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Abstract 

Non-small cell lung cancer (NSCLC), as one of the most commonly diagnosed cancers globally, requires 
expedited identification of new drug targets. We conducted proteome-wide MR using genetic data for 
4,853 plasma proteins. Summary-level data on lung adenocarcinoma (LUAD) and squamous cell 
carcinoma (LUSC) were extracted from GWAS meta-analyses (11,273 and 7,426 cases, respectively) and 
FinnGen cohort (1,590 and 1,510 cases, respectively). We genetically identified eight proteins with a 
causal role in the etiology of NSCLC. Lower levels of five proteins (CDH17, CXADR, FAM3D, 
POGLUT3, SFTPB) and higher levels of two proteins (CEACAM5, KLK1) were linked to increased LUAD 
risk, while higher CD14 levels were associated with elevated LUSC risk. Two proteins, POGLUT3 and 
SFTPB were validated through Bayesian colocalization. One protein SFTPB was identified using SMR and 
HEIDI tests. Bidirectional MR found no reverse causality. The primary findings were validated through 
scRNA-seq, GeneMANIA, GO analysis, druggability assessments and PheWAS analysis. These 
protein-coding genes are primarily expressed in epithelial cells, macrophages, monocytes, and endothelial 
cells. Furthermore, CEACAM5, KLK1, and CD14 correspond to existing drugs. These proteins may 
deepen our comprehension of the etiology and could serve as appealing novel biomarkers and drug 
targets for NSCLC management. 
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Introduction 
Lung cancer is the most frequently diagnosed 

malignancy globally and is the leading cause of 
cancer-related death. Annually, it is estimated that 
around 2.5 million new cases arise and over 1.8 
million fatalities occur [1]. Approximately 80% to 85% 
of lung cancers are non-small cell lung cancer 
(NSCLC), with lung adenocarcinoma (LUAD) and 
lung squamous cell carcinoma (LUSC) being the two 
predominant subtypes. LUAD has become the most 
common subtype, with incidence rates exceeding 
those of LUSC in recent years [2]. Most patients are 
diagnosed at an advanced stage, where curative 
treatment options are limited, resulting in a 5-year 
survival rate that hovers just above 20% [3, 4]. 
Therefore, there is an urgent need to discover 
sensitive and specific markers for the early prediction 

of lung cancer to improve outcomes. Additionally, the 
development of novel therapeutic strategies is 
essential, either as standalone interventions or to 
enhance current prevention programs such as 
smoking cessation [5].  

Proteins serve as the cornerstone of human 
metabolism, translating genomic information into the 
processes of growth, development, and homeostasis. 
The levels and characteristics of individual plasma 
proteins reflect a range of physiological or 
pathological states. Their accessibility via minimally 
invasive and inexpensive methods renders them ideal 
candidates for biomarker identification and as targets 
for drug development [6]. The advent of 
high-throughput technologies has propelled research 
into the potential of plasma proteins as predictors of 
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lung cancer [7, 8]. These proteins are particularly 
promising as drug targets, as their interaction with 
therapeutic agents can be efficiently monitored in the 
bloodstream during randomized controlled trials 
(RCTs), thereby accelerating the drug development 
pipelines. Despite these advances, there remains a 
significant gap in meeting the clinical demand for 
novel biomarkers. 

Mendelian randomization (MR) is a technique 
that leverages genetic variants as natural instruments 
to establish putative causality between phenotypes, 
thereby minimizing the potential for residual 
confounding and reverse causation bias in 
observational studies [9]. It relies on three key 
hypotheses: (i) the instrumental variable is associated 
with the exposure (relevance), (ii) the instrumental 
variable is not associated with any confounders 
(independence), (iii) the genetic instrument should 
only influence the outcome through the exposure, not 
through any other pathways, thus isolating the effect 
of the exposure on the outcome (exclusion restriction). 

Human genetic variation has wide-ranging 
effects on protein structure and function, with 
important implications for health and disease. 
Proteomics data research through protein quantitative 
trait loci (pQTL) has opened new avenues for 
biomarker discovery and revealing disease 
mechanisms [10]. Integrating proteomics with 
genomics and MR has facilitated the identification of 
the causal roles of proteins in diseases, providing 
insights into etiology and potential therapeutic targets 
for colorectal cancer, ovarian cancer, stroke, and 
psychiatric disorders [11-14]. 

In the current study, we conducted 
proteome-wide MR analyses utilizing pQTL summary 
statistics from seven large-scaled proteomic studies. 
The study design is illustrated in Figure 1. This 
approach was designed to pinpoint circulating 
protein markers with a causal link to NSCLC risk. 
Bayesian colocalization, SMR (summary-data-based 
Mendelian randomization) and HEIDI (heterogeneity 
in dependent instruments) tests were also used to 
robustly identify cancer-risk proteins. Then single 
cell-type expression analysis was employed to detect 
the specific enrichment of these proteins in lung 
cancer tissue. Furthermore, we assessed the 
expression levels of these protein-coding genes 
between cancer and normal lung tissue using the 
GEPIA database. GeneMANIA and Gene Ontology 
(GO) analysis were conducted to explore the potential 
genetic interactions and functions of identified 
protein-coding genes. This was followed by a 
thorough druggability evaluation aimed at 
determining their potential as therapeutic targets for 
lung cancer. Lastly, risk proteins were mapped to 

potential therapeutic interventions and 
phenome-wide association study (PheWAS) was 
employed to elucidate the potential benefits and 
challenges of intervening on these proteins, including 
the possibility of unforeseen adverse outcomes. These 
multifaceted analyses not only provide compelling 
causal evidence for the role of proteins in lung cancer 
genesis, but also offer a new perspective on the 
predictive and preventive strategies for lung cancer. 

Materials and Methods 
We performed proteome-wide MR based on 

pQTLs from 7 large-scale proteomic studies and 
summary genetic association data of NSCLC from 
previously published GWAS, to examine the causal 
proteins associated with LUAD and LUSC. All 
contributing studies included in this analysis were 
approved by the relevant institutional review board 
from each country and all participants provided 
informed consent.  

Study data sources and selection of 
instrumental variables (IVs) 

The GWAS data for NSCLC in the primary 
outcome were obtained from a large-scale GWAS 
study of European descent, including 66,756 
individuals of LUAD (11,273 cases and 55,483 
controls) and 63,053 individuals of LUSC (7,426 cases 
and 55,627 controls), respectively [15]. In addition, for 
external validation, we used the latest release data on 
NSCLC from the FinnGen study R10 in this analysis, 
comprising 1,590 cases and 314,193 controls for 
LUAD, and 1,510 cases and 314,193 controls for LUSC. 
We obtained pQTL data from 7 large-scale proteomic 
studies [16-22]. These pQTLs were selected based on 
the following criteria: (i) single nucleotide 
polymorphisms (SNPs) associated with plasma 
proteins levels at a genome-wide significance level (P 
< 5 × 10-8); (ii) exclusion of SNPs within the Major 
Histocompatibility Complex (MHC) region 
(chr6:25.5–34.0Mb); (iii) SNPs that are independent of 
each other, with linkage disequilibrium (LD) clumped 
at r2 < 0.001 within 10,000 kb window using the 1000 
Genomes reference panel; (iv) utilization of F-statistics 
to evaluate the potential influence of weak instrument 
bias on the estimated effects of causal associations, 
wherein R2 denotes the variance explained by the IVs 
[23, 24]. To eliminate duplicate proteins, we selected 
those with the highest cumulative of R2 values.  

In total, 13,236 SNPs representing 4,853 unique 
plasma proteins were included in the analysis. Details 
regarding the data sources utilized in this study are 
provided in Table S1-S2. The instrumental variables 
are listed in Table S3. 
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Figure 1. Overall flow chart of the study. 

 

Proteome-wide MR analyses 
We treated plasma proteins as exposures and the 

two subtypes of NSCLC as outcomes. The 
"TwoSampleMR" package [25] was used to conduct 
MR analysis in R. For proteins with a single SNP 
instrument, the Wald ratio method was employed to 
estimate the causal effect of circulating protein levels 
on the development of lung cancer. For the primary 
MR analyses, we applied the random-effects inverse 
variance weighted (IVW) method, which is 
appropriate for estimating MR effects for proteins 
with multiple SNP instruments. The MR-Egger, 
weighted median, simple mode, and weighted mode 
methods were also employed as sensitivity analyses 
to complement the IVW method for univariable 
models [26]. MR-Egger regression was utilized to 
assess horizontal pleiotropy in MR analysis. We also 
conducted Cochran's Q test to evaluate heterogeneity 
among SNPs and assess the consistency of MR 
assumptions and analyses. The P value was adjusted 

using the false discovery rate (FDR) procedure; an 
adjusted P value (adj. P) of < 0.05 was considered 
statistically significant. Additionally, a P value < 0.05 
was defined as the nominal significance level. 
Replication MR analyses were also conducted for the 
identified plasma proteins using LUAD and LUSC 
GWAS data from FinnGen; a P value < 0.05 was 
considered statistically significant in the replication 
group. 

Identified protein markers considered as causal 
inferences must satisfy the following criteria. (i) The 
MR results using the Wald ratio or IVW methods 
show a nominally significant association with LUAD 
or LUSC risk (P value < 0.05). (ii) The Wald ratio or 
IVW methods, or weighted median, exhibit a 
significant association with LUAD or LUSC risk after 
the Benjamini-Hochberg test (adj. P < 0.05). (iii) The 
MR-Egger regression test suggests the absence of 
horizontal pleiotropy. All these procedures were 
carried out using R software version 4.3.0. 
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Bayesian colocalization analyses 
To investigate whether the observed association 

signals in two traits (trait 1: identified proteins, trait 2: 
NSCLC-related traits) are consistent with a shared 
genetic variant, we employed Bayesian colocalization 
analyses using the "coloc" package [27]. This analysis 
encompassed the posterior probabilities of five 
hypotheses: (i) no causal genetic variant exists for 
either trait in the genomic locus (H0); (ii) a single 
causal genetic variant for trait 1 (H1); (iii) a single 
causal genetic variant for trait 2 (H2); (iv) two 
different causal genetic variants for both traits (H3); 
(v) shared causal genetic variants for both traits (H4). 
A posterior probability exceeding 90% for H4 (PPH4) 
was considered strong evidence, suggesting that the 
proteins and NSCLC potentially shared identical 
genetic variants. 

Summary-data-based MR (SMR) analyses and 
reverse MR analyses 

Additionally, the SMR test was utilized to 
confirm the causal relationship between proteins and 
NSCLC risk [28]. The heterogeneity in dependent 
instruments (HEIDI) test was conducted to perform a 
sensitivity analysis using SNPs located within a 
defined genomic region. This analysis aimed to 
determine whether the association between specific 
proteins and NSCLC risk arises from shared genetic 
variants rather than genetic linkage. A P value < 
6.25×10−3 (0.05/8) was set as the significance 
threshold for the SMR analysis. Furthermore, a P 
value > 0.05 in the HEIDI test indicated that the 
association between the protein and NSCLC was not 
influenced by linkage disequilibrium. The SMR and 
HEIDI tests were conducted using the SMR 1.3.1 
software [28]. 

We investigated the reverse causality 
relationship between the potential influence of LUAD 
and LUSC on protein levels. Proteins identified in the 
primary analyses were examined utilizing five MR 
methods (IVW, MR-Egger, weighted median, simple 
mode, and weighted mode). Furthermore, we 
considered GWAS significant genetic variants (P < 5 × 
10−08) and independent genetic variants (clumped at r2 
< 0.001), with an adjusted P value < 0.05 established as 
the threshold for statistical significance.  

Single cell‑type expression analyses and 
protein-coding genes expression pattern 
analyses 

We further investigated the gene expression 
levels of plasma proteins across different cell types, 
specifically targeting those with a causal role in lung 
cancer development. This analysis leveraged 
single-cell RNA sequencing (scRNA-seq) data from 

the two major histopathological subtypes of NSCLC, 
and the adjacent non-cancerous tissue. The 
scRNA-seq data were sourced from the Gene 
Expression Omnibus (GEO) database. GSE149655 
contains two LUAD tissue samples and two distal 
normal tissue samples. Additionally, we acquired two 
LUSC tissue samples, GSM3635278 and GSM3635285, 
from GSE127465. Using the “Seurat” package [29] in 
R, we implemented a standard workflow for data 
preprocessing and cell clustering based on the raw 
scRNA-seq data. The datasets for the two NSCLC 
subtypes and normal lung tissue underwent 
individualized analysis. During this process, genes 
with expression counts fewer than three in a single 
cell and cells with fewer than 200 unique features 
were excluded. Subsequently, we employed the 
NormalizeData and ScaleData functions to normalize 
and scale the transcripts per million (TPM) of RNA. 
The optimal number of principal components (PCs) 
for further analysis was determined using the 
RunPCA function, supplemented by constructing 
Elbow plots for each dataset. Cell clustering was 
conducted using the FindNeighbors and FindClusters 
functions, and non-linear dimensional reduction was 
performed using the RunUMAP function. To annotate 
various cell types, the “SingleR” package [30] was 
utilized with reference datasets 
HumanPrimaryCellAtlasData and 
BlueprintEncodeData. Utilizing GEPIA, a platform 
that combines extensive data from TCGA cancer and 
GTEx normal tissues, we created box plots to visualize 
the distribution of protein-coding genes in normal 
lung tissue and in LUAD or LUSC cancer tissues [31]. 

GeneMANIA and Metascape analyses and 
proteins druggability evaluation 

The GeneMANIA platform [32] 
(https://genemania.org/) was employed to 
investigate the potential genetic interactions and 
functions of the identified protein-coding genes. We 
also employed the Metascape database 
(http://metascape.org/) to conduct gene ontology 
(GO) biological process enrichment analysis. Drug 
repositioning, which involves utilizing the molecular 
structure, therapeutic indications, and adverse effects 
of an existing drug, represents a promising strategy 
for developing novel therapeutic functions. This 
approach has the potential to significantly reduce the 
costs and time associated with the discovery and 
approval of new treatments for various diseases [33]. 
To determine whether the identified plasma proteins 
could serve as viable therapeutic targets for NSCLC, 
we searched three widely used drug-related 
databases: ChEMBL, DrugBank, and the Therapeutic 
Target Database (TTD). We documented the specific 
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drug-gene interactions and outlined the drug 
development processes in this study. 

Protein associations with other traits 
To deepen our understanding of the specificity 

of the identified cancer risk proteins, we undertook 
additional analytical steps using PheWAS and 
consulted several public databases. Our goal was to 
gather comprehensive insights into the potential risks 
or benefits associated with modulating the expression 
of theses protein in human populations. Firstly, we 
evaluated the score of the probability of being 
loss-of-function intolerant (pLI) for each cancer risk 
protein on the Exome Aggregation Consortium 
platform using the gnomAD browser. Secondly, we 
explored the UK Biobank using Genebass, which 
included exome-sequencing studies, rare-variant 
association studies, and Mendelian genetics research. 
To conduct a thorough assessment of the horizontal 
pleiotropy of potential drug targets and their possible 
side effects, we conducted a PheWAS using the 
AstraZeneca PheWAS Portal (https://azphewas. 
com/) [34]. The study utilized a dataset from the UK 
Biobank, comprising approximately 15,500 binary and 
1,500 continuous phenotypes derived from a subset of 
nearly 450,000 exome sequencing participants. To 
ensure the robustness of our findings, we applied 
rigorous statistical corrections and set a stringent 
threshold of 2E−9 (the default in the AstraZeneca 
PheWAS Portal) to mitigate the likelihood of false 
positives. 

Results 
Causal effects of 8 plasma proteins on NSCLC 
risk 

Proteome-wide MR analysis genetically 
identified eight plasma proteins associated with 
NSCLC, with seven linked to LUAD and one to LUSC. 
These proteins comprise Cadherin-17 (CDH17), 
Carcinoembryonic antigen-related cell adhesion 
molecule 5 (CEACAM5), Coxsackievirus and 
adenovirus receptor (CXADR), Family with sequence 
similarity 3, member D (FAM3D), Kallikrein-1 
(KLK1), Protein O-glucosyltransferase 3 (POGLUT3), 
Pulmonary surfactant-associated protein B (SFTPB), 
and CD14. Higher levels of CDH17 (odds ratio (OR) = 
0.89; 95% confidence interval (CI) 0.83–0.95), CXADR 
(OR = 0.74; 95% CI 0.64–0.84), FAM3D (OR = 0.90; 95% 
CI 0.85–0.95), POGLUT3 (OR = 0.84; 95% CI 0.78–
0.91), and SFTPB (OR = 0.87; 95% CI 0.82–0.93) were 
associated with a reduced risk of LUAD. Conversely, 
CEACAM5 (OR = 1.18; 95% CI 1.02–1.35) and KLK1 
(OR = 1.08; 95% CI 1.02–1.14) were linked to an 
elevated risk of LUAD. Furthermore, higher levels of 

CD14 (OR = 1.30; 95% CI 1.16–1.45) were associated 
with an increased risk of LUSC (Figure 2, Table S4-S6). 

We validated our primary findings in the 
replication stage. Five proteins were successfully 
confirmed in the FinnGen cohort. The OR (95% CI) of 
NSCLC per SD increase in genetically predicted levels 
of protein was 0.73 (0.54–0.99) for CXADR, 0.85 (0.74–
0.97) for FAM3D, 1.08 (1.00–1.17) for KLK1, 0.65 (0.51–
0.83) for POGLUT3 in LUAD, and 1.53 (1.23–1.91) for 
CD14 in LUSC (Figure S1-S2, Table S7-S8).  

Sensitivity analyses for non-small cell lung 
cancer causal proteins 

To further scrutinize the robustness of our 
primary MR analyses, Cochran’s Q test was 
performed to assess heterogeneity across the 
identified eight causal proteins using the IVW or 
MR-Egger method. A significance level of P ≤ 0.05 
would indicate the presence of heterogeneity, leading 
to the adoption of a random-effects IVW approach. 
Notably, four out of the eight proteins (CDH17, 
CXADR, FAM3D, CD14) exhibited no evidence of 
heterogeneity. Moreover, no signs of horizontal 
pleiotropy were identified in any of the eight proteins, 
as determined by the MR-Egger intercept method (P 
pleiotropy > 0.05) (Table S4). During the replication stage, 
no heterogeneity or pleiotropy of the eight proteins 
was observed in either LUAD or LUSC (P heterogeneity > 
0.05, P pleiotropy > 0.05) (Table S7, S8). 

For investigating potential reverse causality 
between the identified plasma proteins and different 
pathological types of NSCLC, we identified LUAD 
and LUSC as exposures and eight proteins as 
outcomes. Bidirectional MR analyses provided no 
evidence of a reverse causal relationship between the 
identified plasma proteins and different pathological 
types of NSCLC (Table S10). 

Causality Verification through Colocalization 
and SMR Analyses 

Among the eight causal proteins identified 
through proteome-wide MR, POGLUT3 and SFTPB 
stand out, supported by robust evidence of genetic 
colocalization, with a PPH4 > 90% (Table 1, Table S9). 
This suggests a high likelihood of a shared causal 
variant influencing both the protein level and the risk 
of LUAD. 

To distinguish pleiotropy from linkage and 
validate the primary proteome-wide MR findings, we 
conducted the SMR and HEIDI tests utilizing proteins 
with complete summary-level data. Table 1 indicates 
that only the protein SFTPB successfully passed both 
the SMR test (P < 6.25×10−3) and the HEIDI test (P > 
0.05). This result suggests the lack of pleiotropy in the 
SNPs associated with SFTPB. 
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Table 1. Summary results from Mendelian randomization (MR), colocalization, and SMR for 8 proteome-wide MR-identified proteins. 

Protein Protein full name MR   Colocalization SMR     
  

Beta P PPH4＞0.9 Beta P PHEIDI 

CDH17 Cadherin-17 -0.12  3.57E-04 No - - - 
CEACAM5 Carcinoembryonic antigen-related cell adhesion molecule 5 0.16  2.08E-02 No - - - 
CXADR  Coxsackievirus and adenovirus receptor -0.31  1.28E-05 No - - - 
FAM3D Family with sequence similarity 3, member D -0.10  2.75E-04 No -0.129963 5.09E-02 0.4  
KLK1 Kallikrein-1 0.08  4.80E-03 No - - - 
POGLUT3 Protein O-glucosyltransferase 3 -0.17  2.44E-05 Yes - - - 
SFTPB Pulmonary surfactant-associated protein B -0.13  1.35E-05 Yes -0.135282 1.50E-05 0.3  
CD14 Monocyte differentiation antigen CD14 0.26  3.07E-06 No - - - 
Abbreviations: HEIDI, heterogeneity in dependent instruments; MR, Mendelian randomization; PPH4, posterior probability exceeding 90% for H4; SMR, 
summary-data-based Mendelian randomization. 

 

 
Figure 2. Forest plot of Mendelian randomization (MR) analyses on the association of plasma proteins and the risk of non-small cell lung cancer. MR point 
estimates and 95% confidence intervals (CIs) are provided for the 8 specific causal proteins in association with the risk of LUAD and LUSC. An adjusted P value (adj. P) below 0.05 
indicated statistical significance, while a P value < 0.05 was set as the threshold for nominal significance level. OR, odds ratio; CIs, confidence intervals; LUAD, lung 
adenocarcinoma; LUSC, lung squamous cell carcinoma. Full name of proteins: CDH17, Cadherin-17; CEACAM5, Carcinoembryonic antigen-related cell adhesion molecule 5; 
CXADR, Coxsackievirus and adenovirus receptor; FAM3D, Family with sequence similarity 3, member D; KLK1, Kallikrein-1; POGLUT3, Protein O-glucosyltransferase 3; 
SFTPB, Pulmonary surfactant-associated protein B; CD14, Monocyte differentiation antigen CD14. 

 
Cell‑type specificity expression in the NSCLC 
tissue 

To investigate the cell-type specificity of coding 
genes corresponding to the 8 plasma proteins in 
NSCLC tissue, we performed single-cell data analyses 

using the GEO database. In LUAD tumor tissue, using 
the FindCluster() function, we identified 13 clusters 
and annotated 5 cell types (T cells, epithelial cells, 
macrophages, fibroblasts, and endothelial cells) 
(Figure S3A, Figure 3A). Except for the POGLUT3 
gene, we detected 7 of the 8 protein-coding genes in 
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LUAD tissue. Figure 3 (B-C) shows the single-cell 
expression of these 7 coding genes in each cluster. 
CEACAM5, CXADR, FAM3D, and SFTPB were 
mainly enriched in epithelial cells, and CD14 was 
associated with macrophages, whereas CDH17 was 
deficient in all clusters. We annotated 7 cell types (T 
cells, macrophages, monocytes, epithelial cells, 
neutrophils, B cells, and tissue stem cells) in LUSC 
tissue (Figure 4A, Figure S3B). CXADR and SFTPB 
were mainly enriched in epithelial cells, while CD14 
was enriched in both macrophages and monocytes 
(Figure 4B-4C). Moreover, in normal lung tissue, 6 
protein-coding genes had expression data, while 
POGLUT3 and CDH17 were undetected. CXADR and 
SFTPB were mainly enriched in epithelial cells, while 
FAM3D and CD14 were mainly enriched in 
endothelial cells (Figure S4). The expression levels of 
these 6 protein-coding genes in both NSCLC and 
normal tissue were also depicted in Figure S5. 

GeneMANIA analyses and druggability 
evaluation for candidate protein targets 

We employed GeneMANIA to construct a 
comprehensive gene network by inputting the 8 
protein-coding genes of interest. This analysis 
identified 20 correlated genes, predicated based on 
co-expression, co-localization, and shared protein 
domains. This expanded network, as depicted in 
Figure 5A, encompasses about a total of 510 
interaction links. These interactions are categorized 
into co-expression (90.73%), co-localization (5.44%) 
and common protein structural domains (3.83%). A 
functional analysis of the network elucidates the roles 
of the drug targets and their associated genes, 
revealing significant involvement in cell-cell 
adhesion, tissue homeostasis, and protein 
glycosylation processes (Figure 5B). 

 

 
Figure 3. Single-cell data analyses of lung adenocarcinoma. A: The LUAD cell clusters were categorized into five distinct cell types; B and C display the expression 
patterns of the identified causal proteins within each cell type. 
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Figure 4. Single-cell data analyses of lung squamous cell carcinoma. A: The LUSC cell clusters were categorized into seven distinct cell types; B and C illustrate the 
expression of the identified causal proteins in each cell type. 

 
In the assessment of the druggability and drug 

development potential of the eight candidate plasma 
proteins, we identified three proteins (CEACAM5, 
KLK1, CD14) that have been acknowledged as 
druggable targets (Table S11). CEACAM5, has been 
the focus of clinical trials for tusamitamab ravtansine, 
a drug designed for a spectrum of cancer types. 
Promising data from non-squamous NSCLC patients 
indicated a correlation between the antitumor activity 
and the expression level of CEACAM5 (Clinical trial 
information: NCT02187848; Registration Date: 
2014-07-11) [35]. Drugs targeting KLK1 have been 
researched for various applications, including 
lanoteplase for myocardial infarction, aprotinin for 
reducing bleeding and transfusion needs during 
surgery, nafamostat for anticoagulant therapy in 
acute kidney injury and liver transplantation 
scenarios, and aniline for the treatment of multiple 
myeloma. Drugs targeting CD14 have been applied in 
the treatment of sepsis with atibuclimab and 

autoimmune diseases, such as psoriasis and ulcerative 
colitis with the example of VB-201. 

Identifying loss-of-function variants and 
PheWAS analyses for causal proteins in 
non-small cell lung cancer 

In our study, seven of the cancer risk proteins 
exhibited pLI scores below 0.1, implying a high 
tolerance for loss of function (LOF) variation. In 
contrast, CXADR showed a slightly lower intolerance 
of LOF variation, with a pLI score of 0.34. We 
conducted a gene-level PheWAS analysis using an 
extensive dataset from the AstraZeneca PheWAS 
Portal [34], which included 17,361 dichotomous and 
1,419 quantitative phenotypes. As detailed in the 
Table S12, none of the eight drug targets showed 
significant associations with other traits or diseases at 
the gene level, with a rigorous significance threshold 
of P < 1E−05 for genomic association. We observed 
only limited evidence for the association of pLOF 
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variants in cognate genes for cancer risk proteins with 
other traits, none of which were cancer endpoints. The 
pLOF burden in CXADR was associated with a lack of 
interest in doing things (P = 3.39-5, Beta = 2.82-2) and 
back pain (P = 8.88-5, Beta = 1.7-1), and FAM3D pLOF 
burden with chickenpox (P = 6.05-5, Beta = 1.69-1). 
Additionally, protein-damaging missense variation in 
CXADR was linked to cervical spondylosis (P = 5.19-5, 
Beta = 3.88-2), FAM3D was associated with B44 
aspergillosis (P = 3.35-5, Beta = 7.14-2), and POGLUT3 
with xenograft replacement of aortic valve (P = 3.18-5, 
Beta = 4.31-2), stroke (P = 3.22-5, Beta = 1.45-2) and 
vascular/heart problem (P = 6.65-5, Beta = 1.31-2). This 
finding suggests a low probability of substantial side 
effects associated with drugs targeting these genes or 
the presence of significant horizontal pleiotropy.  

Discussion 
In this study, we systematically evaluated the 

causal relationship between plasma proteins and 
NSCLC. Using pQTL data from up to 4,853 plasma 
proteins, we identified eight proteins that likely play a 
role in the etiology of NSCLC. Specifically, genetically 
determined lower levels of proteins such as CDH17, 
CXADR, FAM3D, POGLUT3, and SFTPB, along with 
higher levels of CEACAM5 and KLK1, were 
associated with increased risk of LUAD, while higher 
levels of CD14 were associated with increased risk of 
LUSC. Additionally, five proteins (CXADR, FAM3D, 
KLK1, POGLUT3, CD14) were corroborated in 
external cohorts; two proteins (POGLUT3, SFTPB) 
were verified by Bayesian colocalization; and one 
protein (SFTPB) was identified through SMR and 
HEIDI tests, underlining their potential therapeutic 
relevance. Subsequently, bidirectional MR was 
conducted and no proteins revealed reverse causality. 
We further verified the differential expressions of 
these protein-coding genes in various cell types, 

 

 
Figure 5. The GeneMANIA and Metascape analyses for the eight protein-coding genes. A: Eight identified protein-coding genes were placed in the inner circle, while 
twenty genes associated with them were situated in the outer circle. B: Metascape provides a bar graph for visualizing Gene Ontology (GO) enrichment analysis and interpreting 
metabolomic data related to the identified protein-coding genes. 
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including epithelial cells, macrophages, monocytes, 
and endothelial cells. We also identified causal 
proteins that mediate the therapeutic effects of 
specific drugs that may lead to drug repurposing. 
Moreover, we identified proteins as novel targets that 
were previously unexplored in the context of NSCLC 
therapy, thereby paving the way for new 
investigational pathways. Lastly, we employed 
phenome-wide association analysis to delve deeper 
into the potential pleiotropic effects of the target genes 
and to foresee possible drug side effects, ensuring a 
comprehensive evaluation of our findings. 

The significance of our findings lies in their 
extension of current evidence associating these 
proteins with lung cancer, based on studies of gene 
polymorphisms, mRNA, or protein levels. It is notable 
that SFTPB was identified based on the strongest 
evidence from colocalization, SMR and HEIDI tests. 
SFTPB is an essential protein for maintaining normal 
lung function [36]. SFTPB is first synthesized as a 
hydrophilic 42-kD protein by type 2 alveolar 
pneumocytes and nonciliated bronchiolar cells in the 
form of pro-SFTPB. Following its synthesis, 
pro-SFTPB rapidly undergoes proteolytic cleavage by 
cysteine proteases within the endoplasmic reticulum, 
resulting in the production and secretion of a 9-kD 
non-collagenous hydrophobic SFTPB, which 
represents the functional mature form of the protein. 
Research has indicated that pro-SFTPB may serve as a 
potential biomarker for lung cancer, with elevated 
levels possibly signifying an increased risk of lung 
cancer [37, 38]. The mature SFTPB has also been 
recognized as a potential biomarker for identifying 
metastatic lymph node involvement in patients with 
NSCLC [39]. Existing assays are unable to 
differentiate between precursor and mature forms; 
however, numerous studies have established that 
total SFTPB is associated with lung cancer prognosis 
[37]. Our study provides population-level evidence 
confirming the causal relationship between reduced 
SFTPB protein levels and NSCLC risk, suggesting that 
SFTPB agonists could be a promising avenue for 
therapeutic prevention in high-risk individuals with 
lung cancer.  

KLK1, a member of the kallikrein-related 
peptidase family, has been implicated in regulating 
vascular tone, inflammation, and tumor 
microenvironment [40, 41]. Our findings align with 
recent studies suggesting a causal role for KLK1 in 
cancer prognosis and carcinogenesis, indicating that 
drugs targeting KLK1 may offer an avenue for lung 
cancer prevention. CEACAM5, a cell-surface 
glycoprotein, has emerged as a promising therapeutic 
target in preclinical models [42]. Our findings support 
the idea that CEACAM5 may be a risk factor for 

LUAD, suggesting that high-risk individuals with 
LUAD may benefit from targeted therapeutic 
interventions. CD14, a co-receptor involved in innate 
immune responses, has been linked to disease 
aggressiveness in different cancers [43-45]. Elevated 
levels of CD14 have been observed in NSCLC patients 
[46]. Our research supports the role of CD14 in 
promoting LUSC carcinogenesis, however, the 
mechanisms are yet to be elucidated. POGLUT3, an 
O-glucosyltransferase, plays a pivotal role in targeting 
secreted proteins crucial for the assembly and 
function of the extracellular matrix [47, 48]. Our 
findings indicate that a genetic predisposition to 
elevated POGLUT3 levels is linked to reduced LUAD 
risk, underscoring the necessity for additional 
epidemiological studies and experimental 
investigations. While the effect sizes observed in our 
MR analysis—specifically, the association between a 
1- SD increase in CEACAM5 levels and LUAD risk 
(OR = 1.18, 95% CI 1.02–1.35)—are indeed more 
modest than those of established epidemiological risk 
factors, such as smoking (e.g., a 15-fold increased risk 
for childhood-onset smokers in the UK Biobank [49]), 
this observation aligns with the biological role of 
plasma proteins as intermediate mediators in complex 
disease pathways. Furthermore, the synergistic 
potential of multiple proteins (e.g., CDH17 and 
CEACAM5) may amplify risk through either additive 
or interactive mechanisms, which is consistent with 
the rationale for multi-target combination therapies in 
cancer [50]. The lack of statistical significance for 
CEACAM5, CDH17, and KLK1 in the FinnGen cohort 
may stem from population differences or 
environmental interactions. The distinct genetic 
ancestry of the FinnGen cohort (Finnish-specific 
haplotype frequencies) [51] and its environmental 
context likely contribute to challenges in replication. 

Proteins serve as essential targets for drug 
development. We identified three proteins that are the 
focus of drugs currently under investigation in phase 
I clinical trials or higher, indicating that their potential 
for drug-ability is actively being evaluated. Notably, 
the majority of drugs targeting cancer risk proteins 
are typically either monoclonal antibodies or small 
molecular inhibitors (SMIs). For example, 
labetuzumab, a monoclonal antibody, directly inhibits 
CEACAM5 and is utilized in the treatment of 
colorectal cancer [52]. KLK1 is inhibited by several 
SMIs in the treatment of cardiovascular diseases [53], 
while the anti-CD14 antibody atibuclimab is 
administered to patients with amyotrophic lateral 
sclerosis [54]. The identification of CEACAM5, KLK1, 
and CD14 as established drug targets for NSCLC 
presents significant therapeutic potential. These 
proteins are currently the focus of clinical trials and 
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are involved in ongoing drug development efforts 
targeting both cancer and inflammatory diseases. Our 
study's findings further strengthen the argument for 
their role in NSCLC and suggest that these targets 
could be utilized in the development of novel 
treatment strategies, either individually or in 
combination with current therapeutic modalities, 
including immunotherapy, chemotherapy, or 
anti-angiogenic therapies. We propose that further 
exploration of these targets in clinical trials will 
facilitate the translation of these findings into effective 
therapeutic options for patients with NSCLC. 

Our research demonstrates several strengths, 
such as a robust repository of plasma proteins, a 
substantial cohort of LUAD and LUSC cases, a 
minimal risk of reverse causation, and comprehensive 
colocalization analyses. These elements highlight the 
effectiveness of our methodology in elucidating the 
fundamental mechanisms governing NSCLC 
pathogenesis. The supplementary insights obtained 
from single-cell expression analysis, PPI studies, and 
drug target assessments have shed light on the 
potential pathogenic roles of candidate proteins in 
NSCLC. This has not only helped to delineate priority 
targets for drug development but also underscored 
the potential of our investigation to augment genetic 
screening methodologies for the early detection of 
NSCLC. Our work provides essential insights into the 
development of screening and preventative strategies, 
particularly for those with identified genetic 
predispositions. Furthermore, we underscore the 
potential for drug repurposing, acknowledging that 
high-risk proteins not currently the subject of any 
drug intervention may offer promising avenues for 
future drug discovery. Additionally, the identification 
of previously uninvestigated cancer-associated 
proteins unveils novel opportunities for transforma-
tive approaches in cancer treatment and prevention. 

Our study presents several limitations that 
necessitate acknowledgment. Firstly, our study lacked 
a comprehensive assessment of the entire proteome, 
as it was restricted to measuring proteins exclusively 
via blood-based multiplex affinity platforms. 
Secondly, our analysis concentrated solely on 
individuals of European descent, thereby hindering 
the generalizability of our findings in the genetic 
landscape of diverse populations. To this end, we 
intend to utilize GWAS from East Asian populations, 
such as the China Kadoorie Biobank and Biobank 
Japan, to conduct cross-ethnic MR analysis in our 
future research. Thirdly, the statistical power might 
be insufficient in analyzing large cell lung cancer due 
to the absence of genome-wide association study 
(GWAS) data for this histological subtype of NSCLC. 
To evaluate the histological heterogeneity of NSCLC 

in greater detail, we intend to integrate single-cell 
multi-omics approaches in our subsequent studies. 
Fourthly, the GWAS summary data for LUAD and 
LUSC from public datasets exhibited imbalanced 
stratification across demographic covariates such as 
gender, age, and other crucial demographic factors. 
This imbalance constrained our ability to investigate 
potential causal links within distinct subgroups. Fifth, 
to address the absence of experimental validation, we 
plan to incorporate experimental validation through 
CRISPR-based protein knockdowns of SFTPB and 
CEACAM5 in NSCLC cell lines in our future work. 
Lastly, we conducted rigorous sensitivity analyses, 
including MR-Egger regression (P pleiotropy > 0.05 for all 
proteins; see Table S4), weighted median methods, 
and Cochran’s Q tests, to minimize bias from 
horizontal pleiotropy. However, due to the prevalent 
occurrence of horizontal pleiotropy in MR analysis, 
we were unable to sufficiently attenuate its impact in 
our study; nevertheless, this phenomenon may reveal 
alternative pathways associated with the traits under 
investigation. 

Conclusions 
Our study identified several plasma proteins 

associated with NSCLC risk, providing novel insights 
into its etiology and highlighting potential targets for 
diagnostic and therapeutic advancements. Further 
experimental and clinical investigations are 
imperative to assess the efficacy and significance of 
the eight identified proteins, with the goal of 
developing preventive strategies and clinical 
approaches to address the anticipated increase in 
cancer prevalence. 
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