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Abstract 

Background: Endoplasmic reticulum stress (ERS) as a potent disease regulator has been proven to be 
engaged in the pathogenesis and progression of numerous disorders. Osteoarthritis (OA) is a widespread 
degenerative disease of the joints with chondrocyte damage as the main pathologic mechanism. However, 
the specific role of ERS in chondrocytes during OA development remains poorly understood. 
Methods: Integration of single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq analyses to 
thoroughly assess the landscape of ERS in chondrocytes from OA samples. The WGCNA and 
unsupervised cluster analysis were integrated to identify ERS patterns. Furthermore, we screened ERS 
key regulators for diagnosis and prediction of OA development by three algorithms (LASSO, Random 
Forest, and PPI analysis). Finally, we constructed in vitro OA models for validating the biological roles of 
the identified ERS key regulators. 
Result: scRNA-seq analysis revealed a robust association between ERS and OA progression. Unfolded 
protein responses, TNFA signaling via NF-κB, and apoptosis were significantly activated in the high ERS 
risk subpopulation. Cellular communication analysis demonstrated markedly enhanced cell-cell 
interactions and signaling pathways in high ERS risk subpopulations compared to low ERS risk 
subpopulations. Unsupervised cluster analysis identified two ERS patterns exhibiting distinct metabolic 
and inflammation signaling sceneries. Additionally, we identified two key ERS regulators, IGFBP3 and 
S100A4, and developed a novel nomogram based on these markers, which demonstrated excellent 
clinical predictive and guiding capabilities. Finally, we found that suppressing IGFBP3 expression in vitro 
could maintain chondrocyte metabolic homeostasis and inhibit PERK/ATF4/CHOP cascade-mediated 
ERS to reduce chondrocyte apoptosis.  
Conclusion: The present study integrated scRNA-seq and bulk RNA-seq to delve into the pathogenesis 
of ERS driving the progression of OA and identify ERS key regulators for OA diagnosis and therapeutic 
intervention. 
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Introduction 
Osteoarthritis (OA) is the most prevalent joint 

disease among middle-aged and older populations as 
well as one of the major causes of joint pain and 

dysfunction [1]. As a chronic progressive joint 
disorder, OA is characterized by cartilage 
degeneration, articular cartilage surface impairment, 

 
Ivyspring  

International Publisher 



Int. J. Med. Sci. 2025, Vol. 22 

 
https://www.medsci.org 

3907 

and subchondral bone remodeling [2]. Despite its 
gradual progression and worsening symptoms over 
time, there are currently no effective clinical 
treatments to halt or slow its pathologic progression. 
The pathogenesis of OA is highly complex with 
multiple mechanisms involved, including genetic 
factors, mechanical stress, metabolic imbalance, and 
inflammatory response [3]. Chondrocytes, the sole cell 
type in articular cartilage which play a critical role in 
maintaining the metabolic balance between synthesis 
and degradation of cartilage [4]. Cartilage senescence 
or apoptosis arising from various causes will lead to 
disruption of chondrocyte homeostasis, which in turn 
aggravates OA [5]. Consequently, there is increasing 
concerns to explore the function of chondrocyte 
homeostasis in OA development. 

 Endoplasmic reticulum (ER) is a cellular 
organelle composed of a continuous reticulum system 
responsible for protein and lipid biosynthesis, 
apoptosis, and calcium homeostasis. ER is essential 
for protein folding and structural maturation, 
maintaining the activity and function of over 
one-third of proteins in eukaryotic cells [6]. Under 
physiological conditions, the synthetic and catabolic 
metabolisms in the ER are in a dynamic balance, 
which is termed ER homeostasis [7]. When the 
organism is in environments with hypoxia, low pH, 
inflammatory infiltration, nutrient deficiency, or 
calcium-ion imbalance, ER homeostasis will be 
disrupted, and protein folding function will be 
abnormal, resulting in the rapid accumulation of 
misfolded or unfolded proteins in the cell, triggering 
endoplasmic reticulum stress (ERS) [8, 9]. To 
counteract ERS, eukaryotic cells have come up with a 
series of complementary adaptive mechanisms, 
including the unfolded protein response (UPR) and 
endoplasmic reticulum-associated degradation 
(ERAD) pathways. These processes aim to eliminate 
misfolded proteins and restore ER homeostasis [10]. 
Both of the two intracellular adaptive responses as 
protein quality control programs are initiated by ERS 
to respond to malfunctions during protein synthesis, 
folding and structural maturation. Typically, the UPR 
is sensing ERS through three transmembrane sensor 
proteins located on the endoplasmic reticulum 
membrane, including activating transcription factor 6 
(ATF6), protein kinase R-like endoplasmic reticulum 
kinase (PERK), and inositol-requiring enzyme 1 
(IRE1), to restore ER homeostasis [11]. ERAD can 
transport unstable proteins from the ER to the 
cytoplasm and degrade them through the 
ubiquitin-proteasome system. This facilitates the 
reduction of ER loading and avoids the deleterious 
effects of accumulation of unfolded or abnormally 

folded proteins on the cell [12]. When ERS is 
persistent and aggravated, this dynamically balanced 
regulatory network can be disrupted leading to 
apoptosis [9]. Thus, ERS is key to the development 
and progression of numerous diseases [6]. 

 Recently, many studies have demonstrated that 
ERS-related proteins, including CHOP, ATF6, PERK, 
and IRE1, are obviously increased in cartilage tissues 
of OA patients, with their expression levels positively 
correlated with the degree of cartilage degeneration 
[9, 13]. The strong association between the OA 
incidence and aging further supports the involvement 
of ERS in the pathogenesis of OA, as ER folding 
mechanisms and UPR function have been shown to 
decline with age [6]. ERS had been proven to be 
tightly linked to chondrocyte apoptosis in the 
progression of OA [14]. However, the specific 
mechanism of ERS signaling in the development and 
progression of OA remain poorly understood. 
Single-cell RNA (scRNA) sequencing, an emerging 
technology that recognizes distinct cell types and 
markers to explore intercellular transcriptome 
variation and heterogeneity, has raised new insights 
for understanding the pathogenesis of osteoarthritis 
[15]. 

 In this study, we aimed to integrate scRNA-seq 
and bulk RNA-seq to explore the heterogeneity of ERS 
in chondrocytes and identified the ERS key regulators 
that are involved in the OA development (Scheme 1). 
Our study revealed the potential contribution of ERS 
in OA onset and elevated novel strategies for the 
diagnosis and treatment of OA. 

Methods and Materials 
Data collection and processing 

To focus on the analysis of cartilage, we only 
selected datasets containing cartilage tissue for 
inclusion in this study. The scRNA-seq for OA 
cartilage was obtained from the GSE169454 dataset 
(GPL16791 Illumina HiSeq 2500) in the GEO database. 
The GSE169454 dataset contains four OA cartilage 
samples and three healthy control (HC) cartilage 
samples. The bulk RNA-seq for OA cartilage was 
obtained from the GSE57218 (GPL6947 Illumina 
HumanHT-12 V3.0 expression beadchip), GSE129147 
(GPL15207 Affymetrix Human Gene Expression 
Array) and GSE169077 (GPL96 Affymetrix Human 
Genome U133A Array) datasets in the GEO database. 
GSE57218 contains 33 OA cartilage samples and 7 HC 
samples, GSE129147 contains 10 OA cartilage samples 
and 9 HC samples, and GSE169077 contains 6 OA 
cartilage samples and 5 HC samples.  
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Scheme 1. The work flow of this study. 

 
The R package “Seurat” was utilized for the 

processing of scRNA-seq data. For the purpose of 
quality control, genes expressed in at least 5 cells were 
retained and cells with less than 300 or more than 
7000 features were culled while retaining less than 
10% of the mitochondrial reads. Subsequently, the 
gene expression matrix was normalized and scaled. 
The top 3,000 highly variable genes were identified 
using the FindVariableFeatures function and were 
used as input for principal component analysis (PCA). 
Shortly, the FindNeighbors and FindClusters 
(resolution = 0.45) functions were executed to detect 
cell clusters and assess robustness, and then projected 
through the t-SNE. The FindMarkers function was 
used to identify specific marker genes for each cell 
clusters, and heat maps were used to demonstrate the 
presence of significantly differentially expressed 
genes between cell clusters to confirm the biological 
validity of the clustering. Principal cell types were 
manually annotated based on established marker 
genes from the literature [16-18]. R package “limma” 
was applied to the processing and integration of the 

batching effect on bulk RNA-seq. For integrative 
analysis of different datasets, we first extracted the 
gene symbols common to multiple datasets and then 
labeled the different datasets as different batches, 
again using the removeBatchEffect function to remove 
the batch effect. Principal component analysis was 
used to compare the effects before and after batch 
removal. Subsequently, we constructed a weighted 
gene co-expression network using the R package 
“WGCNA” to screen potential genes associated with 
the OA development. The most suitable soft threshold 
for WGCNA was determined to be 6. Subsequently, 
the adjacency matrix was converted to a topological 
overlap matrix (TOM) and the modules were defined 
as branches of a hierarchical clustering tree. Pearson 
correlation analysis was performed to identify the 
modules most relevant to OA occurrence.  

Evaluating ERS Scores in scRNA-seq for OA 
Based on previous literature, we obtained the 

GO RESPONSE TO ENDOPLASMIC RETICULUM 
STRESS and GO REGULATION OF RESPONSE TO 
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ENDOPLASMIC RETICULUM STRESS from 
Molecular Signature Database (MSigDB) v7.5 
database acquired 295 ERS-related genes (Table S1) 
[19, 20]. Based on the expression of ERS-related genes, 
we calculated the ERS score for each cell using R 
package “AUCell”. Subsequently, on the basis of the 
median ERS score, each cell of OA was categorized 
into a high ERS risk and a low ERS risk. Differentially 
expressed genes (DEGs) between different ERS cell 
subpopulations based on the “FindMarkers” function 
of the “Seurat” program, these genes were considered 
as ERS regulators of OA. 

GSEA, GSVA and cell-cell communication 
analysis 

The KEGG and hallmark gene sets, which 
summarize and represent specific well-defined 
biological states and functions, were downloaded 
from the Molecular Signatures Database 
(http://software.broadinstitute.org/gsea/msigdb). 
GSEA analysis was performed based on the rank 
ordering of ERS regulators, with |NES|>1.5 and a P 
value < 0.05 considered statistically different GSVA 
was performed using the R package “GSVA” to 
characterize differences in cellular pathways. R 
package “cellchat” was employed to predict signaling 
inputs and outputs and cellular functions among 
different cell subpopulations. 

Recognizing ERS patterms in patients with OA 
For the intersection of genes identified by 

scRNA-seq for ERS regulators and WGCNA for 
module genes related to OA occurrence, we 
performed unsupervised cluster analysis using the R 
package “ConsensusClusterPlus”. Consensus Matrix, 
Cumulative Distribution Function (CDF), and 
Tracking Map were used to determine the optimal 
number of clusters. 

Recognition of ERS key regulators 
To identify key ERS regulators involved in OA, 

we integrated 2 machine learning algorithms (LASSO 
and Random Forest) with PPI analysis [21, 22]. The 
LASSO algorithm reduced the number of dimensions 
by using the R package “glmnet” and the minimum 
lambda value was used as the threshold value. The 
Random Forest algorithm uses the R package 
“random forest” to filter the candidate genes with a 
relative importance score > 1.0 as the threshold. A PPI 
visualization network was constructed based on 
cytoscape, and hub genes were identified using 
CytoHubba’s degree algorithm. To enhance the 
robustness of the results, the intersection of the three 
algorithms was identified as ERS key regulators in 
OA. 

Diagnostic performance evaluation and 
predictive nomogram 

The R package “pROC” was utilized to evaluate 
the diagnostic performance of ERS key regulators. 
Then, nomogram was constructed to predict the 
occurrence of OA based on the R package “rms”. 
Calibration curve and clinical decision curve (DCA) 
were utilized to evaluate the predictive performance 
of the constructed nomogram. 

Chondrocyte isolation and culture 
Chondrocytes were obtained from the knee 

joints of 2-week-old male Sprague-Dawley (SD) rats at 
the Animal Experiment Center of the Fourth Military 
Medical University. All experiments were approved 
by the Animal Ethics Committee of the Fourth 
Military Medical University (IACUC-202356281). 
Chondrocytes were obtained through overnight 
digestion by type II collagenase. Chondrocytes were 
then expanded and cultured in DMEM with 10 % fetal 
bovine serum (FBS) supplemented with 1 % P/S (v/v) 
to P2 for subsequent experiments. 

Small interfering RNA (siRNA) transfection 
According to the manufacturer’s instructions 

(GenePharma Biotech, Shanghai), IGFBP3-targeted 
siRNA and negative control (NC) were mixed with 
Lipofectamine 3000 transfection reagent and 
Opti-MEM medium. The mixture was then added to 
chondrocyte medium for transfection (siRNA 
concentration of 50 nM). The medium was replaced 
with normal medium after 24h of co-culture. 
Transfection efficiency was confirmed by real-time 
fluorescence quantitative PCR. 

qRT-PCR 
The RNA was extracted from rat chondrocytes 

using TRIZOL reagent and reverse transcribed to 
cDNA using a synthesis kit (Takara, China). qRT-PCR 
was performed using the BioRad CFX96 Real-Time 
PCR system (Bio-Rad, USA) and TB Green Premix 
ExTaq II (Tli RNaseH Plus). GAPDH was used as an 
internal reference. The primers were shown in Table 
S3. 

Cell viability analysis 
Cell proliferation viability was determined by 

Cell Counting Kit-8 assay (CCK-8, Beyotime) at 1, 3 
and 5 days after transfection. Briefly, 10 μl of CCK-8 
solution was added to the culture medium and 
further incubated for 2 hours. The absorbance at 450 
nm was measured by enzyme marker. 

Immunofluorescence (IF) analysis 
The chondrocytes were divided into four groups: 
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(1) control group: untreated, (2) IL-1β group: treated 
with 10ng/mL IL-1beta for 24 hours, (3) IL-1β+siNC 
group: chondrocytes transfected with si-NC were 
treated with 10ng/mL IL-1beta for 24 hours, (4) 
IL-1β+si-IGFBP3 group: chondrocytes transfected 
with si-IGFBP3 were treated with 10ng/mL IL-1beta 
for 24 hours. Chondrocytes were fixed with 4% 
paraformaldehyde for 30 minutes and the membrane 
was broken with 0.2% Triton X-100 for 15 minutes. To 
block nonspecific binding, cells were incubated with 
5% BSA for 2 hours at room temperature. After the 
closure step, cells were incubated with primary 
antibodies against MMP13 (proteintech, 18165-1-AP, 
China, 1:100) and COL II (proteintech, 28459-1-AP, 
China, 1:100), at 4°C overnight. Afterwards, incubate 
with secondary antibody for 2 hours in the dark and 
stain the nuclei with DAPI for 5 minutes. Observation 
and capture of results using fluorescence microscopy. 

Western blot (WB) analysis 
WB analysis was performed as previously 

reported [23]. Total protein was extracted from 
chondrocytes using RIPA lysis buffer (Solarbio, 
China). Extracted proteins were quantified by BCA 
protein assay kit (Solarbio, China). Subsequently, after 
electrophoresis, transmembrane, and closure, it was 
treated with anti-PERK (Affinity,1:2000, AF5304, 
China), p-PERK (Affinity, 1:2000, DF7576, China), 
IGFBP3 (proteintech,10189-2-AP, China, 1:2000), 
ATF6 (proteintech, 24169-1-AP, China, 1:2000), ATF4 
(proteintech, 10835-1-AP, China, 1:2000), CHOP 
(proteintech, 15204-1-AP, China, 1:2000), GRP78 
(proteintech, 11587-1-AP, China, 1:2000), BAX 
(proteintech, 50599-2-AP, China, 1:2000),and 
cle-Caspase3 ((proteintech, 19677-1-AP, China, 1:2000) 
at 4 ºC overnight. The following day, the NC 
membrane was incubated with secondary antibody 
(1:2000) for 1 hour at room temperature and observed 
on the ECL system. 

Statistical analysis 
Statistical analysis was performed using SPSS 

22.0 (IBM, Chicago, USA). All quantitative variables 
are expressed as mean ± standard deviation (SD). 
Student’s t-test or one-way analysis of variance 
(ANOVA) was used to compare differences between 
groups. p<0.05 indicates a statistically significant 
difference (*p<0.05, **p<0.01, and ***p<0.001). 

Result 
Single-cell profiling of chondrocytes from HC 
and OA patients 

Following the initial screening of the quality 
control program, a total of 65,362 high-quality cells 
were obtained from the scRNA-seq data, including 
56,335 OA chondrocytes and 9,027 HC chondrocytes. 
Detailed results of the pre-processing of cells and 
features are shown in Figure S1. A total of 12 clusters 
were identified after log-normalization and dimen-
sionality reduction (Figure 1A-B). Subsequently, 
based on previously reported cellmarkers, we 
identified nine cell subpopulations, including effector 
chondrocyte (EC), prehypertrophic chondrocyte 
(preHTC), fibrocartilage chondrocyte (FC), regulatory 
chondrocyte/homeostatic chondrocyte (RegC/ 
HomC), proliferative chondrocytes (ProC), 
hypertrophic chondrocytes (HTC), mitochondrial 
chondrocytes (MTC), and red blood cell (RBC) (Figure 
2A). The canonical gene markers, DEGs and the 
relation of different cell subpopulations were shown 
in Table S2, Figure 2B-D and S2. In HC cartilage 
sample, ProC and RegC/HomoC were the 
predominant cell subpopulations. In contrast, there 
was a significant decrease in the abundance of 
RegC/HomoC and ProC, with EC and PreHTC 
accounting for the major components in OA cartilage 
sample (Figure 2E). This indicated a dramatic change 
in the microenvironment of OA, EC and PreHTC were 
closely related to OA development. 

 

 
Figure 1. Integration of OA and HC scRNA-seq sample. (A). Cartilage samples from 3 HC and 4 OA patients; (B). T-SNE plots of 12 clusters. 
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Figure 2. Cell subpopulation identification by scRNA-seq.(A). UMAP plot of cartilage samples; (B). Marker genes for different subpopulations with UMAP; (C). Heatmap of 
markers for each subpopulation; (D). Heatmap of correlations for different subpopulations; (E). Bar chart of subpopulation proportions for HC and OA samples. 

 

Single-cell profiling of ERS risk on 
chondrocytes in OA 

To reveal the effect of ERS in the development 
and progression of osteoarthritis, we calculated the 
ERS score for each cell using the AUCell. The results 
revealed that ERS scores were significantly higher in 
OA samples compared to HC samples, indicating a 
strong association between ERS and OA development 
(Figure 3A). Figure 3B illustrates the expression levels 

of ERS scores in different cell subpopulations in OA, 
with the highest scores in the EC. To reveal the 
heterogeneity of ERS across chondrocytes in 
osteoarthritis development, we categorized all 
chondrocytes in OA samples into high ERS risk and 
low ERS risk based on the median ERS score after 
excluding RBCs. A total of 162 differentially 
expressed genes were identified between the high and 
low ERS risk subgroups, with 121 were specifically 
expressed in the high ERS group and 41 in the low 
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ERS group (Figure 3C). These genes were considered 
ERS regulators. UMAP plot demonstrating the 
expression level of ERS risk in different cells (Figure 
3D). GSEA analysis revealed that endoplasmic 
reticulum unfolded protein response, IRE1-mediated 
unfolded protein response, and apoptotic process 
were significantly activated in the high-risk group 
than in low-risk group (Figure 3E). GSVA analysis 
showed significant activation of the unfolded protein 
response, protein secretion, TNFA signaling via 
NF-κB and glycolysis signaling pathways in high ERS 
risk group compared to low ERS risk group (Figure 
3F).  

High ERS risk enhancing intercellular 
communication in OA 

The effect of ERS on intercellular communication 

was explored using the R package “CellChat”. As 
shown in Figure 4A, the interaction strength and 
number of inferred interactions were markedly higher 
in the high ERS risk subpopulations than in the low 
ERS risk subpopulations. Similar results were 
likewise demonstrated in different chondrocyte 
subpopulations (Figure 4B-D). It is indicated that ERS 
was involved in regulating the interactions between 
different chondrocytes in OA. To assess the 
differential expression patterns of signaling pathways 
in different risk subpopulations, the strength of 
different signaling pathways was further analyzed. 
The results revealed that the strength of most 
signaling pathways was markedly enhanced in the 
high ERS risk subpopulation, including CHAD, 
NOTCH, FN1, SPP1, VEGF, etc. 

 

 
Figure 3. Landscape of ERS at the single-cell level. (A). Column charts for the comparison of ERS scores in HC and OA sample; (B). The level of ERS scores in different cell 
subpopulations in OA samples;(C). Heatmap of markers for high and low ERS risk of chondrocyte subpopulation; (D). UMAP plot of ERS risk score on chondrocyte 
subpopulation; (E). GSEA analysis; (F). GSVA analysis. 
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Figure 4. Differences in cellular communication between high/low ERS risk subgroups. (A-C). Bar plot, circle plot and heatmap demonstrating differences in number of 
interactions and interaction strengths in high ERS and low ERS subpopulations; (D). The number of interactions for different chondrocyte subpopulations in high ERS and low ERS 
subpopulations; (E-F). The variations in intercellular signaling patterns between high ERS and low ERS subpopulations. 

 
In contrast, only the PTN signaling pathway was 

significantly enhanced in the low ERS risk 
subpopulation. There was no significant difference in 
the activity of CD99 pathway between the two groups 
(Figure 4E). Figure 4F illustrated the variation in 
signaling pathways in different chondrocyte 
subpopulations. These findings indicate that high ERS 
risk could activate various signaling pathways to 
participate in the onset and progression of OA. 

Screening for ERS regulators involved in OA 
development 

Subsequently, the batch effects of the bulk 
RNA-seq of the OA cartilage datasets were corrected 

and merged to ensure data consistency (Figure S3). 
WGCNA analysis was used to establish a scale-free 
network for OA transcriptome data. The optimal soft 
threshold (β= 6) was determined to achieve a 
scale-free topology (Figure 5A-B). Subsequently, 
average hierarchical clustering and dynamic tree 
cropping were performed to construct gene 
co-expression modules (Figure 5C-D). Among these 
modules, we found that the tan module showed the 
greatest positive correlation with the occurrence of 
OA (Figure 5E). There was a total of 905 genes in the 
Tan module, which were considered to be the critical 
genes involved in the OA development. The Wayne 
analysis identified 41 genes among ERS regulators 
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and OA-critical genes that were regarded as ERS 
regulators involved in the development of OA.  

Characterizing the ERS pattern in OA patients 
To investigate the role of these ERS regulators on 

the development of OA, we performed unsupervised 
cluster analysis of the expression profiles of these 41 
ERS regulators to identify ERS patterns. It was found 
that based on these gene expression profiles OA 
patients could be categorized into two distinct 
subgroups (Figure 6A-C). Heatmap showing the 
expression of ERS regulators in different patterns 
(Figure 6D). GSEA analysis revealed significant 
activation of glycolysis, IL2 STAT5 signaling, 
apoptosis, TNFA signaling via NF-kb, and TGF beta 
signaling in Cluster 2 (Figure 6E). GSVA analysis 
revealed that amino acid and lipid metabolism-related 

pathways were significantly activated in Cluster 1 
patients, including primary bile acid biosynthesis, 
tryptophan metabolism, and fatty acid metabolism, 
while biochemical signaling-related pathways and 
glucose metabolism signaling pathways were 
significantly activated in Cluster 2 patients, including 
MAPK signaling pathway, P53 signaling pathway, O 
glycan biosynthesis, and glycerophospholipid 
metabolism. Additionally, apoptotic signaling was 
similarly significantly enhanced in Cluster 2 (Figure 
6F). These implications mean that these ERS 
regulators could be used to precisely stratify OA 
patients via regulating the expression patterns of 
inflammation signaling pathways and metabolism, 
which raises new thoughts for personalized treatment 
of OA patients. 

 

 
Figure 5. WGCNA analysis for the bulk RNA-seq of OA cartilage. (A). The selection of soft threshold of WGCNA; (B). The cluster dendrogram of co-expression genes for OA 
cartilage; (C). Correlation of module genes and OA clinical traits; (D). Co-relationship of different modules; (E). The significance of the tan module for OA; (F) Wayne analysis 
identified ERS regulators involved in OA development. 
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Figure 6. Recognition of the ERS patterns in OA. (A). Clustering matrix plot at k = 2; (B-C). CDF curve; (D). Heatmap showing the expression of 41 ERS regulators in ERS 
patterns; (E). GSEA analysis; (F). GSVA analysis. 

 

Filtering for ERS key regulators in OA 
development 

To probe ERS key regulators involved in OA 
progression, we joined two machine learning 
algorithms and PPI analysis. The LASSO algorithm 
located eight ERS regulators, the RF algorithm 
recognized 11 ERS regulators, and the PPI analysis 
identified 10 ERS regulators (Figure 7A-E). To ensure 
the accuracy and robustness of the identified 
biomarkers, we performed a crosstabilization analysis 
of the three algorithms and identified a total of 2 ERS 
key regulators, IGFBP3 and S100A4 (Figure 7F).  

Diagnostic performance evaluation and 
prediction nomogram construction 

The ROC curves revealed that the AUC values of 
these two ERS key regulators for OA diagnosis were 
0.818 and 0.877, respectively, suggesting that these 
two molecules exhibit a favorable OA diagnostic 
value (Figure 8A). To improve the prediction of the 
occurrence of OA, we integrated these two ERS key 
regulators to construct a diagnostic nomogram 
(Figure 8B). The calibration curve showed that the 
bias-corrected curve was very close to the ideal curve 
with a high degree of overlap. The mean absolute 
error (MAE) between the predicted and actual 
probabilities of the model is relatively small at 0.056. 
These indicated that the nomogram was well 

calibrated with good robustness and stability (Figure 
C). The decision curve analysis (DCA) found that the 
net benefit of the nomogram with a risk threshold 
between 0.6 and 0.8 was significantly higher than that 
of “None” and “All”. This suggests that the optimal 
clinical utility of this range is to maximize the net 
benefit of effectively differentiating high-risk patients 
and avoiding over-intervention in low-risk 
populations (Figure 8D). 

Single-cell profiling of ERS key regulators on 
chondrocytes in OA 

The UMAP and violin plots demonstrating the 
expression levels of IGFBP3 and S100A4 in different 
chondrocyte subpopulations in OA samples (Figure 
9A-D). IGFBP3 was highly expressed in nearly all 
chondrocyte subpopulations, with the highest level of 
expression in EC, whereas S100A4 was highly 
expressed only in FC. Moreover, we also found that 
the expression of IGFBP3 and S100A4 was higher in 
the OA chondrocytes subpopulation than in the HC 
chondrocytes subpopulation (Figure 9E-F). This 
suggests that IGFBP3 and S100A4 might be an 
enhancer of ERS activation.  

IGFBP3 regulation of chondrocyte metabolic 
homeostasis 

Above mentioned results confirm that IGFBP3 is 
strongly expressed in most of the chondrocytes in OA 
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samples, which implies that IGFBP3 may not only act 
as an ERS driver but also contribute to the 
pathogenesis of OA. To further investigate the effect 
of IGFBP3 in the progression of OA, the cultured 
chondrocytes were first exposed to different 
concentrations of IL-1β (5,10,20 ng /mL) to mimic an 

in vitro OA model. IL-1β is a core 
inflammatorycytokine in the pathogenesis of OA and 
canreliably mimic the key pathological phenotypes of 
OA chondrocytes. Due to its operability, 
reproducibility, and stable nature, it has been widely 
used to simulate OA models in vitro [24-26]. 

 

 
Figure 7. Screening of ERS key regulators in OA. (A-B). LASSO algorithm to screen ERS key regulator; (C-D). Random forest algorithm to screen ERS key regulator; (E). PPI 
anlysis to screen ERS key regulator in Cytohubba; (F). Wayne analysis to derive the intersection of the three algorithms. 
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Figure 8. Construction of ERS risk nomogram. (A). ROC curve of ERS key regulators; (B). Nomogram to predict the development of OA; (C). Calibration curve; (D). DCA 
curve. 

 
We found that the protein expression level of 

IGFBP3 increased in a dose-dependent manner after 
IL-1β treatment, suggesting that IGFBP3 is a potential 
pathogenic gene in OA development (Figure 10A-B). 
Subsequently, we used siRNA to knock down the 
expression of IGFBP3 in chondrocytes, and qPCR 
analysis demonstrated that IGFBP3 was effectively 
knocked down (Figure 10C). To further investigate 
the effect of IGFBP3 knockdown on chondrocyte 
viability, we used CCK-8 reagent to measure the 
absorbance of transfected chondrocytes at day 1, 3 
and 5, respectively. Compared with untreated or 
si-NC chondrocytes, the proliferation activity of 
chondrocytes transfected with si-IGFBP3 was not 
significantly different at day 1, whereas the 
proliferative activity of chondrocytes was 
significantly increased at day 3 and day 5 (Figure 
10D). Furthermore, immunofluorescence analysis 
revealed that knockdown of IGFBP3 significantly 
increased the expression of COL2 protein and 
decreased the expression of MMP13 protein in 
chondrocytes under IL1β induction (Figure 10E-H). 

qPCR analysis further assessed the expression of 
catabolic genes, including MMP3, MMP9, MMP13, 
and ADAMTS5, in chondrocytes. The results showed 
that the mRNA expression of MMP3, MMP9, MMP13, 
and ADAMTS5 in chondrocytes in the si-IGFBP3 
group was significantly lower than that in the IL1β 
group (Figure 10I-L). These findings suggest that 
blocking IGFBP3 could protect the metabolic 
homeostasis of chondrocytes to inhibit matrix 
degradation in the OA microenvironment. 

IGFBP3 activates the PERK/ATF4/CHOP axis 
to trigger ERS to induce chondrocyte 
apoptosis 

WB analysis revealed that IL1β induction 
increased the expression of the apoptotic proteins 
BAX and Cle-Caspase3. After blocking IGFBP3 
expression with si-IGFBP3, apoptotic BAX and 
Cle-Caspase3 expression was also significantly 
downregulated (Figure 11A-B). When ERS is 
sustained, the UPR shifts from promoting cell 
survival to facilitating apoptosis [27]. The 
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PERK/ATF4/CHOP axis mediated ERS is intimately 
associated with the initiation of apoptosis [27]. We 
found that the expression of PERK, GRP78, ATF4 and 
CHOP proteins was significantly increased after IL1β 
induction. While blocking IGFBP3 expression could 
significantly downregulate PERK, GRP78, ATF4 and 

CHOP proteins (Figure 11C-D). These suggests that 
targeting IGFBP3 could inhibit the PERK/ATF4/ 
CHOP signaling cascade, thereby mitigating ERS and 
repressing chondrocyte apoptosis. This mechanism 
may help delay the onset of OA.  

 

 
Figure 9. Single-cell level of ERS key regulators. (A-B). UMAP plot demonstrating the expression of ERS key regulators; (C-D). Violin plot demonstrating the expression of ERS 
key regulators on different chondrocyte subpopulations in OA. (E-F). Histogram showing the expression differences of ERS key regulators in HC and OA samples. 
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Figure 10. Inhibiting IGFBP3 expression can maintain chondrocyte metabolic homeostasis. (A-B). Expression of IGFBP3 induced by different concentrations of IL-1β; (C). qPCR 
analysis to validate the efficiency of si-IGFBP3; (D). CCK8 reagents assess the effect of si-IGFBP3 on chondrocyte proliferation; (E, G). Immunofluorescence analysis of COLⅡ 
expression in chondrocytes; (F, H). Immunofluorescence analysis of MMP13 expression in chondrocytes, bar=50μm; (I-L). qPCR analysis of catabolic genes (n=4, *p<0.05, 
**p<0.01, and ***p<0.001). 

 

Discussion 
The ER is responsible for the folding of secreted 

proteins and the maintenance of homeostasis in the 
intracellular Ca2+ store [9]. Protein synthesis, folding 
and modification in the ER are regulated precisely. 
These processes determine the function and survival 
state of the cell [7]. The ERS response typically 
promotes cellular adaptation and survival to stress by 
restoring ER homeostasis, but unresolved or severe 
ERS can trigger cell death and mediate the onset of a 

variety of diseases [6]. Chondrocytes constitute the 
sole resident cells in cartilage and are primarily in 
charge of regulating the synthesis-degradation 
balance of the extracellular matrix [6, 28]. The 
homeostatic disruption arising from chondrocyte 
dysfunction or death is the key driver of cartilage 
degeneration and the development of OA. It has been 
found that ERS mainly affects chondrocytes during 
the progression of OA as well as being linked to 
cartilage degeneration. While moderate ERS can 
activate autophagy to protect chondrocytes from 
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apoptosis, excessive and prolonged ERS can promote 
the expression of MMPs and ADAMTS5, thereby 
exacerbating the catabolism of extracellular matrix 
(ECM) and inducing chondrocyte apoptosis [11, 29]. 
In contrast, ERS is more pronounced in synovial 
fibroblasts and immune cells in rheumatoid arthritis 
(RA) [30]. Activation of the PERK/ATF6/IRE1α 
protein in synovial fibroblasts exacerbates the 
progression of RA via the promotion of inflammatory 
cytokine production and synovial hyperplasia [31]. 
The ER chaperone GRP78/BiP is also present as an 
autoantibody in the serum or synovial fluid of 
patients with RA, which not only regulates the 
activation and function of the UPR pathway in 
immune cells, but also contributes to the direct 
production of self-antigens involved in the initiation 
of an autoimmune response [32]. Therefore, 
considering the heterogeneity of ERS in arthritis, 
further resolving the function of ERS in OA 
chondrocytes is crucial for a deeper understanding of 
the pathogenesis of OA. 

 In the current study, we integrated the 
scRNA-seq and bulk RNA-seq to systematically 

investigate the landscape of ERS in OA. Based on 
scRNA data from OA patients, ERS was found to be 
significantly more activated in chondrocytes from OA 
patients than normal cartilage. Furthermore, ERS 
exhibited varying activation levels in different 
chondrocyte subpopulations of OA, suggesting that 
ERS participates in OA development and has different 
regulatory effects in different cell subpopulations. To 
delineate more definitively the complexity and 
pathogenic mechanisms of ERS in chondrocyte 
occurrence in OA, we categorized chondrocytes from 
OA patients into a high ERS risk subpopulation and a 
low ERS risk subpopulation. Functional enrichment 
analysis confirmed that not only UPR-related 
pathways were significantly activated in the high ERS 
risk subpopulation, but also glycolysis, TNFA 
signaling via NF-κB and apoptosis-related signaling 
pathways were significantly activated. Persistent or 
intense ERS can lead to extensive protein folding and 
synthesis, which consumes substantial amounts of 
energy. Glycolytic pathway activation could provide 
additional energy to the cell to fulfill the energy 
requirements of the ER in stressful states [33].  

 

 
Figure 11. Blockade of IGFBP3 alleviated the ERS and apoptosis of chondrocytes. (A-B). WB and quantification analysis of apoptosis related protein; (C-D). WB analysis of ERS 
related protein (n=4, *p<0.05, **p<0.01, and ***p<0.001). 
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Additionally, unfolded protein-responsive 
transcription factors have been shown to mediate the 
metabolic transition from oxidative phosphorylation 
to glycolysis [34]. NF-κB as a key regulator involved 
in cellular response to stimuli in chronic inflammatory 
diseases [35]. ERS-activated UPR responses were 
found to promote TNF-α expression through the 
NF-κB pathway, thereby contributing to chondrocyte 
apoptosis and cartilage catabolism [36, 37]. In 
addition, we also found significant differences in 
cellular communication patterns between different 
ERS risk subpopulations, with the signaling pathways 
in high ERS risk being notably more active and 
intense than those in low ERS risk. Collectively, these 
findings indicated that ERS can exacerbate the 
progression of OA by modulation of metabolic 
patterns and multiple signaling pathways, ultimately 
leading to chondrocyte apoptosis. 

Subsequently, we further revealed the clinical 
guidance value of ERS expression patterns and 
identified key regulatory genes in OA patients using 
bulk RNA-seq data. Based on the results of 
scRNA-seq and WGCNA analysis, we identified 41 
ERS regulators involved in the pathogenesis of OA. 
Based on the expression profiles of these genes, we 
categorized OA patients into two distinct ERS 
patterns. These ERS patterns demonstrated different 
functional profiles, with a large enrichment of 
metabolism-related pathways in Cluster 1, and 
aberrant activation of inflammation related pathways 
in addition to apoptosis signaling in Cluster 2. These 
further confirmed that ERS is closely associated with 
metabolic disturbances and aberrant inflammation 
signaling activation, and that identification of 
different ERS expression patterns could contribute to 
the precision treatment of OA patients. To identify 
ERS key regulators for enhancing the diagnosis and 
treatment of OA, we integrated two machine learning 
algorithms and PPI analysis to ensure the stability and 
robustness of our results. Ultimately, we identified 
two ERS key genes, IGFBP3 and S100A4, which 
exhibited excellent diagnostic performance for OA. In 
addition, we developed an ERS risk scoring system to 
predict the occurrence of OA, which demonstrated 
reliable clinical predictive and guidance benefits for 
OA patients. 

IGFBP3 is a member of the insulin-like growth 
factor binding protein (IGFBP) family, which 
influence survival, apoptosis and differentiation by 
binding to specific receptors on the cell surface [38]. 
The UPR transcription factor XBP1 has been shown to 
promote cell invasion by upregulating IGFBP3 
expression [27]. Pan et al. showed that IGFBP3 
mediated ER stress-induced DNA damage by 
activating the PERK/eIF2α pathway [39]. 

Additionally, Evans et al. found that IGFBP3 
overexpression can induce cartilage catabolism and 
osteogenic differentiation and lead to the 
development of OA [40]. In our study, both 
scRNA-seq and bulk RNA-seq identified IGFBP3 as a 
dangerous motor mediating ERS activation. We 
observed that knockdown of IGFBP3 could maintain 
cartilage metabolic homeostasis and inhibit cell 
apoptosis, thereby delaying OA development. ERS is 
intimately linked to cellular homeostasis and 
apoptosis [27]. PERK is an important homeostatic 
monitoring protein on the ER. When sustained ERS 
occurs, GRP78 expression increases and dissociates 
from the PERK sensors thereby allowing their 
activation. The activation of PERK will lead to an 
increase in ATF4 transcription, inducing the 
expression of a variety of genes involved in the ERS 
response, including molecular chaperones and 
folding enzymes. Among these, CHOP is a direct 
downstream target gene of ATF4, which acts as a key 
apoptosis-inducing factor enabling ERS to shift from 
an adaptive to a pro-apoptotic response [27]. S100A4, 
a member of the S100 protein family, is a 
calcium-binding protein that functions in motility, 
invasion, and microtubule protein polymerization 
[41]. Overexpression of S100A4 can inhibit ERS and 
TLR4/NF-κB pathway to ameliorate apoptosis and 
inflammation [41]. S100A4 has been found to be 
expressed highly in the synovium of OA and RA and 
can induce the expression and release of MMP-3 
protein in synovial fluid [42]. Altogether, these results 
improve novel thoughts and targets for regulating 
ERS in OA chondrocytes. 

There are several limitations to this study to 
point out. First, it is mainly a retrospective study 
based on public databases with a relatively small 
sample size. As such, the findings need to be further 
validated by a multicenter prospective study. 
Furthermore, since the transcriptomic data used were 
derived from different microarray datasets, the 
stability of the results may be compromised, and thus 
further experiments and external cohort are required 
for validation. 

Conclusion 
In this study, we utilized the collaborative 

advantages of scRNA-seq and Bulk RNA-seq to 
thoroughly investigate the complex role of ERS on 
chondrocyte in the development of OA. We revealed 
that ERS was involved in the progression and 
occurrence of OA by mediating metabolic and 
inflammation signaling pathways. Furthermore, ERS 
key regulators were developed and validated for the 
diagnosis and treatment of OA based on multiple 
bioinformatics approaches and experiments. 
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Specifically, we found that the ERS regulator IGFBP3 
activates the PERK/ATF4/CHOP cascade to trigger 
ERS to mediate chondrocyte apoptosis. These findings 
reveal the heterogeneity of ERS in OA and are of great 
significance for the understanding of the pathogenesis 
of OA and the development of personalized therapies. 
Further exploration of the specific mechanisms of ERS 
regulatory factors in OA and the development of 
effective targeted strategies will be the focus for future 
research. 
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