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Abstract 

Glioblastoma multiforme (GBM) is characterized by rapid progression, therapeutic resistance, and a 
profoundly immunosuppressive tumor microenvironment. Emerging evidence suggests that endoplasmic 
reticulum (ER)-associated macromolecules play critical roles in tumor adaptation. In this study, we 
performed a multi-omics investigation of orosomucoid-like protein 2 (ORMDL2), a conserved ER 
membrane protein involved in sphingolipid biosynthesis and ER stress regulation, and uncovered its 
regulatory functions in GBM progression. Transcriptomic analyses across The Cancer Genome Atlas 
(TCGA), and Chinese Glioma Genome Atlas (CGGA) revealed elevated ORMDL2 expression in GBM 
tissues which causes poor prognosis. The MetaCore pathway and Gene Set Enrichment Analysis (GSEA) 
identified ORMDL2’s involvement in antigen presentation via a major histocompatibility complex I (MHC 
class I), unfolded protein response (UPR), and mitochondrial apoptotic signaling. Single-cell 
RNA-sequencing data and the Human Protein Atlas showed ORMDL2 enrichment in tumor stromal cells. 
Pharmacogenomic correlation via the Genomics in Drug Sensitivity in Cancer (GDSC) and Cancer 
Therapeutics Response Portal (CTRP) database suggested that ORMDL2 expression was associated with 
resistance to DNA damage response inhibitors such as etoposide, doxorubicin, talazoparib, and might 
interact with sphingolipid-targeting compounds. Collectively, our findings establish ORMDL2 as a 
multi-functional macromolecular regulator of immune suppression and therapeutic resistance in GBM, 
providing new mechanistic insights and potential targets for translational medicines. 
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Introduction 
Glioblastoma multiforme (GBM) is the most 

aggressive and lethal form of primary malignant brain 
tumors in adults, accounting for approximately 15% 
of all intracranial neoplasms and over 45% of 
malignant gliomas [1, 2]. Despite aggressive treatment 
strategies that combine surgical resection, 
radiotherapy, and chemotherapy with temozolomide 
(TMZ), GBM exhibits a high recurrence rate, therapy 
resistance, and a poor prognosis, with a median 
survival of only 12–15 months. Hallmarks of GBM 
pathogenesis include pervasive genomic instability, 
cellular plasticity, an aberrant DNA damage response 
(DDR), and a profoundly immunosuppressive tumor 
microenvironment (TME) [3]. These features 
collectively contribute to the failure of current 
treatment regimens, and highlight the need to 
identifying novel molecular targets capable of 
simultaneously addressing multiple therapeutic 
vulnerabilities simultaneously [4-6]. Among the key 
regulators of tumor behavior in GBM are biological 
macromolecules, such as RNA-binding proteins, 
metabolic enzymes, and membrane-bound signaling 
scaffolds, that coordinate fundamental processes 
including stress adaptation, lipid metabolism, 
immune evasion, and DNA repair. Identifying such 
macromolecular drivers is crucial for understanding 
GBM progression at the systems level [7-9].  

In this context, the orosomucoid-like (ORMDL) 
family of transmembrane proteins has garnered 
attention due to its regulatory roles in lipid 
metabolism and endoplasmic reticular (ER) stress 
responses [10]. ORMDL protein 2 (ORMDL2) also 
named ORMDL sphingolipid biosynthesis regulator 2 
(ORMDL2), is one of the three mammalian paralogs in 
this family of highly conserved ER-localized 
macromolecules that controls sphingolipid 
biosynthesis through feedback inhibition of serine 
palmitoyl transferase (SPT), the rate-limiting enzyme 
in ceramide production [11-13]. Sphingolipids are 
structurally complex biological macromolecules that 
serve as essential regulators of membrane 
architecture, signal transduction, and cellular fate. 
Ceramides and their derivatives, including 
sphingosine-1-phosphate (S1P), orchestrate a range of 
oncogenic processes such as proliferation, apoptosis, 
immune suppression, and treatment resistance. 
Dysregulation of sphingolipid metabolism has been 
implicated in various cancers, yet the specific function 
of ORMDL2 in glioblastoma remains poorly defined. 
Preliminary studies in other systems suggested that 
ORMDL2 can modulate inflammation, oxidative 
stress, and unfolded protein responses (UPRs), 
processes that are critically involved in GBM’s 

pathobiology. However, no comprehensive 
multi-omics analysis has been conducted to evaluate 
ORMDL2’s expression, regulation, or downstream 
impact in GBM. 

In this study, we identified the 
ORMDL2-encoded protein, ORM1-like protein 2, as a 
novel ER-localized macromolecule involved in GBM 
progression, integrating metabolic reprogramming, 
epigenetic activation, and immune remodeling. 
Transcriptomic analyses from The Cancer Genome 
Atlas (TCGA) and Chinese Glioma Genome Atlas 
(CGGA) confirmed its overexpression in GBM and 
association with poor survival. DNA 
hypomethylation at its promoter region suggested 
epigenetic derepression. Co-expression and pathway 
enrichment analyses revealed ORMDL2’s link to 
oxidative phosphorylation, ER stress, and ceramide 
biosynthesis. Single-cell RNA-sequencing 
(scRNA-Seq) data further demonstrated its 
enrichment in different cells, implying a role in 
immune evasion and therapy resistance. A 
pharmacogenomic analysis showed that ORMDL2 
was correlated with resistance to DNA-damaging 
agents and poly(ADP ribose) polymerase (PARP) 
inhibitors [14, 15], while molecular docking suggested 
druggable interaction sites at the ORMDL2–SPT axis. 
Functional knockdown in A172 cells supported its 
role in proliferation, migration, and TMZ sensitivity 
[15-17]. Collectively, our integrative approach (Fig. 1) 
revealed ORMDL2 as a key immune and metabolic 
modulator and promising therapeutic target in GBM. 

Materials and Methods 
Pan-cancer transcriptomic profiling and 
glioma subtype analysis  

To determine ORMDL2’s expression across 
various malignancies, we accessed normalized 
RNA-Seq data from TCGA and Genetype-Tissue 
Expression (GTEx) via UCSC Xena. Comparative 
analysis across 33 cancer types showed GBM to be one 
of the highest ORMDL2-expressing tumors. 
Expression differences between GBM and normal 
brain tissues were evaluated via Gene Expression 
Profiling Interactive Analysis 2 (GEPIA2), while 
UALCAN provided a subgroup analysis by 
histological grade [18-20]. We employed the 
clusterProfiler R package [21], and SRplot platform 
[22] to conducting functional enrichment analyses 
[23-25]. An International Prognostic Score (IPS) 
analysis (https://tcia.at/home) was used to explore 
the gene expressions of specific immune-related gene 
sets, cellular compositions of immune infiltrates 
characterized using gene set enrichment analyses 
(GSEAs) and deconvolution, neoantigens and 



Int. J. Med. Sci. 2025, Vol. 22 

 
https://www.medsci.org 

4104 

cancer-germline antigens [26], Human Leukocyte 
Antigen (HLA) types, and tumor heterogeneity 
estimated from cancer cell fractions [27-31]. 

Survival and DNA methylation analysis  
CGGA and TCGA-GBM clinical cohorts were 

used to investigate the prognostic impact of 
ORMDL2. A Kaplan–Meier analysis stratified patients 
by median expression levels, and a Cox proportional 
hazards regression was applied for both univariate 
and multivariate models which were adjusted for age, 

isocitrate dehydrogenase (IDH) status, and therapy. 
Prognostic nomograms were constructed using the 
rms package, and time-dependent receiver operating 
characteristic (ROC) curves were plotted to evaluate 
predictive performance [32-35]. Meanwhile, a DNA 
methylation analysis was conducted to examine 
variations in methylation patterns of ORMDL2 in 
GBM patients using data from the TCGA dataset. To 
achieve this, we utilized several methylation 
databases by MethSurv [36-40]. 

 

 
Figure 1. Flowchart of the study design and analytical process for GBM: Gene expression data were obtained from publicly accessible databases, such as TCGA, 
CGGA, GTEx, etc. to analyze the expression levels of genes in GBM tissues compared to normal brain tissues and explore their potential association with patient prognoses.  
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Pathway enrichment, co-expression network, 
and immune module identification  

We used LinkedOmics and Omics Playground 
v.3.4.1 [41] to identify the top 25% of genes 
co-expressed with ORMDL2 across the TCGA-GBM 
cohort. These genes were subjected to Gene Ontology 
(GO) and Kyoto Encyclopedia Genes and Genome 
(KEGG) pathway enrichment analyses using cluster 
Profiler. Functional modules related to sphingolipid 
metabolism, UPRs, and mitochondrial apoptosis were 
enriched. Furthermore, MetaCore was employed to 
construct networked pathways derived from an input 
gene list to explore biological processes as previously 
described [42]. 

Single-cell RNA-Seq (scRNA-Seq) and tumor 
subpopulation mapping 

To further investigate ORMDL2's role in 
different cell types within the GBM tumor 
microenvironment, scRNA-Seq data from publicly 
available GBM datasets were analyzed. Using the 
Human Protein Atlas (HPA) dataset [43] and 
CancerSCEM [44], single-cell clusters were identified, 
and ORMDL2 expression was assessed across various 
cell types, including glioma stem cells, neurons, 
astrocytes, microglial cells, and endothelial cells. The 
t-Distributed stochastic neighbor embedding (t-SNE) 
and Uniform Manifold Approximation and Projection 
(UMAP) techniques were applied for dimensionality 
reduction and visualization of cell clusters based on 
gene expressions [45-48]. 

Drug sensitivity and molecular docking 
analysis 

Drug targets from Gene Set Cancer Analysis 
(GCSA; Cancer Therapeutic Response Portal (CTRP) 
and Genomics of Drug Sensitivity in Cancer (GDSC)) 
[49] alongside as phosphatidylinositol 3-kinase (PI3K) 
[50] and histone deacetylase (HDAC) inhibitors [51] 
were tested for their efficacy. Drug targets from the 
GSCA platform including afanitib and lapatinib with 
PI3K inhibitor including Copanlisib, Idelalisib, 
Umbralisib, Duvelisib, and Alpelisib while the tested 
HDAC inhibitor were vorinostat and phenylbutyrate 
[52-56]. The SDF structure files of these drugs were 
then retrieved from PubChem (https://pubchem.ncbi 
.nlm.nih.gov/). Energy minimization of the ligand 
used Avogadro 1.20 with the MMFF94 force filed and 
steepest descent algorithm while AutoDockTools was 
used to convert to pdbqt file. The protein structure of 
ORMDL2 was taken from the AlphaFold 
(https://alphafold.ebi.ac.uk) with the structure ID 
Q53FV1. The predicted structure from AlphaFold was 
cleaned by removing low-confidence amino acids 

following PyMol. The addition of hydrogen bonds, 
and Gasteiger charges and energy minimization were 
done in USCS Chimera software 1.18. The addition of 
Gasteiger used AMBER ff14SB while the energy 
minimization setting was on default. The protein was 
then converted to pdbqt format in AutoDockTools. 
CastPFold was utilized to determine potential binding 
sites before being mapped. Docking was then 
performed using AutoDock Vina with the energy 
range set to 4 and exhaustiveness set to 8. Three- (3D) 
and two-dimensional (2D) visualization of the docked 
structure were then done using Biovia Discovery 
Studio 2025 [57-60]. 

Cell culture 
Human U87 and A172 GBM cell lines and the 

patient-derived Pt#3 lines were used, along with their 
respective TMZ-resistant counterparts of U87R and 
A172R (with acquired TMZ resistance) and Pt#3R 
(intrinsically resistant) [61-65]. TMZ-resistant cell 
lines were maintained in a low dose of TMZ of 50µM 
(MedChemExpress Cat. No: HY-17364, USA). All cell 
lines were cultured in Dulbecco’s modified eagle 
medium (DMEM) supplemented with 10% fetal 
bovine serum (FBS) and 1% penicillin-streptomycin at 
37 oC in humidified incubator with 5% CO2. 

Protein extraction and western blot 
Cells were washed twice with ice-cold 1X 

phosphate-buffered saline (PBS), and then lysed in 
50 μL of RIPA buffer supplemented with 1% protease 
and phosphatase inhibitors. After incubation on ice 
for 10 min, cells were scraped, and lysates were 
collected into 1.5-mL tubes. Samples were centrifuged 
at 13,000 rpm for 30 min at 4 °C, and supernatants 
were stored at −20°C. Protein concentrations were 
measured using the bicinchoninic acid (BCA) assay. 
Proteins (30 μg) were denatured at 95 °C for 10 min, 
separated by 10% sodium dodecylsulfate 
polyacrylamide gel electrophoresis (SDS-PAGE), and 
transferred to 0.45 μm polyvinylidene difluoride 
(PVDF) membranes (Mercks Millipore, USA) at 
350 mA for 2 h. Membranes were blocked with 5% 
non-fat milk in 0.1% Tris-buffered saline Tween-20 
(TBST) for 1 h, then incubated overnight at 4 °C with 
primary antibodies against ORMDL2 (Aviva System 
Biology #AAP77319 1:500, USA) and GAPDH (Cat. 
No. AB2302 1:5000; Sigma-Aldrich, St. Louis, MO, 
USA). After washing, membranes were incubated 
with horseradish peroxidase (HRP)- 
conjugated secondary antibodies (1:5000) for 1 h. 
Signals were detected using a chemiluminescent 
substrate (T-Pro) and imaged with the e-BLOT Touch 
Imager (e-BLOT, Shanghai, China) [66-70].  
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RNA extraction and reverse transcriptase 
polymerase chain reaction 

Total RNA was extracted using the Trizol 
reagent (CyrusBioscience, Taiwan). Cells were 
scraped and transferred to 1.5-mL microcentrifuge 
tubes. Ice-cold chloroform (200 μL) was added, and 
samples were vortexed for 20–30 s, then incubated at 
room temperature for 10 min. After centrifugation at 
13,000 rpm for 10 min at 4°C, the aqueous phase was 
transferred to new tubes and mixed 1:1 with ice-cold 
isopropanol. Samples were incubated on ice for 
30 min, gently inverted, and centrifuged at 14,000 rpm 
for 5 min. Pellets were washed twice with 75% 
ethanol, centrifuged between washes, air-dried for 
30 min, and resuspended in 20-30 μL of nuclease-free 
water. RNA was dissolved at 37°C for 10 min or 65°C 
for 5 min and stored at −80°C. Reverse transcription 
was performed using the PrimeScript RT Kit (Takara 
Bio, USA) according to the manufacturer's 
instructions [71-73]. 

Real-time polymerase chain reaction 
For the quantitave (q)PCR, 1 μL of 

complementary (c)DNA was mixed with 5 μL of TB 
Green Premix, and a separate primer mix was 
prepared that contained 0.2 μL of the forward primer 
(10 μM), 0.2 μL of the reverse primer (10 μM), and 
3.6 μL of nuclease-free water was prepared. The 
primer mix (4 μL) was first added to each well of a 
96-well plate, followed by the cDNA/TB Green 
mixture (6 μL), for a total reaction volume of 
10 μL/well. Non-template controls (NTCs) were 
prepared in the same way without cDNA. Plates were 
sealed, briefly centrifuged, and run on the 
LightCycler® 96 Real-Time PCR System (Roche, 
USA). Relative expression levels were analyzed using 
the 2–ΔΔCt method. Primer sequences for ORMDL2 and 
GAPDH (as the housekeeping gene) are listed below. 
For ORMDL2. F: CAGCATTCCTGTTGTCTGGACC 
and R: TGTCAGTAGCCGAGCCTTTCCT and for 
GAPDH, F: GTCTCCTCTGACTTCAACAGCG and R: 
ACCACCCTGTTGCTGTAGCCAA. Expression levels 
were normalized and calculated using the 2^–ΔΔCt 

method. 

Statistical analysis 
Data were analyzed by GraphPad Prism 

Software vers. 10 (GraphPad, La Jolla, CA, USA). 
Statistical differences were evaluated by using an 
unpaired Student’s t-test with a one-tailed 
distribution multivariable correlation or two-way 
analysis of variance (ANOVA). Data are presented as 
the mean ± standard error of the mean (SEM) values. 
A p-value of < 0.05 was interpreted as statistically 

significant (* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 
0.0001). Experiments were replicated at least thrice. 

Results  
ORMDL2 is overexpressed in GBM and was 
correlated with poor clinical features 

To investigate the expression profile of the 
ORMDL gene family in cancer, pan-cancer analysis 
was performed using the GEPIA2 platform across 33 
TCGA tumor types and matched normal tissues. 
Among the three paralogs, ORMDL2 exhibited the 
most significant overexpression in GBM, while 
ORMDL1 and ORMDL3 showed less-consistent 
trends (Fig. 2A). A boxplot analysis further confirmed 
that ORMDL2 expression in GBM was significantly 
higher than that in normal brain tissues (p < 0.001, 
Wilcoxon test) (Fig.2B). In contrast, expressions of 
ORMDL1 and ORMDL3 non-significantly differed 
between tumor and normal brain tissues. CGGA 
datasets were also used to support the findings from 
TCGA datasets (Fig. 3; Supplementary Data S2). 
Kaplan–Meier survival analyses were stratified by 
ORMDL2 expression across multiple subgroups. High 
ORMDL2 messenger (m)RNA was associated with 
poorer overall survival in all primary and recurrent 
brain tumor patients. CGGA data were also stratified 
ORMDL2 mRNA expression by its clinicopathological 
features (Supplementary Data S1). 

Promoter hypomethylation and chromatin 
accessibility contribute to ORMDL2 
upregulation 

To understand the upstream regulation of 
ORMDL2, epigenetic alterations were explored using 
DNA methylation profiles from the TCGA 450K 
array. In total, 12 CpG probes within ±2 kb of the 
transcription start site (TSS) were extracted and 
visualized via unsupervised hierarchical clustering 
(Fig. 4). Probes such as cg21667943 and cg19438469, 
located within CpG islands overlapping the ORMDL2 
promoter region (TSS200), exhibited consistent 
hypomethylation in patients with elevated ORMDL2 
expression. In the methylation heatmap (Fig. 4), 
unsupervised clustering revealed a patient subset 
with concordant hypomethylation across multiple 
CpG sites, many of which overlapped with short 
survival and isocitrate dehydrogenase 1 (IDH1)-wild 
type tumors. This indicates that promoter 
hypomethylation may serve as an early activation 
mechanism for ORMDL2 in gliomagenesis. 
Stratification by clinical parameters revealed that 
hypomethylated CpG sites were predominantly 
found in patients who were older, deceased, or with 
an unmethylated methyl guanine methyl tranferase 
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(MGMT) status. Data from ATAC-Seq in the TCGA 
Pan-Cancer cohort further showed increased 
chromatin accessibility surrounding the ORMDL2 
promoter, especially in mesenchymal-like samples. 
Together, these data support a multi-layered 
regulatory model in which epigenetic derepression 
and chromatin remodeling synergistically drive 
ORMDL2 upregulation in GBM. 

ORMDL2 co-expression network reveals 
metabolic and mitochondrial dysregulation 

To dissect the functional role of ORMDL2, 

co-expressed genes were identified in the TCGA-GBM 
dataset using cBioPortal, and LinkedOmics, and 
Omics Playground v.3.4.1. The top 100 positively 
correlated genes (|Spearman r| ≥ 0.6, p < 0.05) were 
subjected to an enrichment analysis using 
clusterProfiler, Enrichr, and ShinyGO (Fig. 5). A 
Kyoto Encyclopedia of Genes and Genome (KEGG) 
analysis revealed that gene co-expressed with 
ORMDL2 were enriched in pathways such as 
oxidative phosphorylation (OXPHOS), lysine 
degradation, non-alcoholic fatty liver disease, and 
neurodegenerative disease modules including 

 
Figure 2. Expression profiles of ORMDL family genes in GBM and other cancer types. (A) Box plots showing the expression levels (log₂ TPM+1) of ORMDL1, 
ORMDL2, and ORMDL3 across various tumor types compared to normal tissues from TCGA datasets. Red boxes represent tumor samples, and blue boxes represent normal 
tissues. (B) Comparative expressions of ORMDL1, ORMDL2, and ORMDL3 in GBM tissues (n = 163) versus normal brain tissues (n = 207). Among the three, ORMDL2 showed 
the most significant overexpression in GBM (p < 0.01).  
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Parkinson’s and Huntington’s disease, which were 
associated with mitochondrial dysfunction in GBM. 
Gene Ontology (GO) annotations indicated a strong 
association with mitochondrial compartments, 
including the proton-transporting ATP synthase 
complex, inner mitochondrial membrane, and 
respiratory chain complex I (Fig. 5). These genes were 
also involved in aerobic respiration, NADH 
dehydrogenase activity, and electron transfer, 
reinforcing the hypothesis that ORMDL2 is closely 
linked to bioenergetic flexibility and redox control. It 
was observed that several ORMDL2 co-expressed 
genes, such as NDUFA13, ATP5MC2, and COX7C, 
were components of the mitochondrial respiratory 
chain complex, indicating ORMDL2’s likely 
involvement in aerobic glycolysis–OXPHOS 
transitions underlying metabolic plasticity in GBM. 
Furthermore, the co-enrichment of DDIT3 (CHOP) 
and ATF4 suggested a link to the UPR and ER stress 
buffering, placing ORMDL2 at the intersection of 
mitochondrial regulation and proteostasis adaptation. 

ORMDL2-associated genes mediate immune 
evasion and apoptotic resistance 

The biological functions of ORMDL2 were 
further investigated using a co-expression network 
analysis and enrichment analysis based on MetaCore. 
The analysis revealed multiple key biological 
processes involving ORMDL2 co-expressed genes 
(Fig. 6A). Among these, the most significantly 
enriched pathway was “Immune response Antigen 
presentation by MHC class I: cross-presentation” (p = 

1.55E-20), indicating a strong correlation between 
ORMDL2 and molecules essential for immune 
evasion. This pathway includes major immune- 
regulatory molecules such as cathepsin L/S/B, 
vesicle-associated membrane protein 8 (VAMP8), Rab 
guanosine triphosphatases (GTPases), Toll-like 
receptor 2/4/7 (TLR2/4/7), Fc gamma receptors, and 
heat-shock protein 90 (HSP90) family chaperones, 
many of which participate in vesicle fusion, lysosomal 
trafficking, and impaired antigen presentation under 
tumor progression (Fig. 6B; Supplementary Table 2, 
Rank #1). This is particularly relevant given that 
evasion of immune surveillance is a hallmark of GBM 
progression. Disruption of antigen cross-presentation 
via downregulation or misrouting of MHC class I 
complexes may facilitate ORMDL2-expressing GBM 
cells to evade cytotoxic T cell detection. Furthermore, 
the involvement of calreticulin, ER chaperones 
(HSP90, HSP70, endoplasmin), and TLRs suggests 
that ORMDL2 may mediate broader effects on ER 
stress signaling and immunoproteasome dysfunction. 
In addition to immune regulation, ORMDL2 
co-expressed genes were highly enriched in the 
“Apoptosis and survival; Regulation of apoptosis by 
mitochondrial proteins” pathway (Supplementary 
Data S1; Supplementary Table 2, Rank #2), including 
BAX, Bak, cytochrome c, voltage-dependent anion 
channel ½ (VDAC1/2), second mitochondrion- 
derived activator of caspase (SMAC)/Diablo, and 
multiple caspases. These components regulate 
mitochondrial membrane permeabilization and 
intrinsic apoptotic signaling, implying that ORMDL2 

 
Figure 3. Kaplan–Meier survival analysis comparing overall survival between glioma patients with high and low ORMDL2 expression across different WHO 
grades and recurrence status. In primary gliomas, high ORMDL2 expression was significantly associated with shorter survival (p < 0.0001). Similar trends were observed in 
recurrent gliomas (p = 0.017), and in specific subgroups including WHO grade III primary (p = 0.015), WHO grade III recurrent (p = 0.0085), and WHO grade IV primary gliomas 
(p = 0.0051). Although no significant difference was found in WHO grade II recurrent gliomas (p = 0.14), a marginal significance was observed in WHO grade IV recurrent cases 
(p = 0.039). These findings suggest that elevated ORMDL2 expression may serve as a negative prognostic marker in glioma, particularly in higher-grade and primary tumors. 
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may suppress apoptosis under chemotherapeutic or 
hypoxic stress by modulating mitochondrial stability. 
Interestingly, several of the enriched pathways, such 
as TLR2/4 signaling, Fc receptor signaling, and 
immune dysregulation during COVID-19, shared 
overlapping immune-suppressive or inflammatory 
traits, suggesting that ORMDL2 may be a broad 
coordinator of tumor inflammation, immune evasion, 
and apoptosis resistance. To further validate these 
observations, we examined the normalized 
enrichment scores of ORMDL2 high versus low 
groups using a GSEA. Consistent with MetaCore, the 
GSEA identified positive enrichment of immune- 
related pathways such as the interferon-gamma 
response, antigen presentation, macrophage 
activation, and ER stress-associated unfolded protein 
response (UPR) in the ORMDL2-high group. 
Collectively, these enrichment analyses suggested 
that ORMDL2 may function at the intersection of 

immune presentation machinery suppression and 
mitochondrial anti-apoptotic buffering, contributing 
to GBM’s resilience to immune clearance and 
stress-induced cell death. 

Single-cell transcriptomics reveal ORMDL2 
enrichment in stroma cells 

To further investigate the cellular context and 
microenvironmental distribution of ORMDL2 in 
GBM, publicly available scRNA-Seq datasets were 
analyzed from the Human Protein Atlas (HPA) 
database and CancerSCEM, focusing on GBM tissues. 
The analysis provided insights into the expression 
pattern of ORMDL2 across transcriptionally distinct 
cell types within the tumor microenvironment (TME). 
As visualized in the UMAP plot (Fig. 7A, top), 
individual cells were clustered based on their 
transcriptional profiles and annotated according to 
known functional cell types, including immune cells 

 
Figure 4. DNA methylation heatmap of selected CpG sites associated with the ORMDL2 gene across brain tumor samples. Rows represent individual CpG 
probes, while columns represent patient samples. The heatmap is annotated with clinical and demographic variables, including ethnicity, race, age group, and survival status (event). 
Methylation levels are color-coded from low (blue) to high (yellow). The legend to the right displays the categorical breakdowns for each annotation, including relation to CpG 
island regions and UCSC gene group classifications. Hierarchical clustering indicates variable methylation patterns across samples, suggesting potential epigenetic regulation of 
ORMDL2 in association with clinical features. 
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(such as microglia and macrophages), glial cells 
(including astrocytes and oligodendrocytes), 
endothelial cells, and neuronal populations. Each dot 
represents a single cell, and the intensity of ORMDL2 
expression was depicted by a color gradient scaled to 
the percentage of maximal normalized transcript 
expression per million (log₂[nTPM+1] / 
log₂[max(nTPM)+1] × 100). The accompanying bar 
chart (Fig. 7A) shows cumulative ORMDL2 transcript 
levels across the cell-type-defined clusters, confirming 
that immune-related and glial populations exhibited 
higher average nTPM expression levels of ORMDL2. 
To further refine the cell-type specificity, a heatmap 
was generated to compare ORMDL2 expression with 
canonical marker genes across all single-cell clusters 
(Fig. 7B). Z-score normalization was applied to 
facilitate comparisons across genes and clusters. The 
results demonstrated that ORMDL2 expression was 
enriched in cell populations associated with 
microglia/macrophages, astrocytes, and 
oligodendrocytes, while neuronal and endothelial 
lineages showed relatively lower expression levels. 
These observations suggest a functional association of 
ORMDL2 with glial immune cells and 
tumor-supportive stromal components.  

The enrichment of ORMDL2 in glial and myeloid 
lineages was consistent with its proposed roles in ER 
stress regulation, lipid metabolism, and 

immunosuppressive signaling. Microglial 
populations with high ORMDL2 expression also 
co-expressed immunoregulatory markers such as 
cluster of differentiation 163 (CD163), trigerring 
receptor expressed on myeloid cells 2 (TREM2), and 
macrophages mannose receptor 1 (MRC1), 
implicating ORMDL2 in the maintenance of M2-like 
macrophage polarization within the GBM 
microenvironment. Given the known role of ORMDL 
proteins in sphingolipid biosynthesis and ER 
homeostasis, ORMDL2 may contribute to cellular 
adaptation under hypoxic or inflammatory stress, 
which is a niche characteristic of the TME. 
Additionally, prior studies have shown that ER 
stress-related genes modulate antigen presentation, 
phagocytosis, and cytokine secretion in myeloid- 
derived suppressor cells (MDSCs) and TAMs. The 
specific expression of ORMDL2 in these 
immunosuppressive populations supports its 
candidacy as a modulator of tumor-associated 
immune evasion. These scRNA-Seq analysis provided 
evidence that ORMDL2 was not ubiquitously 
expressed but rather selectively enriched in stromal 
and immune cell subtypes within GBM. These 
findings underscore its potential as a lineage-specific 
therapeutic target, particularly in modulating 
macrophage-driven immune suppression and ER 
stress adaptation in the TME. 

 

 
Figure 5. Gene Ontology (GO) enrichment and functional interaction analysis of ORMDL2-associated differentially expressed genes. (A) Dot plots 
representing the top enriched GO terms categorized by biological process (top), molecular function (middle), and cellular components (bottom). The x-axis denotes the 
enrichment score (−log₁₀ p-value), while the dot size represents the gene count, and color indicates statistical significance. Key biological processes include oxidative 
phosphorylation, mitochondrial respiratory chain complex assembly, and ATP metabolic processes. (B) Chord diagram visualizing functional interactions among significantly 
enriched genes and GO terms. Gene names are shown around the circle, with color-coded ribbons linking genes to their respective GO categories. Categories such as "electron 
transfer activity," "structural constituent of ribosome," and "NADH dehydrogenase activity" are highly represented. The ribbon color corresponds to the functional category, and 
node color intensity indicates log₂ fold change, with darker red indicating higher expression.  
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Figure 6. MetaCore pathway enrichment analysis of ORMDL2 co-expression signature in GBM. (A) The top 25 enriched pathways generated by MetaCore 
enrichment analysis using ORMDL2 co-expressed genes (Spearman r ≥ 0.6). Pathways are ranked by –log(p) values, with the most significant pathways involving antigen 
presentation via MHC class I cross-presentation, mitochondrial apoptosis, TREM1/TLR signaling, and the PI3K/IL-5/NF-κB axis, all of which play key roles in tumor immunity and 
immune evasion. (B) MetaCore process network map highlighting the MHC class I antigen presentation pathway. Key ORMDL2-associated genes are mapped to compartments 
including endosomes, transport vesicles, and cytosolic antigen-processing machinery, indicating ORMDL2's potential indirect role in modulating immune recognition of GBM 
cells. Specific involvement is noted in vesicle recruitment (Rab27a), proteasome processing (PSMB family), and ER-Golgi transport. These findings support the hypothesis that 
ORMDL2 regulates macromolecular immune networks in GBM, possibly influencing antigen processing and immune evasion.  

 

High ORMDL2 expression correlates with 
drug resistance and predicts TMZ sensitivity 

To assess the therapeutic implications of 
ORMDL2 dysregulation in GBM, we conducted 
pharmacogenomic analyses was conducted using the 
Genomics of Drug Sensitivity in Cancer (GDSC) and 
Cancer Therapeutics Response Portal (CTRP) 
datasets. Correlation analyses were performed to 
identify drugs whose sensitivity (measured by 50% 
inhibitory concentration (IC50 values) were 
significantly associated with ORMDL2 mRNA 
expression levels across GBM cell lines. In the GDSC 
dataset (Fig. 8A), ORMDL2 expression was positively 
correlated with reduced sensitivity to a broad 
spectrum of compounds, including DNA replication 
inhibitors (Gemcitabine, Etoposide, Mitoxantrone), 
protein kinase inhibitors (BX-912, AZD7762, Foretinib, 

WZ-3146), and metabolic inhibitors (Methotrexate, 
Bortezomib). These drugs share mechanisms related 
to DNA damage response, cell cycle arrest, and 
oxidative stress induction. Among these, strong 
correlations were observed with Foretinib and 
CX-5461, agents targeting PI3K/mammalian target of 
rapamycin (mTOR) and RNA polymerase I, 
suggesting that ORMDL2 may modulate broader 
macromolecular stress signaling. These results 
reinforce the hypothesis that ORMDL2-expressing 
cells exhibit adaptive resistance not only to genotoxic 
compounds but also to inhibitors of protein quality 
control and stress signaling pathways. These findings 
highlight ORMDL2 as a predictive marker for drug 
resistance across diverse mechanistic classes, 
implicating it in cellular programs that buffer against 
DNA damage, ER stress, and apoptosis, central 
vulnerabilities in tumor therapy. 
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Figure 7. Analysis of ORMDL2 in tumor microenvironment characteristics in brain. (A) UMAP projection of single-cell RNA sequencing data illustrating clustering of 
brain cells into distinct cell-type populations. Each cluster is color-coded and annotated with its corresponding cell type, including excitatory neurons, inhibitory neurons, 
astrocytes, oligodendrocytes, microglia, and others, as indicated in the legend on the left. Expression levels of ORMDL2 (in nTPM) are overlaid, highlighting its distribution across 
different clusters. (B) Heatmap depicting the normalized expression (Max-norm Z-score) of ORMDL2 (top row) alongside canonical marker genes for various immune and 
stromal cell types from the Human Protein Atlas (HPA). Columns represent the defined clusters from panel A, and rows correspond to gene markers, with associated cell types 
annotated on the left. Color coding on the left group’s markers by major cell type categories with shared functional properties. This analysis reveals the cellular specificity and 
relative enrichment of ORMDL2 expression within the brain microenvironment.  

 
Molecular docking predicts druggable 
interactions at ORMDL2’s 
ceramide-regulatory domain 

Binding affinity of several drugs was tested to 
check their efficacy against ORMDL2 (Fig. 8B-G). The 
best binding affinity was found for the HDAC 
inhibitor umbralisib with a binding affinity of (-8.6 
Kcal/Mol). This was followed by alpelisib, an HDAC 
inhibitor, also lapatinib from GDSC, an Epidermal 
Growth Factor Receptor (EGFR) inhibitor and Human 
Epidermal Growth Factor Receptor 2 (HER2). TMZ an 
alkylating agent that exerts its anti-cancer effect by 
damaging DNA was used as the control. However its 
binding affinity was low (-5.5 Kcal/Mol). Results of 
molecular docking produced the predicted binding 
affinities of ORMDL2 with Afatinib and Lapatinib. 
Both binding scores for afatinib and lapatinib, at -7.6 
kcal/mol and -8.5 kcal/mol respectively, revealed 
good binding affinities. Therefore, this indicated that 
lapatinib was more favorable compared to afatinib.  

In vitro study of ORMDL2 expression across 
GBM cell lines 

To validate our bioinformatics findings, Western 
blotting (Fig. 9A) and RT-qPCR (Fig. 9B) were applied 
to evaluate ORMDL2 expression across different GBM 
cell lines. Among the tested lines, the patient-derived 

Pt#3R cells exhibited the highest protein expression, 
followed by the A172 cell line. U87R cells also showed 
higher expression compared to their parental U87WT 
cells. At the mRNA level, RT-qPCR results indicated 
that A172 had the strongest ORMDL2 expression 
among the parental cell lines (U87 and Pt#3), while 
both U87 cell types showed low expression of the 
target gene. 

Discussion 
GBM remains one of the most lethal 

malignancies, marked by rapid progression, profound 
intra-tumoral heterogeneity, and resistance to 
multimodal therapy. While most of research has 
centered on transcriptional drivers, epigenetic 
modulators, and tumor-intrinsic oncogenic pathways, 
increasing evidence suggests that ER-resident 
proteins and immune metabolic regulators are equally 
pivotal in shaping the tumor phenotype. In this 
context, this study identified ORMDL2 
(orosomucoid-like protein 2) as a novel 
immune-metabolic macromolecule that may function 
as a regulatory hub of GBM progression and 
therapeutic evasion. ORMDL2 belongs to a highly 
conserved family of ER membrane-bound 
macromolecules involved in sphingolipid 
biosynthesis, calcium signaling, and ER stress 
modulation [74, 75].  

 



Int. J. Med. Sci. 2025, Vol. 22 

 
https://www.medsci.org 

4113 

 



Int. J. Med. Sci. 2025, Vol. 22 

 
https://www.medsci.org 

4114 

 
Figure 8. Correlation of drug sensitivity with ORMDL2 and molecular docking analysis. (A) Bubble plot showing the correlation between ORMDL2 gene expression 
and the sensitivity of cancer cell lines to various drugs from the Genomics of Drug Sensitivity in Cancer (GDSC) database. The color of each bubble indicates the Pearson 
correlation coefficient between ORMDL2 expression and drug response (red: positive, blue: negative), while the size of each bubble represents the statistical significance (−log₁₀ 
false detection rate (FDR)). Only drugs with significant associations (FDR ≤ 0.05) are shown. (B) 3D structure of the ORMDL2 protein as predicted by AlphaFold. (C) Binding 
Pocket of the ORMDL2 protein. (D-G) 3D and 2D binding pocket of ORMDL2 with Afatinib (-7.6 Kcal/Mol), Lapatinib (-8.0 Kcal/Mol), Umbralisib (-8.6 Kcal/Mol), and TMZ (-5.5 
Kcal/Mol).  

 
Figure 9. ORMDL2 basal level expression in glioblastoma multiforme (GBM) cell lines. (A) Western blot analysis performed on all GBM cell lines to determine the 
basal level of ORMDL2 expression in those cell lines. (B) A RT-qPCR analysis was performed on A172, U87-MG, and Pt#3 patient-derived GBM cells to determine baseline 
ORMDL2 expression. A172 cells demonstrated the highest ORMDL2 expression. β-actin was used as an internal control. Data are represented as the mean ± SD from three 
biological replicates (p < 0.01).  
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Figure 10. ORMDL2-mediated immune-metabolic stress in glioblastoma. Bioinformatics analysis suggests that ORMDL2 may participate in the regulation of ER stress 
responses, including the UPR including PERK, ATF4, CHOP signaling. This dysregulation is potentially linked to impaired mitochondrial function, redox imbalance, and increased 
reactive oxygen species (ROS), which in turn are associated with DNA damage and apoptotic signaling. Furthermore, altered ORMDL2 expression may influence MHC-I antigen 
presentation pathways, thereby modulating immune recognition. The release of damage-associated molecular patterns (DAMPs) under stress conditions could engage 
TLR2/4-related immune signaling. Collectively, these observations suggest that ORMDL2 may serve as a regulatory node connecting metabolic stress and immune evasion in 
glioblastoma. 

 
Historically, its functions were largely 

extrapolated from studies in inflammatory diseases, 
such as asthma and metabolic syndrome, where 
ORMDL proteins were shown to regulate ceramide 
production and the UPR. However, the functional role 
of ORMDL2 in the context of human malignancies, 
particularly brain tumors still has remained elusive. 
Our study provides the first comprehensive 
multi-omics characterization of ORMDL2 in GBM, 
demonstrating its elevated expression, adverse 
prognostic implications, and association with immune 
evasion and apoptosis resistance pathways. Through 
pan-cancer transcriptomic analysis, ORMDL2 was 

shown to be overexpressed in brain tumor tissues 
relative to normal brain tissues, with its expression 
correlating significantly with clinical features such as 
IDH mutation status, MGMT promoter methylation, 
and World Health Organization (WHO) grade. More 
importantly, higher ORMDL2 expression conferred 
poorer overall survival in three independent cohorts 
(of TCGA, and CGGA), even after adjusting for age 
group and therapy. These observations suggest that 
ORMDL2 is not merely a passive marker but may 
actively contribute to disease progression. 

A deeper analysis of co-expressed gene networks 
and pathway enrichment revealed that ORMDL2 was 
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embedded in functional modules governing antigen 
processing and presentation, apoptosis regulation via 
mitochondrial proteins, and innate immune signaling, 
particularly via TLRs and MHC molecules. 
Remarkably, MetaCore enrichment highlighted 
“Antigen presentation by MHC class I 
cross-presentation” as the top-ranked pathway, 
implicating ORMDL2 in dendritic cell–mediated 
cross-priming and tumor antigen evasion. This is in 
line with recent findings that ER stress and altered 
lipid metabolism in tumor cells can suppress antigen 
presentation, leading to ineffective immune 
surveillance. Our results further aligned with the data 
from The Cancer Immunome Atlas (TCIA) and 
TISIDB, which showed a strong co-expression of 
ORMDL2 with immune checkpoint genes including 
CD274 (PD-L1), HAVCR2 (TIM-3), and CD276 
(B7-H3). These findings suggest that ORMDL2 may 
shape an immunosuppressive tumor 
microenvironment (TME) via regulating MHC-I/II 
expression and modulation of dendritic cell and 
macrophage phenotypes. The scRN-Seq analysis from 
the HPA revealed that ORMDL2 was highly 
expressed in TAMs and glioma stem-like cells (GSCs), 
two major contributors to immune evasion and 
therapeutic resistance in GBM. Notably, TAMs with 
high ORMDL2 expression co-expressed 
M2-polarization markers (CD163 and MRC1) and 
ceramide metabolism regulators, indicating a 
potential role in lipid-reprogrammed 
immunosuppression. GSCs, on the other hand, 
exhibited a robust ORMDL2 signature along with 
elevated ER stress markers, raising the possibility that 
ORMDL2 may aid in the maintenance of stemness 
and chemoresistance through ER homeostasis. This is 
particularly relevant as both TAMs and GSCs are 
known to support tumor recurrence after TMZ 
therapy, often by secreting cytokines that remodel the 
extracellular matrix or inhibit T cell infiltration. 

It was notable that pharmacogenomic profiling 
via the GDSC and CTRP databases did not show a 
strong direct correlation between ORMDL2 
expression and TMZ sensitivity. This finding suggests 
that ORMDL2 might not act through canonical 
alkylating resistance pathways such as MGMT 
upregulation, but rather influences broader 
macromolecular mechanisms, particularly ER stress 
buffering, metabolic reprogramming, and immune 
modulation, that collectively confer drug tolerance. 
Interestingly, ORMDL2 expression was positively 
associated with resistance to agents targeting the 
DNA damage response (DDR), including ATR and 
ATM inhibitors, and oxidative stress regulators such 
as PARP inhibitors. These associations imply that 
ORMDL2-expressing cells may harbor enhanced 

survival capacity under genotoxic stress, potentially 
via maintenance of sphingolipid homeostasis, ER 
stress tolerance, and mitochondrial regulation[76]. 
Furthermore, our molecular docking simulation using 
AutoDock Vina identified two small molecules with 
high binding affinities for ORMDL2: afatinib and 
lafatinib. This finding aligns with previous studies 
showing that targeting ceramide metabolism can 
enhance immunogenic cell death and restore T cell 
function in GBM. Thus, ORMDL2 represents a 
potentially druggable macromolecular target that 
intersects with both metabolic vulnerability and 
immune regulation in GBM. From a structural biology 
perspective, ORMDL2’s coiled-coil domains and 
transmembrane topology support its capability to 
scaffold protein complexes at the ER membrane. 
Previous studies have implicated ORMDL2 in the 
formation of multi-protein complexes with serine 
palmitoyltransferase (SPT), ER chaperones 
(HSP90B1), and calcium-binding proteins, which 
collectively modulate the ER stress response and 
sphingolipid flux [77]. Given our co-expression 
network data highlighting links to calreticulin, 
HSP70, and MHC-I processing components, it is 
plausible that ORMDL2 functions as an ER-resident 
organizer of antigen processing hubs, although this 
hypothesis requires further biochemical validation. 

Conclusions 
In conclusion, our integrative analysis positions 

ORMDL2 as a multi-functional macromolecule that 
orchestrates ER stress, immune evasion, and 
chemoresistance in GBM. Unlike canonical oncogenes 
or immune checkpoints, ORMDL2 operates at the 
interface of lipid metabolism, proteostasis, and 
immunoregulation, offering a unique and druggable 
node within the GBM molecular network. Targeting 
ORMDL2 may open new therapeutic avenues that 
combine metabolic reprogramming with immune 
restoration, strategies that are urgently needed to 
overcome resistance in GBM. 
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