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Abstract 

Objectives: To develop a deep learning (DL) model for the automated detection and diagnosis of breast 
cancer utilizing automated breast volume scanner (ABVS) images, and to compare its diagnostic performance 
with that of radiologists in screening ABVS examinations. 
Methods: In this multicenter diagnostic study, ABVS data from 1,368 patients with breast lesions were 
collected across three hospitals between November 2019 and April 2024. The DL model (VGG19, 
DenseNet161, ResNet101, and ResNet50) was developed to detect and classify lesions. One-tenth of the cases 
from Hospital A were randomly selected as a fixed internal test set; the remaining data were randomly divided 
into training and validation sets at an 8:2 ratio. External test sets were derived from Hospitals B and C. 
Pathological findings served as the gold standard. Clinical applicability was assessed by comparing radiologists' 
diagnostic performance with and without DL model assistance.  
Results: For breast cancer detection, the DL model achieved an area under the receiver operating 
characteristic curve (AUC) of 0.984 (95% CI: 0.965–0.995) on the internal test set, 0.978 (95% CI: 0.951–0.994) 
on the external test set 1 (Hospital B), and 0.942 (95% CI: 0.902–0.978) on the external test set 2 (Hospital C). 
The model demonstrated significantly higher sensitivity (98.2%) and specificity (90.3%) than junior radiologists 
(P < 0.05), while exhibiting comparable diagnostic reliability and accuracy to senior radiologists. Interpretation 
time was significantly reduced for all radiologists when using the DL model (P < 0.05). 
Conclusion: The DL model based on ABVS images significantly enhanced diagnostic performance and reduced 
interpretation time, particularly benefiting junior radiologists. 

Keywords: Breast cancer, Automated breast volume scanner, Ultrasound, Deep learning. 

Introduction 
Breast cancer is one of the leading causes of 

cancer-related deaths among women worldwide, and 
its mortality rate is on the rise globally. Early 
diagnosis and treatment of breast cancer can 
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contribute to reducing mortality rates [1,2]. Wome n 
of Asian descent exhibit higher breast tissue density, 
which diminishes the sensitivity of conventional 
mammography for cancer detection [3-6]. Breast 
ultrasound (US) has been suggested as an additional 
tool to mammography or as a standalone screening 
method to enhance the accuracy of cancer detection 
[7,8]. However, US examination outcomes are highly 
operator-dependent, limited by suboptimal 
reproducibility and significant inter-operator 
variability [9]. 

The automated breast volume scanner (ABVS) 
utilizes a specialized high-frequency broadband 
transducer to perform automated breast scans, 
generating consistent, standardized, and reproducible 
high-resolution ultrasound images [10]. Studies 
demonstrate that ABVS effectively overcomes the 
limitations inherent in handheld ultrasound (HHUS) 
while providing comparable diagnostic accuracy [11]. 
This system generates three-dimensional (3D) images 
of breast lesions, enabling comprehensive 
visualization from multiple perspectives, including 
transverse, sagittal, and coronal planes. The 
incorporation of morphological features within the 
characteristic coronal plane has proven particularly 
advantageous for enhancing early detection in dense 
breast tissue and mitigating limitations associated 
with preoperative breast lesion diagnosis. When 
integrated with conventional mammography, ABVS 
has been demonstrated to improve the cancer 
detection rates [12,13]. However, the substantial 
volume of images generated per ABVS scan 
necessitates longer interpretation times, particularly 
for less experienced radiologists. Furthermore, studies 
suggest an increased dependency on radiologist 
expertise for ABVS assessment [14]. 

In recent years, substantial advancements have 
been achieved in the developing convolutional neural 
networks (CNNs) employing deep learning (DL) 
algorithms for medical images analysis [15-17]. DL 
processes raw image pixels as input and 
autonomously acquires complex patterns and features 
through class annotations, thereby constructing a 
comprehensive hierarchical representation of 
extracted information [18,19]. CNNs autonomously 
identify salient image features and acquire 
classification capabilities during training, enabling the 
incorporation of characteristics imperceptible to 
human observers [20]. Deep learning networks 
(DLNs) offer extensive utility in diagnostic imaging 
and predictive modeling due to their demonstrated 
advantages, including computational efficiency, high 
accuracy, and reproducible performance [21,22]. The 
implementation of DLNs for feature extraction in 
Automated Breast Volume Scanner (ABVS) images 

has enhanced diagnostic robustness during secondary 
interpretation [23-25]. Although prior DL studies have 
investigated ABVS applications, most models rely on 
transverse and sagittal plane imagery, with a paucity 
of DL methodologies leveraging ABVS coronal planes 
for breast cancer diagnosis. 

Therefore, to establish a novel automated 
ultrasound diagnostic model for breast tumors, we 
developed a DL model for automatic lesion detection 
in ABVS images and differentiation between 
malignant and benign lesions. The model's 
performance was validated through internal and 
external testing. Furthermore, we compared its 
diagnostic performance with that of radiologists and 
evaluated its utility in enhancing radiologists' 
diagnostic accuracy. 

Methods 
Study design and participants 

This study utilized ABVS images collected from 
three hospitals between November 2019 and April 
2024. We obtained ABVS data for the training, 
validation, and internal test sets from the Breast 
Imaging Database at Hospital A (Shanghai Tenth 
People’s Hospital). The external test sets were 
obtained from hospitals B (Zhongshan Hospital, 
Fudan University) and C (Affiliated Hospital of 
Nantong University). All patients in the study 
underwent HHUS and ABVS examinations, with the 
HHUS examinations aimed at validating the findings 
of the ABVS. Patients subsequently underwent biopsy 
or surgery within one month. Pathological findings 
served as the gold standard. The inclusion criteria 
were as follows: (1) patients aged ≥ 18 years; (2) 
patients whose breast lesions were evaluated with 
HHUS and ABVS examinations; and (3) patients 
whose lesions had not undergone biopsy or any 
treatment prior to the ABVS examination. The 
exclusion criteria for patients were as follows: (1) 
incomplete data and clinical information; (2) the 
features of the breast lesions could not be clearly 
observed due to shadows behind the nipple or 
poor-quality images; and (3) multiple lesions in one 
breast. The clinical information of the patients and the 
features of the breast lesions were recorded. This 
multicenter study was approved by the institutional 
review boards of the three participating centers 
(approval No.SHSY-IEC-4.1/19-205/0). Informed 
consent was waived by our Institutional Review 
Board due to the retrospective nature of our study. 
This study was registered at https:// 
www.chictr.org.cn (No. ChiCTR2300074673). 
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ABVS examinations 
ABVS examinations were conducted using the 

ACUSON S2000 US system (Siemens Medical 
Solutions, Inc., Mountain View, CA, USA) with an 
automated 5–14-MHz linear broadband transducer 
(covering volumes of 15.4 × 16.8 × 6 cm), which 
acquired 0.5-mm thick images in the transverse plane. 
Image acquisition was performed by experienced 
technologists. Patients were positioned in the supine 
or lateral position with their arms above their head. 
The appropriate scan depth was selected based on the 
size of the breast to obtain a standardized ABVS 
image. After the examination, the axial ABVS images 
were sent to a dedicated workstation, where sagittal 
and coronal images were reconstructed automatically 
[26,27]. Finally, the transverse, sagittal, and coronal 
ABVS images depicting the lesions were chosen for 
further image segmentation and feature extraction. 

Datasets 
Following quality control, images were acquired 

for the dataset from the Breast Imaging Database at 
three hospitals. We compiled 1,152 breast lesions with 
transverse, sagittal, and coronal images from 1,147 
patients (aged 18–95 years) at hospital A. One-tenth of 
the cases were randomly selected as the fixed test set, 
while the remaining data were randomly divided into 
a training set and a validation set at a ratio of 8:2, 

ensuring no overlap among the three subsets. Two US 
radiologists with over 5 years of experience 
determined the boundaries and shapes of the lesions 
from transverse, sagittal, and coronal images and 
carefully marked the lesions. We obtained ABVS 
images for external test sets from hospitals B (102 
lesions from 102 patients) and C (119 lesions from 119 
patients) to assess the generalizability of the DL 
model. A flowchart detailing the study process is 
presented in Figure 1. 

Deep Learning Algorithm 
The UNet segmentation model [28] was utilized 

to segment the breast lesions within image sequences 
across various planes. Segmentation mask images 
were produced, with lesions appearing white against 
a black background. Subsequently, the coordinates of 
the external rectangular frame and the regional map 
of the breast lesion at its coordinate position were 
extracted. The breast lesions in the ABVS images were 
precisely located and marked. The transverse, sagittal, 
and coronal breast lesion region maps, extracted by 
the UNet segmentation network, were fed into 
common classification networks (VGG19, 
DenseNet161, ResNet101, and ResNet50) [29]. These 
networks extracted features from the three planes and 
employed various fusion methods (Figure 2).  

 
 

 
Figure 1. Flowchart shows the eligibility criteria and process for deep learning (DL) model development and evaluation. 
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Figure 2. Workflow of model development and the DL neural network architecture. The model was developed utilizing multiple-planar analysis (i.e., transverse, sagittal, and 
coronal planes) within a DL framework. Within each processing pathway, the DL network extracts discriminative features by integrating spatial relationships via a ResNet 
architecture. Features aggregated from the parallel pathways were subsequently concatenated and fused by the ensuing fully connected (FC) layers. The network accepts the 
original image containing solely the lesion region as input and outputs the pathological binary classification alongside corresponding heatmaps visualizing salient regions. 

 
The UNet segmentation network successfully 

maintains both the local details and the global context 
information of images during object segmentation. 
Through pooling and upsampling operations, the 
network adapts to structures at various scales. For 
ABVS images, this means that the network can detect 
and segment anatomical structures of different sizes 
and shapes. In this study, EfficientNet-b0[30] was 
employed as the feature extraction network for the 
UNet segmentation network. The EfficientNet-b0 
structure, incorporating innovative designs such as 
deep separable convolution, provides robust feature 
learning capabilities. In ABVS image segmentation 
tasks, it aids in extracting information about 
organizational structure, texture, and morphological 
features from input images. The procedure for breast 
lesion segmentation by UNet (EfficientNet-b0) on 
ABVS images of the breast is as follows. 

The convolution operation of the UNet 
segmentation network in the encoder path: For each 
layer l , the convolution operation involves the 
following formula: 

Zil = σ(Wi
l ∗ ail−1 + bil) 

where Wi
l is the weight of the convolutional kernel, 

ail−1 is the activation output of the previous layer, bil is 
the bias term, and σ is an activation function. 

The upsampling and convolution operations of 
the UNet segmentation network in the decoder path 
involve formulas such as: 

ail = upsamle(ail−1) 

Zil = σ(Wi
l ∗ [ail−1, ail] + bil) 

Upsampling is an operation, such as bilinear 
interpolation, that [ail−1, ail] indicates the result of the 
previous layer's upsampling is connected with the 
encoder output of the corresponding layer. 

The implementation of UNet (EfficientNet-b0) 
was based on the Segmentation Models Pytorch 
library [https://github.com/qubvel/segmentation_ 
models.pytorch], which provides a modular 
framework for constructing architecture encoder- 
decoder segmentation models. The Unet 
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segmentation network delineates and localizes breast 
lesions through the following procedure: the 
segmentation mask produced by Unet model is 
thresholdized to generate a binary image, wherein 
breast lesions are designated as foreground (white) 
and the background is rendered black. Connected 
component analysis is applied to the binary image to 
identify discrete regions, each representing an 
individual lesion object. A bounding box is 
subsequently computed for each connected region. 
This process yields both a localization map 
highlighting breast lesions and their corresponding 
spatial coordinates. These lesion coordinates enable 
the extraction of individual lesion regions, thereby 
providing input data for a subsequent classification 
model tasked with distinguishing benign from 
malignant breast lesions. 

During the design of the algorithm structure, the 
methodology for data fusion across multiple planes 
was incorporated. A neural network was devised to 
process data from the transverse, sagittal, and coronal 
planes, integrating their respective feature 
representations to train a multimodal feature fusion 
network. ResNet50 was selected as the foundational 
architecture and subsequently refined. For each 
individual plane, the network was initialized using 
pretrained weights from ResNet50 on the ImageNet 
dataset. The output layer of ResNet50 was modified to 
comprise two nodes, corresponding to benign and 
malignant classifications of breast nodules. The 
optimizer employed Stochastic Gradient Descent 
(SGD) with momentum, a learning rate of 0.001, and a 
batch size of 64. Due to distinct variations in imaging 
techniques and semantic features among the 
transverse, sagittal, and coronal planes, feature fusion 
was implemented via addition for the transverse and 
sagittal planes, followed by concatenation with the 
coronal features. Equations 1 and 2 define the 
addition and concatenation operations, respectively.  

𝑍𝑍𝑎𝑎𝑎𝑎𝑎𝑎 = �(𝑋𝑋𝑖𝑖 + 𝑌𝑌𝑖𝑖) ∗ 𝐾𝐾𝑖𝑖 = �𝑋𝑋𝑖𝑖 ∗ 𝐾𝐾𝑖𝑖 +
𝑐𝑐

𝑖𝑖=1

𝑐𝑐

𝑖𝑖=1

�𝑌𝑌𝑖𝑖 
𝑐𝑐

𝑖𝑖=1

∗ 𝐾𝐾𝑖𝑖 

(1) 

𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = �𝑋𝑋𝑖𝑖  ∗ 𝐾𝐾𝑖𝑖 

𝑐𝑐

𝑖𝑖=1

+ �𝑌𝑌𝑖𝑖 ∗ 𝐾𝐾𝑖𝑖+𝑐𝑐

𝑐𝑐

𝑖𝑖=1

 

(2) 
In Equation (1), X denotes the feature map of the 

transverse plane, Y represents the feature map of the 
sagittal plane, and K signifies the convolution 
operation to be executed subsequent to feature fusion. 
In Equation (2), X corresponds to the fusion feature 
derived from the transverse and sagittal planes, Y 
indicates the feature map of the coronal plane, and K 

represents the convolution operation post feature 
fusion. The parameter c denotes the number of 
channels in the feature map for both equations. 

The concatenate feature fusion merges feature 
maps along the channel dimension, thereby 
increasing the number of features while maintaining 
the information content per feature. The hybrid fusion 
strategy combining addition and concatenation 
operators is employed to integrate breast features. 
This approach effectively addresses the limitations of 
low semantic richness in single-plane features and 
insufficient high-level breast feature representation, 
consequently enhancing multimodal feature fusion 
classification performance [31,32]. Critically, 
concatenation reduces feature map channel 
dimensionality. Consequently, a fully connected layer 
is incorporated into the original ResNet50 
architecture, reducing the dimensionality of the fused 
feature maps to half the original size. During model 
testing, a probability averaging method is applied to 
the prediction outcomes. The predicted benign or 
malignant probabilities for each image frame are 
summed and subsequently divided by the total 
number of lesion images to compute the mean 
probability. A lesion is classified as malignant if its 
malignancy probability exceeds the threshold value of 
0.5; otherwise, it is classified as benign. 

Image analysis 
Junior Radiologists 1 and 2, each possessing 2 

years of experience in breast US diagnosis and 1 year 
in ABVS diagnosis; Middle Radiologists 3 and 4, each 
possessing 5 years of experience in breast US 
diagnosis and 3 years in ABVS diagnosis; and Senior 
Radiologists 5 and 6, each possessing 9 years of 
experience in breast US diagnosis and 5 years in ABVS 
diagnosis, participated in the study. Radiologists 1 - 6 
did not perform manual lesion demarcation; they 
were provided solely with the primary ABVS images 
and corresponding case numbers, operating 
independently and without consultation to ensure 
diagnostic objectivity. Each radiologist independently 
reviewed the identical set of lesions and utilized the 
fifth edition of the Breast Imaging-Reporting and Data 
System (BI-RADS) lexicon [33,34] to assign a BI-RADS 
category based on the transverse, sagittal, and coronal 
image features. 

Comparative analysis with radiologists' 
interpretations 

Employing the 5th edition of the BI-RADS 
classification guidelines, BI-RADS 4A denotes lesions 
with a low suspicion of malignancy (≤ 10% 
probability). This category served as the diagnostic 
threshold to evaluate the performance of six 
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radiologists. Subsequently, after a one-month interval, 
the radiologists re-evaluated the cases incorporating 
DL-derived malignancy assessments (benign or 
malignant) to establish final diagnoses. The diagnostic 
performance metrics—both with and without DL 
assistance—alongside interpretation times, were 
systematically compared. 

Statistical analysis  
Statistical analyses were conducted using IBM 

SPSS Statistics (version 27). Continuous variables 
were presented as the means ± standard deviations 
(SDs), while categorical variables were expressed as 
frequencies and proportions. Categorical variables 
were compared using the chi-square test or Fisher's 
exact test, and continuous variables were analyzed 
with t-tests. To evaluate diagnostic performance in the 
test set, accuracy, sensitivity, specificity, positive 
predictive value (PPV), negative predictive value 
(NPV), and area under the receiver operating 
characteristic curve (AUC) were calculated for both 
the DL model and radiologists of varying experience 
levels. Comparisons of sensitivity and specificity 
between the DL method and the six radiologists, as 
well as among the six individual radiologists without 
versus with DL assistance, were performed using 
McNemar's test. Reading times across radiologist 
groups were compared via paired t-tests. 
Interobserver agreement was assessed based on 
categorization concordance between the DL model 
and radiologists, with interreader correlations 

quantified using Fleiss' kappa coefficient (κ). The F1 
score, defined as the harmonic mean of sensitivity and 
PPV, served as a composite performance metric; 
higher values indicated superior diagnostic efficacy. 
All evaluation metrics were reported with 95% 
confidence intervals (CIs). Statistical significance was 
defined as P < 0.05.  

Results 
Patient inclusion and grouping 

Between November 2019 and January 2022, 
transverse, sagittal, and coronal images from 1,152 
lesions of 1,147 patients were obtained from the ABVS 
Imaging Database at A Hospital for training (832 
lesions), validation (204 lesions), and internal testing 
(116 lesions). Five patients presented with bilateral 
breast tumors, resulting in a total of ten lesions. Of the 
1,152 breast lesions 535 (46.4%) were malignant, and 
617 (53.6%) were benign. The maximum diameter 
ranged from 4-130 mm. Between August 2023 and 
December 2023, 102 breast lesions from 102 patients 
were obtained from Hospital B. Between October 2023 
and April 2024, 119 breast lesions from 119 patients 
were obtained from Hospital C. These lesions all 
include transverse, sagittal, and coronal images, 
forming an independent external test set to fairly 
evaluate the DL method. The detailed patient 
demographics, breast lesion characteristics, and 
clinicopathological information for each group are 
summarized in Table 1. 

 

Table 1. Clinical and imaging characteristics of the training set, validation set, and test set. 

 Training set (n = 832) Validation set (n = 204) Internal test set (n = 116) External test set 1 (n = 102) External test set 2 (n = 119) 
 M B M B M B M B M B 
Number of lesions (n) 386 446 95 109 54 62 53 49 57 62 
Age (years)  
(mean ± SD, range) 

58.1 ± 12.8  
(20 - 95) 

43.6 ± 12.9  
(18 - 79) 

57.8 ± 11.7  
(29 - 84) 

44.9 ± 13.5  
(20 -75) 

59.1 ± 12.3  
(30-79) 

41.5 ± 12.0  
(18-67) 

54.5 ± 12.0  
(37-89) 

43.3 ± 12.9  
(18-77) 

56.5 ± 11.4  
(40-85) 

42.5 ± 12.5  
(18-61) 

Age           
 < 40 years (n)  37 187 6 37 4 30 25 13 14 22 
 ≥ 40 years (n) 349 259 89 72 50 32 28 36 43 40 
Lesion size (mm)  
(mean ± SD, range) 

33.5 ± 19.3 
(7 - 130) 

18.8 ± 9.9  
(4 - 91) 

29.6 ± 14.1  
(10 - 76) 

19.4 ± 12.2  
(4 - 83) 

29.2 ± 11.4  
(13 - 62) 

18.5 ± 8.1  
(8 - 49) 

21.8 ± 6.77  
(10-40) 

20.5 ± 10.5  
(6-60) 

22.3 ± 13.4  
(12-73) 

19.7 ± 11.4  
(7-58) 

Lesion size           
T1 (< 20 mm) 81 296 20 68 13 42 14 28 16 35 
T2 (20 - 50 mm) 226 142 64 36 35 19 37 20 37 24 
T3 (> 50 mm) 79 8 11 5 6 1 2 1 4 3 
Histology types           
 Fibroadenoma  255  68  44  25  56 
 Adenosis  122  29  14  6  5 
Other benign lesionsa  69  12  4  18  1 
 Invasive ductal 
carcioma 

248  48  42  41  48  

 Ductal carcinoma in 
situ 

53  19  1  2  4  

 Other malignant 
lesionsb 

85  28  11  10  5  

a Includes hyperplasia, benign phyllodes tumours, papillomas, inflammation, and cysts. 
b Includes mucinous carcinoma, invasive lobular carcinoma, malignant phyllodes tumor, and invasive carcinoma of no specific type. M = Malignant; B = Benign. External test 
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set 1: B Hospital. External test set 2: C Hospital 

 

 
Figure 3. Decision curve analysis comparing the performance of four DL models in predicting breast cancer. All models demonstrated clinical utility within the threshold 
probability range of 45% to 95%. ResNet50 demonstrated a significantly higher net benefit than the other three models. 

 

Table 2. Performance of different models based on the three-plane data feature fusion of ABVS images. 

Model Sensitivity Specificity PPV NPV Accuracy AUC (95% CI) F1 score 
VGG19 0.870 0.919 0.904 0.891 0.897 0.964 (0.933-0.985) 0.887 
DenseNet161 0.926 0.887 0.877 0.932 0.905 0.972 (0.950-0.988) 0.901 
ResNet101 0.870 0.903 0.887 0.889 0.888 0.956 (0.929-0.988) 0.879 
ResNet50 0.982 0.903 0.898 0.983 0.940 0.984 (0.965-0.995) 0.938 

 
 

Performance of DL models 
To simulate the clinical workflow of radiologists, 

who consider multiplane US images when making 
assessments, we merged the malignancy risk 
probabilities from various planes to generate an 
overall probability for lesion-level US imaging 
evaluation. Within the internal test set, we assessed 
the performance of the model by utilizing different 
plane US images, and measuring the AUC of the 
receiver operating characteristic curve (ROC) and F1 
score (Figure 3). When the transverse, sagittal, and 
coronal planes were combined, ResNet50 achieved 
the best sensitivity (98.2%), and VGG19 performed 
best in terms of specificity (91.9%). Compared with 
the other models (VGG19, DenseNet161, ResNet101), 
the ResNet50 model had higher sensitivity (98.2%), 
NPV (98.3%), and accuracy (94.0%) (Table 2). 
According to the transverse and sagittal planes, the 
ResNet50 model achieved an AUC of 0.963. With the 
additional coronal planes, the model attained a 
significantly better AUC of 0.984. The three planes 
accomplished superior performance to the two 
planes. The evaluation of the AUC on lesion-level US 
images demonstrated superior performance on both 

two-plane and three-plane assessments compared 
with single-plane US images. For external test set 1, 
the DL model also had better sensitivity (96.2%), 
accuracy (90.2%), and an F1 score of 0.911. For 
external test set 2, the DL model also had better 
sensitivity (93.0%) and an F1 score of 0.876. Table 3 
summarizes the statistical comparisons among 
various planes. 

Visualization and auxiliary diagnosis functions 
of the DL model 

To visualize the capabilities of the DL model, the 
gradient-weighted class activation mapping 
(Grad-CAM) method was used to generate heatmaps 
(Figures 4 and 5). These heatmaps can highlight the 
most indicative areas of ABVS images, thereby 
interpreting the predictive mechanism of the DL 
model. This process reveals the contribution of each 
pixel in these images to the prediction of breast 
lesions. We observed that the DL model focused on 
the region where the lesion intersected with the 
surrounding breast glands. The basis of this 
prediction can assist radiologists in understanding the 
rationale behind the decisions made by the DL model. 
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Table 3. Performance of the ResNet50 model based on single, double and the three planes of ABVS images in test set. 

Plane Sensitivity Specificity PPV NPV Accuracy AUC (95% CI) F1 score 
Transverse 0.870 0.855 0.839 0.883 0.862 0.946 (0.916-0.977) 0.855 
Sagittal 0.796 0.919 0.896 0.838 0.862 0.952 (0.919-0.984) 0.843 
Coronal 0.796 0.952 0.935 0.843 0.879 0.938 (0.895-0.975) 0.860 
Feature fusion 1 0.889 0.903 0.889 0.903 0.897 0.963 (0.938-0.989) 0.889 
Feature fusion 2 0.982 0.903 0.898 0.983 0.940 0.984 (0.965-0.995) 0.938 
Feature fusion 2a 0.962 0.837 0.864 0.954 0.902 0.978 (0.951-0.994) 0.911 
Feature fusion 2b 0.930 0.823 0.828 0.927 0.874 0.942 (0.902-0.978) 0.876 

Feature fusion 1: transverse and sagittal feature fusion; Feature fusion 2: transverse, sagittal and coronal feature fusion 
a external test set 1 b external test set 2 

 

 
Figure 4. ABVS image and feature map visualization of breast tumor segmentation. ABVS image and corresponding feature map from a 24-year-old female patient presenting with 
a right breast mass, pathologically confirmed as fibroadenoma. The DL model predicted a benign classification (denoted by the green frame) for binary categorization, with a mean 
benign probability of 0.99. The superimposed heatmaps delineate diagnostically significant regions within each image. Areas depicted in warm colors (e.g., red, yellow) correspond 
to stronger correlations with the prediction outcome. Conversely, regions in cool colors (e.g., green, blue) indicate weaker predictive correlations. For benign tumors, the model 
derived its diagnostic prediction through comprehensive pixel-wise analysis within the segmented tumor region. 

 
Comparison of diagnostic performance 
between the DL model and radiologists  

Radiologists with varying levels of experience 
observed greater accuracy in assessing breast US 
lesions on three-plane US images compared to 
two-plane US images (Table 4). The accuracy of 
diagnosis by radiologists 5 and 6 was higher than that 
of radiologists 1 - 4. In the independent evaluation of 
lesions without the assistance of DL, senior 
radiologists demonstrated greater sensitivity and 

specificity than junior radiologists (94.4% vs. 60.2%; 
96.8% vs. 78.2%; P < 0.05; respectively). Moreover, the 
sensitivity of US diagnosis by senior radiologists 
(94.4%) was superior to that of middle radiologists 
(89.8%). Compared with each individual radiologist, 
the ResNet50 model achieved systematically better 
sensitivity and specificity than junior radiologists in 
the internal test set (P < 0.05) and reached the level of 
senior radiologists with high reliability and accuracy 
(Table 5). 
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Figure 5. Visualization of ABVS images and feature maps for breast tumor segmentation. A 50-year-old woman presented with a palpable breast mass, which was 
histopathologically confirmed as invasive ductal carcinoma. The DL model predicted malignancy (indicated by a red frame for binary classification) with a mean malignancy risk 
probability of 0.93. These heatmaps depict the approximate locations of the lesion in each image. For malignant tumors, the model focuses more on the tumor periphery rather 
than the entire tumor area. 

 

Table 4. Comparison of diagnostic performance among the six radiologists at different levels, according to internal test set base on the 
transverse and sagittal two-plane and transverse, sagittal and coronal three-plane. 

  Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) AUC (95% CI) 
 Two-plane R1 60.3 (70/116) 75.9 (41/54) 46.8 (29/62) 55.4 (41/74) 69.0 (29/42) 0.614 (0.511-0.716) 

R2 73.3 (85/116) 59.3 (32/54) 85.5 (53/62) 78.0 (32/41) 70.1 (53/75) 0.724 (0.628-0.819) 
R3 87.9 (102/116) 74.1 (40/54) 100.0 (62/62) 100.0 (40/40) 81.6 (62/76) 0.870 (0.797-0.943) 
R4 95.7 (111/116) 98.1 (53/54) 93.5 (58/62) 93.0 (53/57) 98.3 (58/59) 0.958 (0.917-1.000) 
R5 91.4 (106/116) 81.5 (44/54) 100.0 (62/62) 100.0 (44/44) 86.1 (62/72) 0.907 (0.844-0.971) 
R6 94.8 (110/116) 98.1 (53/54) 91.9 (57/62) 91.4 (53/58) 98.3 (57/58) 0.950 (0.905-0.995) 

Three-plane R1 65.6 (76/116) 66.7 (36/54) 64.5 (40/62) 62.1 (36/58) 69.0 (40/58) 0.656 (0.555-0.756) 
R2 74.1 (86/116) 53.7 (29/54) 91.9 (57/62) 85.3 (29/34) 69.5 (57/82) 0.728 (0.633-0.824) 
R3 91.4 (106/116) 83.3 (45/54) 98.4 (61/62) 97.8 (45/46) 87.1 (61/70) 0.909 (0.846-0.971) 
R4 96.6 (112/116) 96.3 (52/54) 96.8 (60/62) 96.3 (52/54) 96.8 (60/62) 0.965 (0.927-1.000) 
R5 95.7 (111/116) 92.6 (50/54) 98.4 (61/62) 98.0 (50/51) 93.8 (61/65) 0.955 (0.910-1.000) 
R6 95.7 (111/116) 96.3 (52/54) 95.2 (59/62) 94.5 (52/55) 93.8 (59/61) 0.957 (0.915-1.000) 

Data represent the percentages, data in parentheses are used to calculate percentages.  
BI-RADS, Breast Imaging Reporting and Data System; R, radiologist; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the receiver operating 
characteristic curve; CI, confidence interval. 
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Table 5. Comparison of diagnostic performance and reading time between the groups of radiologists at different levels with and without 
DL-assisted. 

Different levels of radiologist group Index Without DL With DL P1 P2 
Junior R1 Reading Time (s) 41.4 ± 9.3 17.0 ± 5.7  <0.001 

Sensitivity 66.7 77.8 0.026 1.000 
Specificity 64.5 79.0 <0.001 <0.001 

R2 Reading Time (s) 39.7 ± 8.6 18.2 ± 8.4  0.048 
Sensitivity 53.7 81.5 <0.001 0.003 
Specificity 91.9 98.4 0.228 0.027 

Middle R3 Reading Time (s) 36.1 ± 5.4 14.4 ± 4.6  <0.001 
Sensitivity 83.3 87.0 0.182 0.617 
Specificity 98.4 98.4 0.371 / 

R4 Reading Time (s) 38.2 ± 6.5 15.6 ± 3.8  <0.001 
Sensitivity 96.3 98.1 0.680 1.000 
Specificity 96.8 96.8 0.680 / 

Senior R5 Reading Time (s) 33.0 ± 6.8 10.8 ± 5.2  <0.001 
Sensitivity 92.6 96.3 0.680 0.617 
Specificity 98.4 93.5 0.371 0.249 

R6 Reading Time (s) 30.9 ± 2.0 10.3 ± 1.6  <0.001 
Sensitivity 96.3 100 0.671 0.479 
Specificity 95.2 98.4 1.000 0.479 

P1 values indicate a comparison between the AI model and the different levels of radiologist groups without AI assistance.  
P2 values indicate a comparison between the the different levels of radiologist group with AI assistance and without AI assistance.  
DL = Deep Learning 

 
 
Upon incorporating the DL method for a second 

diagnosis in the internal test set, there was a notable 
improvement in the diagnostic sensitivity of junior 
radiologists, which increased significantly from 60.2% 
to 79.7%. Similarly, the specificity improved from 
78.2% to 88.7% (both P < 0.05). In contrast, the 
sensitivity and specificity of the middle and senior 
radiologists remained comparable to those in the first 
diagnosis, with no statistically significant differences 
observed (all P > 0.05). Furthermore, the diagnostic 
accuracy of all six radiologists improved significantly, 
enhancing the diagnostic performance of junior 
radiologists in terms of accuracy (from 69.9% to 
84.4%, P < 0.05) (Figure 6). 

Among all the radiologists, the reading time of 
the senior radiologists was shorter than that of the 
junior radiologists. The reading time of all the 
radiologists in the DL-assisted mode was shorter than 
that in the non-DL mode (P < 0.05). For all the 
radiologists, the average reading times with and 
without the DL-assisted mode were 14.4 seconds and 
36.5 seconds, respectively. Table 5 provides a 
comprehensive overview of the specific changes in 
each diagnostic index for the six radiologists when the 
DL model was used. The results clearly indicate that 
the integration of the DL model positively enhances 
the diagnostic capabilities of radiologists. 

Interobserver agreement in the test set 
We compared the agreement between the DL 

model and the six radiologists in the internal test set. 
For the binary classification of benign and malignant 

lesions, the DL model demonstrated almost perfect 
agreement (κ=0.809 and 0.810, 95% CI: 0.701 - 0.916 
and 0.702 - 0.918) with the senior radiologists (5 and 
6), substantial agreement (κ=0.755 and 0.792, 95% CI: 
0.635 - 0.875 and 0.680 - 0.904) with the middle 
radiologists (3 and 4), and moderate to mild 
agreement (κ=0.222 and 0.454, 95% CI: 0.055 - 0.389 
and 0.295 - 0.613) with the junior radiologists (1 and 
2), respectively. The senior radiologists exhibited 
substantial agreement with the middle radiologists. 
The details are presented in Table 6.  

Discussion 
The lack of consensus among inter- and 

intra-readers in ABVS examinations is widely 
recognized, and significant overlap exists in the US 
imaging features of benign and malignant lesions [8]. 
The efficacy of radiological decision-making relies on 
both the expertise and experience of the radiologist, as 
well as their workload [35,36]. We developed and 
validated a DL model for predicting breast cancer risk 
by analyzing and learning US features derived from 
ABVS images. Utilizing multiple image planes, this 
DL model closely replicates the standard clinical 
breast US scanning protocol and diagnostic reasoning. 
A comparative performance analysis demonstrated 
that the DL model achieved significantly superior 
diagnostic accuracy compared to junior radiologists. 
Furthermore, the diagnostic accuracy of the six 
radiologists improved significantly when utilizing the 
DL model as an assistive tool. Patryk et al. [36] 
employed a deep CNN with ABVS for breast lesion 
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detection and classification, reporting a sensitivity of 
90.9% and an accuracy of 91.0%, achieving 
near-perfect agreement with ground truth and 
performing comparably to human readers. Our study 
demonstrated diagnostic accuracy comparable to 
those reported by Wang et al. [37]. The application of 
this novel DLN based on ABVS images holds 
potential for enhancing the diagnostic performance of 
junior radiologists. Collectively, these results indicate 
that the DL model can effectively evaluate breast 
lesions with diagnostic efficacy comparable to that of 
experienced radiologists. 

The application of ABVS is associated with 
prolonged reading times and an increased rate of 
false-negative lesion identification. Research by Yang 
et al. [26] demonstrated that a significantly shorter 
reading time can be achieved without compromising 

diagnostic performance for both novice and 
experienced readers utilizing the concurrent-reading 
protocol. Our study yielded comparable findings. The 
proposed approach effectively facilitates the 
identification of suspicious lesions within ABVS 
datasets and provides valuable insights for accurate 
lesion classification, thereby contributing to 
significant improvements in diagnostic outcomes. The 
reading time for all participating radiologists was 
reduced in the DL-assisted mode relative to the 
non-DL mode, underscoring the utility of DL 
assistance for both junior and senior radiologists. The 
integration of DL models into clinical practice may 
serve as a dependable adjunct for experienced 
radiologists, offering supplementary insights, 
reducing diagnostic time expenditure, and furnishing 
expert-level guidance to junior radiologists.  

 
 
 

 
Figure 6. The confusion matrices for the DL model predicting breast cancer in (a) the internal test set, (b) external test set 1, and (c) external test set 2. The receiver operating 
characteristic (ROC) curves illustrate the performance of the DL model and radiologists groups groups across varying experience levels with versus without DL assistance in (d) 
the internal test set, (e) external test set 1, and (f) external test set 2. 
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Table 6. Interobserver agreement among six radiologists and ResNet50 model. 

 Kappa value (95% CI) 
R1 R2 R3 R4 R5 R6 

ResNet50 0.222 (0.055 - 0.389) 0.454 (0.295 - 0.613) 0.755 (0.635 - 0.875) 0.792 (0.680 - 0.904) 0.809 (0.701 - 0.916) 0.810 (0.702 - 0.918) 
R1  0.314 (0.242 - 0.386) 0.315 (0.239 - 0.391) 0.222 (0.137 - 0.307) 0.249 (0.167 - 0.331) 0.303 (0.140 - 0.466) 
R2   0.504 (0.422 - 0.586) 0.419 (0.336 - 0.502) 0.428 (0.344 - 0.512) 0.510 (0.432 - 0.588) 
R3    0.755 (0.694 - 0.816) 0.805 (0.749 - 0.861) 0.733 (0.675 - 0.791) 
R4     0.844 (0.794 - 0.894) 0.844 (0.794 - 0.894) 
R5      0.861 (0.814 - 0.908) 

 
 
The primary objective of DL application in this 

domain is to optimize clinical workflows and enhance 
diagnostic accuracy. Evaluating US images 
traditionally involves a time-consuming and iterative 
process. DL algorithms, in contrast, efficiently process 
extensive volumes of image data without 
fatigue-related degradation, demonstrating high 
throughput and stability throughout the diagnostic 
procedure. Furthermore, DL excels in recognizing 
complex patterns, rendering it particularly suitable 
for image interpretation tasks demanding the capture 
of nuanced details, analogous to human neural 
network capabilities [38]. Specifically, the DL model 
demonstrates robust capabilities in the automated 
identification and delineation of breast lesions [39]. 
Beyond diagnostic assistance, the model precisely 
localizes lesions and characterizes their extent, 
thereby augmenting the interpretability of clinical 
findings. Integration of DL models into US 
workstations offers potential for real-time radiological 
assistance. Deployment of DL technology as an 
auxiliary tool can improve diagnostic accuracy, 
particularly benefiting less experienced radiologists. 
Moreover, DL model implementation addresses 
challenges stemming from resource disparities. In 
developed regions characterized by high clinical 
workloads, DL models can mitigate escalating 
medical demands. Similarly, in resource-limited 
remote settings, DL models help mitigate geographic 
disparities in the distribution of specialized medical 
expertise and personnel. 

In clinical practice, radiologists can continually 
and dynamically observe lesion evolution and 
three-dimensional characteristics while integrating 
multiple clinical parameter [40]. To simulate the 
radiologist's clinical workflow, the DL model was 
developed using ABVS images, enabling multi-planar 
lesion visualization during routine examinations. The 
developed DL model demonstrated comparability 
and generalizability during validation, along with 
superior diagnostic accuracy. An additional 
advantage of this DL model is its inherent robustness. 
The model was constructed utilizing a diverse dataset 
comprising 1,373 cases collected from three distinct 
hospitals. These images were acquired by various 

operators employing different imaging devices. This 
heterogeneity in geographic origin, case 
characteristics, and imaging sources enhances the 
model's reproducibility. The AUC for the internal test 
set of the DL model was 0.984, and for the external test 
set 1, it was 0.978; for external test set 2, it was 0.942. 
These results indicate that the model exhibited 
outstanding performance in accurately identifying 
breast cancer risk.  

There are several limitations in this study. First, 
the DL model was developed exclusively using 
grayscale US images; incorporating multimodal 
images data, such as color Doppler and elastography, 
may enhance the model performance. Second, the 
distribution of lesions across diagnostic classifications 
was uneven. Future studies should aim to include a 
broader spectrum of breast lesions to ensure more 
comprehensive representation of diverse pathological 
tumor types and to enrich the database. Third, 
subsequent research should investigate the potential 
of DL models for classifying molecular subtypes of 
breast cancer and for accurately characterizing 
BRCA1/2 mutation status. Further exploration is also 
needed regarding the optimal integration of DL 
models into routine clinical workflows. Advancing 
these research directions holds significant potential 
for enhancing the diagnostic capabilities of DL models 
in breast cancer and facilitating personalized 
treatment strategies. 

Conclusions 
The DL model utilizing ABVS images 

demonstrates expert-level capability in discriminating 
between benign and malignant breast lesions. 
Radiologist performance, particularly among junior 
radiologists, is significantly enhanced when assisted 
by the DL model, as evidenced by improved 
diagnostic accuracy and reduced interpretation time. 
This DL approach fundamentally transforms 
conventional breast ultrasound practices by 
facilitating efficient, automated screening and 
classification of breast tumors. 
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