using a diagnostic ultrasound system. The 
dataset comprised 6,075 images stored in DICOM 
format for static frames and AVI format for video 
sequences. Images were categorized into ten 
anatomical classes: hip, ankle, soft tissue, wrist, 
shoulder, finger, knee, elbow, foot, and other. 

For the assessment of Developmental Dysplasia 
of the Hip (DDH), imaging primarily targeted key 
anatomical structures including the femoral head, 
acetabulum, and ilium. The Graf classification 
method, which evaluates hip joint stability through 
the measurement of the α and β angles, was adopted 
as the clinical reference standard. Figure 1 illustrates a 
representative hip joint ultrasound image, 
highlighting the femoral head’s position within the 
acetabulum and labeling the femoral head, acetabu-
lum, and ilium—structures essential for determining 
joint alignment and identifying abnormalities. 

The dataset was collected from multiple clinical 
sources to capture diversity in patient demographics, 



Int. J. Med. Sci. 2025, Vol. 22 

 
https://www.medsci.org 

4239 

imaging protocols, and anatomical variations. 
However, a marked class imbalance was observed: 
the hip category contained a disproportionately high 
number of images (5,159), compared with other 
categories such as knee (13) and ankle (5). This 
imbalance necessitated the use of data augmentation 
strategies, described in Section 3.2. 

3.2 Dataset Analysis and Preprocessing 

3.2.1 Dataset Imbalance and Visualization 

The dataset exhibited pronounced class 
imbalance, which can bias model training and 
compromise generalization performance. To evaluate 
the distribution of samples, we employed Uniform 
Manifold Approximation and Projection (UMAP), a 
state-of-the-art dimensionality reduction technique 
well-suited for high-dimensional medical imaging 
data [51]. UMAP preserves both local and global data 
structures, thereby providing a reliable representation 
of class distribution. 

As illustrated in Figure 2(a), the original dataset 
was dominated by the hip class, which clustered 
separately from the other anatomical categories. 
Following the application of data augmentation, the 
distribution became more balanced, as shown in 
Figure 2(b). The numerical breakdown of each class 
before and after augmentation is presented in Table 1. 

3.2.2 Data Augmentation Strategy 

To mitigate the effects of imbalance and enhance 

model robustness, multiple augmentation techniques 
were applied: 
• Geometric Transformations: Random rotations 

(±15°), translations, and scaling to simulate 
variability in patient positioning. 

• Intensity Adjustments: Gamma correction to 
normalize differences in brightness and contrast 
across scans. 

• Elastic Deformations: Applied to approximate 
natural soft tissue variability. 

• Noise Injection and Bias Field Distortion: 
Introduced random artifacts to replicate 
real-world imaging conditions. 
These augmentation strategies improved class 

balance and promoted better generalization, as 
demonstrated by the more uniform UMAP 
distribution shown in Figure 2(b). 

 

Table 1. Dataset Distribution Before and After Augmentation. 

Class Original 
Training Set 

Original Test 
Set 

Augmented 
Training Set 

Augmented 
Test Set 

Hip 5,159 573 5,159 573 
Shoulder 178 19 890 95 
Knee 13 4 56 20 
Ankle 5 1 25 5 
Wrist 31 5 155 25 
Finger 14 3 70 15 
Elbow 12 4 60 20 
Foot 4 1 20 5 
Soft Tissue 5 4 20 20 

 

 
Figure 1. Ultrasound Image of the Hip Joint in Developmental Dysplasia of the Hip (DDH). 
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Figure 2. UMAP Visualization of Dataset Distribution. 

 

3.3 Proposed YOLOv11-Based Classification 
Model 

The proposed YOLOv11-based framework was 
designed to automate DDH classification from 
ultrasound images while maintaining both high 
inference speed and diagnostic accuracy. 

3.3.1 Model Architecture 

Figure 3 presents an overview of the YOLOv11 

architecture adapted for this study. The framework 
introduces several key innovations: 

(1) Backbone (Feature Extraction) 
• C3k2 Blocks: An efficient implementation of 

Cross-Stage Partial (CSP) bottlenecks, improving 
gradient flow and feature reuse [52]. 

• Spatial Pyramid Pooling – Fast (SPPF): Reduces 
computational cost while retaining multi-scale 
feature representation. 
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• C2PSA Attention Mechanism: Enhances spatial 
feature learning, enabling the model to focus on 
clinically relevant anatomical regions. 
(2) Neck (Feature Aggregation) 

• Combines Feature Pyramid Network (FPN) and 
Path Aggregation Network (PAN) structures. 

• C3k2 blocks replace traditional C2f blocks, 

yielding higher efficiency without compromising 
accuracy 
(3) Head (Prediction) 

• Outputs bounding boxes, class probabilities, and 
confidence scores in a single forward pass, 
thereby supporting real-time classification. 

 

 
Figure 3. YOLOv11 Model Architecture. 
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As shown in Figure 3, these components work 
synergistically to extract discriminative anatomical 
features, aggregate multi-scale information, and 
deliver accurate classification under real-time 
constraints. The integration of CSP and C2PSA 
modules is particularly critical for modeling complex 
hip structures in noisy ultrasound environments. 

Together, these architectural improvements 
enable the YOLOv11 framework to achieve both high 
diagnostic accuracy and computational efficiency, 
rendering it suitable for deployment in point-of-care 
ultrasound systems. 

3.4 Training Procedure 
The training procedure for the YOLOv11-based 

classification model consisted of data preprocessing, 
model training, hyperparameter optimization, and 
performance evaluation. The pipeline was designed to 
maximize generalization, minimize overfitting, and 
ensure robust classification across imbalanced classes. 

3.4.1 Model Training and Optimization 

The model was trained to simultaneously 
optimize feature extraction, localization, and 
classification. Training was conducted using the 
AdamW optimizer, which balances convergence 
speed and generalization by incorporating weight 
decay regularization. A cosine annealing learning rate 
schedule was applied, beginning with an initial 
learning rate of 0.001 and gradually decaying to 
stabilize learning and reduce overfitting. 

To address class imbalance, Focal Loss was 
employed, reducing the influence of easily classified 
samples while emphasizing harder-to-classify cases. 
For localization refinement, IoU Loss was used to 
improve bounding box predictions and ensure 
accurate delineation of hip joint structures. The final 
training configuration was as follows: 
• Initial Learning Rate: 0.001 (cosine decay) 
• Batch Size: 16 
• Number of Epochs: 100 
• Optimizer: AdamW with weight decay = 0.01 
• Loss Functions: (1) Focal Loss for classification, 

(2) IoU Loss for localization 
To improve generalization, the dataset was 

augmented with random rotations, brightness 
adjustments, and noise injection, as described in 
Section 3.2.2. Importantly, patient-level data splitting 
was applied to prevent information leakage: all 
images from the same patient were assigned 
exclusively to one partition. An 80/20 split at the 
patient level was used for development 
(training/validation), followed by 5-fold 

cross-validation, also stratified by patient, to ensure 
robustness. This design eliminated identical-patient 
overlap across folds, providing an unbiased estimate 
of model generalization. 

3.4.2 Evaluation Metrics 

Model performance was evaluated using four 
standard metrics: 
• Accuracy (ACC): Proportion of correctly 

classified cases among all predictions. 

𝑨𝑨𝑨𝑨𝑨𝑨 =
𝑻𝑻𝑷𝑷 + 𝑻𝑻𝑻𝑻

𝑻𝑻𝑷𝑷 + 𝑻𝑻𝑻𝑻 + 𝑭𝑭𝑭𝑭 + 𝑭𝑭𝑭𝑭
 

• Precision (P): Proportion of correctly identified 
positive cases among all predicted positives, 
reflecting the ability to avoid false positives. 

𝑷𝑷 =
𝑻𝑻𝑻𝑻

𝑻𝑻𝑻𝑻 + 𝑭𝑭𝑭𝑭
 

• Recall (R): Proportion of correctly identified 
positive cases among all actual positives, 
reflecting sensitivity and the ability to reduce 
false negatives. 

𝑹𝑹 =
𝑻𝑻𝑻𝑻 

𝑻𝑻𝑻𝑻 + 𝑭𝑭𝑭𝑭
 

• F1-Score: Harmonic mean of precision and recall, 
providing a balanced measure of model 
performance. 

𝑭𝑭𝟏𝟏 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 = 𝟐𝟐 ×
𝑷𝑷 × 𝑹𝑹
𝑷𝑷 + 𝑹𝑹

 

The proposed model was benchmarked against 
lightweight classification architectures, MobileNetV3 
and ShuffleNetV2, with comparisons focusing on 
accuracy, inference time, and computational 
efficiency. In addition, 5-fold cross-validation was 
performed to validate the consistency and robustness 
of results across different dataset partitions. 

4. Results and Discussion 
4.1 Performance Comparison 

The YOLOv11-based DDH classification model 
was first evaluated on the independent test set and 
compared with two lightweight baseline 
architectures, MobileNetV3 and ShuffleNetV2. 
Performance was assessed using four metrics: 
Accuracy, Precision, Recall, and F1-Score. The results 
are summarized in Table 2. 

As shown in Table 2, YOLOv11 achieved the 
highest performance across all metrics, with an 
overall accuracy of 95.05%. This represents a 
substantial improvement of nearly 20% in accuracy 
compared with MobileNetV3 (75.6%) and more than 
23% compared with ShuffleNetV2 (71.9%). Precision 
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and recall values for YOLOv11 were also consistently 
higher, resulting in the highest F1-Score (95.05%). 

These results highlight the effectiveness of 
incorporating CSP and C2PSA modules into the 
YOLOv11 architecture, which improved the model’s 
capacity to capture clinically relevant anatomical 
structures in ultrasound images. The superior 
performance across multiple evaluation metrics 
demonstrates that the proposed framework not only 
outperforms lightweight alternatives but also 
provides reliable classification suitable for real-time 
clinical deployment. 

4.2 Confusion Matrix Analysis 
To further assess classification performance, a 

confusion matrix was generated for YOLOv11, as 
presented in Figure 4. The matrix illustrates the 
distribution of correct and incorrect predictions across 
different DDH categories, providing detailed insights 
into class-specific strengths and weaknesses. 

As shown in Figure 5, both training and 
validation losses decreased steadily throughout the 
training process, with no evidence of divergence 

between the two curves. This pattern indicates stable 
learning dynamics and suggests that overfitting was 
effectively mitigated. The application of data 
augmentation and regularization strategies 
contributed to this stability by improving 
generalization and reducing susceptibility to noise or 
class imbalance. 

The consistent convergence observed in both 
curves demonstrates that the model successfully 
captured discriminative features of hip anatomy 
without sacrificing generalization capacity. These 
results further validate the suitability of the proposed 
training strategy, confirming its robustness in 
handling heterogeneous ultrasound data. 

 

Table 2. Performance Comparison of YOLOv11, MobileNetV3, 
and ShuffleNetV2. 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 
YOLOv11 95.05 94.88 95.22 95.05 
MobileNetV3 75.6 76.1 74.5 75.3 
ShuffleNetV2 71.9 72.4 70.8 71.6 

 

 
Figure 4. Confusion Matrix of YOLOv11 Model. 
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Figure 5. Training and Validation Loss Curves for YOLOv11. 

 
Overall, the model achieved high classification 

accuracy across the majority of categories. However, 
some degree of misclassification was observed. 
Specifically, overlap occurred between Type IIa and 
Type IIb hips, reflecting their inherent anatomical 
similarity and the subtle differences in α angle 
measurements that challenge even experienced 
clinicians. In addition, certain Type III cases were 
misclassified as Type IIc, likely due to similarities in 
femoral head positioning. 

These findings indicate that while the model 
performs robustly overall, borderline categories 
remain the most challenging to differentiate. This 
limitation parallels the clinical reality, where even 
expert sonographers occasionally encounter 
difficulties distinguishing between adjacent Graf 
types. Such results suggest that additional strategies, 
such as refined preprocessing, multi-view ultrasound 
integration, or hybrid AI–physician decision-making 
could further improve classification accuracy in these 
borderline cases. 

4.3 Training and Validation Loss Analysis 
The training and validation loss curves for the 

YOLOv11 model are presented in Figure 5. These 
curves depict the optimization trajectory across 100 
epochs, illustrating both convergence behavior and 
generalization performance. 

4.4 Inference Speed and Computational 
Efficiency 

Inference efficiency is a critical factor for 
real-time DDH screening. Table 3 compares the 
number of parameters, FLOPs, and inference time per 
image for YOLOv11, MobileNetV3, and 
ShuffleNetV2. 

Table 3. Inference speed and computational efficiency 
comparison. 

Model Parameters (M) FLOPs (B) Inference Time 
(ms/image) 

YOLOv11 12.9 49.4 11.5 
MobileNetV3 5.4 2.19 12.0 
ShuffleNetV2 2.3 1.46 11.4 

 
Although YOLOv11 contains a larger number of 

parameters (12.9M) and higher computational 
complexity (49.4B FLOPs) compared with 
MobileNetV3 and ShuffleNetV2, its inference speed 
remained competitive at 11.5 ms per image. This 
demonstrates that the architectural 
optimizations—including CSP modules, spatial 
attention mechanisms, and efficient convolutional 
blocks—effectively balanced accuracy with efficiency. 

The results confirm that YOLOv11 is capable of 
achieving real-time performance without 
compromising diagnostic precision. This balance 
between computational cost and inference speed 
makes the framework well-suited for integration into 
point-of-care ultrasound systems, where rapid 
diagnostic feedback is essential. 

4.5 Comparison with Previous Studies 
To contextualize the performance of the 

proposed framework, we compared it against prior 
deep learning approaches for DDH classification. 
Table 4 summarizes the results. 

As shown in Table 4, YOLOv11 achieved a 
classification accuracy of 95.05%, outperforming 
earlier CNN- and ResNet-based models by a margin 
of 6–8%. This improvement can be attributed to three 
factors: (i) the use of a larger dataset collected over 
multiple years, (ii) architectural enhancements such as 
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CSP modules and C2PSA spatial attention, and (iii) 
robust data augmentation strategies that alleviated 
class imbalance. 

 

Table 4. Comparison with Existing DDH Classification Models. 

Study Model Used Accuracy 
(%) 

Dataset 
Size 

Sezer et al. (2020) [13] CNN + Data 
Augmentation 

87.3 2,500 
images 

Chlapoutakis et al. (2022) 
[24]  

ResNet-50 89.1 3,200 
images 

This Study YOLOv11 95.05 6,075 
images 

 
Compared with earlier approaches, which 

primarily emphasized segmentation or employed 
conventional CNN backbones, the proposed model 
provides a more scalable and clinically practical 
solution. Its superior accuracy, combined with 
real-time inference speed, underscores its potential for 
deployment in routine DDH screening workflows. 

4.6 Ablation Study 
To evaluate the individual contributions of the 

Cross-Stage Partial (CSP) modules and the C2PSA 
spatial attention mechanism, an ablation study was 
conducted under four experimental settings: (1) 
YOLOv11 without CSP, (2) YOLOv11 without C2PSA, 
(3) YOLOv11 without both modules, and (4) the full 
model (CSP + C2PSA). The results are summarized in 
Table 5. 

As shown in Table 5, removal of either CSP or 
C2PSA resulted in a noticeable decline in performance 
compared with the full model. Excluding CSP 

primarily reduced recall, indicating its importance for 
enhancing sensitivity in detecting dysplastic hips. In 
contrast, the absence of C2PSA led to lower precision, 
suggesting that spatial attention was critical for 
guiding the network toward anatomically relevant 
regions and minimizing false positives. The combined 
use of CSP and C2PSA produced the best overall 
performance, underscoring their complementary roles 
in improving both feature extraction and anatomical 
interpretability. 

 

Table 5. Ablation Study of CSP and C2PSA Modules. 

Model Variant Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-Score 
(%) 

YOLOv11 without CSP 91.8 91.2 91.5 91.3 
YOLOv11 without C2PSA 92.6 92.1 92.3 92.2 
YOLOv11 without CSP + 
C2PSA 

90.9 90.3 90.7 90.5 

Full Model (CSP + C2PSA) 95.05 94.88 95.22 95.05 
 
These findings confirm that the architectural 

modifications introduced in YOLOv11 are not only 
computationally efficient but also essential for 
achieving clinically meaningful performance in DDH 
classification. 

4.7 Explainability Analysis 
To improve interpretability and foster clinical 

acceptance, we generated Gradient-weighted Class 
Activation Mapping (Grad-CAM) and attention 
heatmaps for representative cases. As illustrated in 
Figure 6, the model consistently focused on the 
acetabular roof and femoral head—key anatomical 
landmarks central to the Graf classification system. 

 

 
Figure 6. Grad-CAM visualizations of YOLOv11-based DDH classification. (a) Normal hip: the model predominantly focuses on the acetabular roof and femoral head. 
(b) Dysplastic hip: stronger activation is observed around the shallow acetabular roof and displaced femoral head. These attention patterns align with Graf classification 
landmarks, supporting clinical interpretability and acceptance. 
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In normal hips, Grad-CAM highlighted 
concentrated attention on the acetabular roof and 
femoral head, confirming that the model relies on 
clinically relevant structures for accurate 
classification. In dysplastic hips, stronger activations 
were observed around the shallow acetabular roof 
and the displaced femoral head, patterns that align 
closely with radiologists’ visual assessments. 

These findings suggest that the model’s 
decision-making process is not only data-driven but 
also anatomically meaningful. By attending to regions 
routinely evaluated by clinicians, the proposed 
framework enhances transparency and builds trust, 
thereby facilitating its potential integration into 
real-time, point-of-care diagnostic workflows. 

4.8 Clinical Workflow Integration 
To facilitate clinical adoption, we envision 

several pathways through which the proposed model 
could be integrated into routine workflows across 
different care settings. 

Neonatal screening clinics. During routine hip 
ultrasound examinations, the system can be 
embedded directly within the ultrasound console or a 
connected edge device. It provides (i) real-time 
quality feedback, such as alerts for non-standard 
planes or probe instability, (ii) live classification 
overlays to support immediate triage (normal vs. 
dysplastic/immature), and (iii) structured outputs 
including key frames and confidence scores for 
documentation. This integration reduces the need for 
repeat scans, shortens examination time, and 
enhances diagnostic efficiency in high-volume 
screening settings. 

Primary healthcare and community hospitals. In 
resource-limited or non-specialist environments, the 
framework can function as a decision-support tool. 
Cases classified with low confidence are flagged for 
secondary review by pediatric orthopedists, while 
high-confidence normal cases may be safely 
discharged with follow-up instructions. This 
hub-and-spoke model optimizes referral pathways, 
reduces unnecessary specialist consultations, and 
ensures that expert attention is focused on the most 
complex cases. 

Training and quality assurance. Explainability 
features, such as Grad-CAM heatmaps, provide 
immediate feedback by highlighting clinically 
relevant structures (e.g., acetabular roof, femoral 
head). These visualizations can be used as teaching 
aids for junior sonographers and as part of 
standardized training programs. From a quality 
assurance perspective, periodic audits of flagged 
cases and drift monitoring can be implemented to 
ensure sustained accuracy after deployment. 

Human-in-the-loop safeguards. The model is 
designed to complement, not replace, physician 
expertise. Safety features include threshold-based 
alerts, confidence-calibrated reporting, and 
mandatory human review for ambiguous or 
low-confidence cases. These safeguards ensure that 
final diagnostic responsibility remains with clinicians 
while leveraging AI to improve efficiency and 
consistency. 

5. Discussion 
The proposed YOLOv11-based framework 

demonstrates both technical innovation and clinical 
applicability for automated DDH classification. 

From a technical perspective, several 
architectural enhancements directly contributed to the 
model’s superior performance. The incorporation of 
Cross-Stage Partial (CSP) blocks improved gradient 
flow and feature reuse, thereby enhancing recall and 
sensitivity for detecting dysplastic hips. The addition 
of the C2PSA spatial attention mechanism enabled the 
model to focus on anatomically meaningful regions, 
reducing false positives and improving precision. 
Results from the ablation study confirmed the 
complementary roles of these modules, with the full 
model achieving the highest overall accuracy (95.05%) 
and real-time inference speed (11.5 ms per image). 
When compared with lightweight baselines such as 
MobileNetV3 and ShuffleNetV2, the proposed 
framework consistently demonstrated superior 
performance across multiple metrics, underscoring 
the importance of architectural optimization. 
Moreover, the integration of Focal Loss and IoU Loss 
effectively addressed challenges related to class 
imbalance and localization, ensuring stable training 
and robust generalization. 

From a clinical perspective, the framework 
represents an important step toward standardizing 
DDH screening, which remains subject to significant 
inter-observer variability under the Graf classification 
system. By enabling real-time automated 
classification, the model can support clinicians in 
neonatal screening clinics and community healthcare 
settings, where operator expertise is often limited. 
Potential applications include immediate feedback 
during scanning, triage support through abnormal 
case flagging, and automated report generation to 
reduce documentation burden. Importantly, 
explainability analyses such as Grad-CAM 
demonstrated that the model consistently focused on 
the acetabular roof and femoral head, key anatomical 
landmarks used in clinical practice. This alignment 
with established diagnostic criteria enhances 
transparency, fosters clinician trust, and strengthens 
the case for clinical adoption. 
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Despite these strengths, several limitations must 
be acknowledged. First, although the dataset 
comprised more than 6,000 ultrasound images, all 
data were obtained from a single institution. This may 
restrict generalizability due to variations in imaging 
equipment, acquisition protocols, and patient 
demographics. To address this limitation, future work 
will emphasize external validation across multiple 
centers and populations. Second, although 
patient-level data splitting was applied to eliminate 
information leakage, prospective clinical validation 
remains necessary to fully assess performance in 
real-world workflows. Finally, while ultrasound is the 
gold standard for infant DDH screening, 
incorporating multimodal imaging modalities such as 
X-ray and MRI could broaden diagnostic capability 
and improve precision. 

In summary, the proposed YOLOv11 framework 
integrates ablation-validated architectural 
innovations, real-time feasibility, and clinically 
meaningful explainability. Its potential applications 
extend beyond technical accuracy to address practical 
challenges in neonatal screening and primary care 
environments. Future research should prioritize 
multi-center validation, prospective deployment in 
point-of-care ultrasound systems, and multimodal 
integration to ensure robust clinical translation and 
maximize the framework’s impact in standardized 
DDH diagnosis. 

6. Conclusion 
In this study, we developed an 

attention-enhanced YOLOv11 framework for the 
automated classification of developmental dysplasia 
of the hip (DDH) from ultrasound images. By 
integrating Cross-Stage Partial (CSP) modules and 
C2PSA spatial attention, the model achieved superior 
performance, with an accuracy of 95.05% and an 
inference speed of 11.5 ms per image. Ablation 
experiments confirmed the complementary roles of 
CSP and C2PSA, demonstrating their collective 
impact on improving both sensitivity and precision. 

Beyond technical performance, the framework 
provides tangible clinical benefits. Real-time 
classification and interpretable visualizations, 
supported by Grad-CAM heatmaps, align with 
established diagnostic landmarks such as the 
acetabular roof and femoral head. These features 
enhance transparency, reduce inter-observer 
variability, and facilitate integration into neonatal 
screening clinics and community healthcare settings, 
particularly where operator expertise may be limited. 

To ensure unbiased evaluation, patient-level 
data splitting was employed to prevent information 
leakage, providing a reliable estimate of clinical 

performance. Nevertheless, the reliance on a 
single-institution dataset remains a limitation. Future 
work will focus on multi-center external validation, 
prospective deployment within point-of-care 
ultrasound systems, and multimodal integration (e.g., 
X-ray and MRI) to further expand diagnostic 
capability and generalizability. 

In conclusion, this work demonstrates both 
technical innovation and clinical practicality. By 
combining ablation-validated architectural 
improvements, explainability, and workflow-oriented 
design, the proposed YOLOv11 framework 
establishes a foundation for clinically deployable, 
AI-assisted DDH screening. Future research directed 
toward multi-center validation and multimodal 
expansion will be essential for translating this 
framework into standardized clinical practice and 
maximizing its impact in pediatric orthopedic care. 
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