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Abstract 

Background: RNA N6-methyladenosine (m6A) modification is a key epitranscriptomic mechanism that 
regulates post-transcriptional gene expression. Although m6A-associated regulators have been 
implicated in cancer, their context-dependent roles and impacts on tumor heterogeneity remain 
incompletely defined. 
Methods: We conducted a pan-cancer proteogenomic analysis of m6A-dependent mechanisms using 
multi-omics datasets from the Clinical Proteomic Tumor Analysis Consortium, utilizing genomic, 
transcriptomic, proteomic, and phosphoproteomic data. Unsupervised clustering based on expression of 
m6A regulatory genes identified distinct subgroups. We integrated m6A-seq and RIP-seq data from 
cancer cell lines and analyzed the immune deconvolution results to define m6A-driven regulatory 
programs and assess tumor immune infiltration across subgroups. 
Results: Three molecular subgroups (IGF2BP-H, -M, and-L) were defined based on the expression 
patterns of m6A readers, with IGF2BP1/2/3 acting as the primary markers distinguishing the subgroups. 
Their upregulation has been attributed to either copy number amplification or transcription factor 
activation, depending on the tumor context. The IGF2BP-H subgroup exhibited enhanced cell cycle 
activity, which was supported by concordant transcriptomic, proteomic, and phosphoproteomic 
signatures. Mechanistic analyses revealed that IGF2BPs directly bind to and stabilize m6A-modified 
transcripts, including TOP2A, ANLN, and TFRC, thereby promoting their translation and contributing to 
cell cycle progression. IGF2BPs also enhanced VEGFA expression in head and neck squamous cell 
carcinoma and pancreatic ductal adenocarcinoma, potentially promoting immunosuppressive signaling. 
Immune deconvolution revealed reduced CD8+ T cell infiltration in IGF2BP-H tumors, suggesting a less 
inflamed microenvironment and potentially diminished responsiveness to immunotherapy. 
Conclusion: Our results highlight the pivotal role of IGF2BP in governing m6A-dependent regulatory 
mechanisms in cancer cells, highlighting their potential link with aggressive tumor behavior and immune 
evasion. This study provides important insights into the heterogeneity of m6A-related processes across 
different malignancies and reveals potential avenues for therapeutic interventions. 
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Introduction
N6-methyladenosine (m6A) is the most abundant 

internal modification of eukaryotic mRNA and 
influences the metabolism of a broad spectrum of 
RNA [1, 2]. This dynamic epitranscriptomic mark 
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governs key processes in gene expression, such as 
mRNA splicing, translation, stability, and 
translocation, ultimately shaping the functional 
output of the transcriptome [3-6]. RNA m6A 
modification is initiated by a methyltransferase 
complex (writers), reversed by demethylases 
(erasers), and interpreted by m6A-binding proteins 
(readers) to mediate specific cellular functions [7, 8]. 
In the context of cancer, dysregulated m6A-associated 
genes (writers, erasers, and readers) have been 
implicated in tumor initiation, progression, 
metastasis, altered metabolism, drug resistance, and 
immune evasion [9-12]. 

Despite the substantial progress in 
understanding the biological functions of m6A, the 
complexity of its regulatory networks in different 
cancer types remains unclear. m6A is a highly diverse, 
reversible modification that can be added to or 
removed from the same mRNA [13, 14]. Although 
previous research has focused on individual cancer 
types in a target-specific manner [15], recent findings 
suggest that m6A methylation may facilitate or inhibit 
tumor progression depending on the cellular context. 
Because of the dynamic and complex methylation 
patterns of m6A, it remains difficult to precisely 
predict how the overall methylation patterns of m6A 
influence tumor progression in individual patients. 
Therefore, it is necessary to perform a comprehensive 
analysis of m6A-associated genes across multiple 
cancer types using actual patient data to gain a clearer 
understanding of how m6A contributes to tumor 
characteristics across different malignancies. Since 
m6A directly influences translation, thereby affecting 
protein abundance and phosphorylation status [16, 
17], a multi-omics approach integrating 
transcriptome, proteome, and phosphoproteome data 
is needed to fully characterize how m6A modification 
ultimately affects the phenotype and its contribution 
to tumor progression [18]. A pan-cancer analysis can 
further identify common m6A regulatory signatures 
across cancer types and provide insights for 
developing broadly applicable biomarkers and 
therapeutic interventions. 

In this study, we performed a comprehensive 
analysis of 25 m6A-associated genes across ten 
different cancer types to elucidate how m6A 
regulatory patterns affect tumor subgroups. Our 
results showed that, the expression of m6A regulators 
was associated with subgroup differentiation in six of 
these cancer types, with the IGF2BP1/2/3 family 
emerging as a key factor in defining these subgroups. 
High IGF2BPs expression was correlated with 
enhanced cell cycle activity and reduced immune 
responses, which could be explained by its direct 
interaction with cell cycle-related target transcripts. 

IGF2BPs also shaped the tumor microenvironment by 
promoting immunosuppressive features and 
influencing responses to immunotherapy. By 
highlighting the pivotal influence of IGF2BPs on 
cancer progression, our findings advance the current 
understanding of m6A-dependent regulatory 
mechanisms and suggest potential therapeutic targets 
for diverse malignancies. 

Materials and Methods 
Data Collection and Preprocessing 

We obtained genomic, transcriptomic, global 
proteomic, and phosphoproteomic data for ten cancer 
types, i.e., breast cancer (BRCA) [19], clear cell renal 
cell carcinoma (CCRCC) [20], colon adenocarcinoma 
(COAD) [21], glioblastoma (GBM) [22], high-grade 
serous carcinoma (HGSC) [23], head and neck 
squamous cell carcinoma (HNSCC) [24], lung 
squamous cell carcinoma (LSCC) [25], lung 
adenocarcinoma (LUAD) [26], pancreatic ductal 
adenocarcinoma (PDAC) [27], and uterine corpus 
endometrial carcinoma (UCEC) [28], from the Clinical 
Proteomic Tumor Analysis Consortium. For genomic 
data, mutation annotation (MAF) files and 
segment-level copy number variant (CNV) data were 
retrieved from the GDC data portal (https://portal. 
gdc.cancer.gov). Transcriptomic data were 
downloaded in transcripts per million format and 
subjected to k-nearest neighbor imputation with k = 5 
for genes with less than 30% missing values. 
Subsequently, the data were log2-transformed and 
quantile-normalized across the samples. Proteomic 
data preprocessed by the Broad Institute were 
downloaded from the PDC data portal 
(https://proteomic.datacommons.cancer.gov/pdc/) 
and imputed using the same strategy used for 
transcriptomic data. Phosphoproteomic data were 
obtained from LinkedOmics (https://www. 
linkedomics.org/) and normalized using z-scores to 
standardize global phosphoprotein levels across 
various cancer types. 

Clustering by m6A-associated Genes 
We reviewed the literature on m6A 

modifications and selected 25 m6A regulators to 
identify distinct patterns of m6A modification [29-31]. 
The 25 m6A regulators included 10 writers (METTL3, 
METTL5, METTL14, METTL16, WTAP, RBM15, 
RBM15B, CBLL1, ZC3H13, and KIAA1429), 2 erasers 
(FTO and ALKBH5), and 13 readers (YTHDF1, 
YTHDF2, YTHDF3, YTHDC1, YTHDC2, HNRNPC, 
HNRNPA2B1, IGF2BP1, IGF2BP2, IGF2BP3, FMR1, 
ELAVL1, and LRPPRC). We used Uniform Manifold 
Approximation and Projection (UMAP) for 



Int. J. Med. Sci. 2025, Vol. 22 

 
https://www.medsci.org 

3817 

dimensionality reduction based on the expression 
profiles of these 25 m6A regulators using the umap R 
package (v0.2.10). The data were subsequently 
clustered using k-means clustering. We calculated the 
mean silhouette scores for different values of k to 
optimize the clustering process. Cancer types with a 
maximum silhouette score >0.6 were selected for 
further analysis. 

Survival Analysis 
Overall survival (OS) analysis was performed to 

assess the prognostic significance of IGF2BP-based 
molecular subgroups. Clinical metadata, including OS 
time and OS event status, were integrated with m6A 
subgroup data, and samples from the IGF2BP-H and 
IGF2BP-L groups were selected for survival 
comparison. Kaplan–Meier survival curves were 
generated using the survfit() function from the 
survival R package (v3.7.0) based on survival objects 
constructed with the Surv() function. Differences in 
survival between the IGF2BP-H and -L groups were 
evaluated using log-rank tests. The statistical 
significance of the survival difference was assessed 
and visualized using the ggsurvplot() function in the 
Survminer R package (v0.4.9). 

Copy Number Variation (CNV) Analysis 
Gene-level CNV data for multiple cancer types 

were obtained from the PDC data portal and 
processed by the Washington University team. CNV 
values were categorized into three discrete 
levels—Loss, Neutral, and Gain—based on cutoff 
values of < –0.2, between –0.2 and 0.2, and >0.2, 
respectively. For downstream analyses, only gain 
events were retained to evaluate oncogenic 
amplification. Each CNV dataset was transformed 
into the long format and merged with the m6A 
subgroups. We integrated CNV annotations with 
mutation data (MAF) using the maftools R package 
(v2.18.0) [32] to assess the association between the 
m6A subgroup and copy number amplification of 
IGF2BP1, IGF2BP2, and IGF2BP3. Fisher’s exact test 
was used to compare the amplification frequencies of 
the three IGF2BPs genes between the IGF2BP-H and 
-L subgroups for each cancer type using the 
mafCompare() function. 

Differential Expression Analysis 
For the differential expression analysis, raw 

RNA count data were processed using the DESeq2 
package in R (v1.42.1) [33]. Gene expression counts 
were extracted and transformed into a count matrix 
with genes as rows and samples as columns. The 
count matrix is a subset that retains only the samples 
present in the clinical metadata. The variance- 

stabilizing transformation was applied to normalize 
the count data, and genes with an average read count 
< 50 were excluded. A DESeq DataSet was created 
using cluster classification as the design variable, and 
a differential expression analysis was performed 
using the DESeq function with parallel computing. 
The results, including log2 fold changes (log2FC) and 
adjusted p-values, were extracted. Genes with a false 
discovery rate (FDR) below 5% were considered 
significant. 

Transcription Factor Activity Estimation 
We used the decoupleR [34] R package, 

leveraging the CollecTRI [35] TF-target database, to 
estimate transcription factor (TF) activity. 
Differentially expressed genes (DEGs) were obtained, 
and log2FC was used as input for the universal linear 
model approach via the run_ulm function to compute 
the TF activity scores. A statistical model was built 
using t-statistics from the DEGs as inputs and the 
CollecTRI network as prior knowledge, specifying 
source nodes as TFs and target nodes as regulated 
genes. Significantly enriched TFs were selected using 
an FDR threshold of 0.1. 

Gene Set Enrichment Analysis (GSEA) 
We conducted GSEA [36] and gene set variation 

analysis (GSVA) [37] to explore the underlying 
biological pathways associated with transcriptomic, 
proteomic, and phosphoproteomic data. For GSEA, 
we compared the three groups (IGF2BP-H, -M, and 
-L) by performing a DEG analysis. Various databases, 
including Gene Ontology (GO) biological processes, 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways, and Reactome genes, were used, with a 
significance threshold of an FDR-adjusted p-value < 
0.05. We also applied GSVA, utilizing the “zscore” 
method from the GSVA R package, to assess pathway 
activity at the sample level using global proteome and 
phospho-proteome data tested with Hallmark gene 
sets. Following pathway activity scoring, we 
conducted t-tests between the IGF2BP-H and -L 
groups to identify the significantly different 
pathways. 

Protein-protein Interaction (PPI) Enrichment 
Analysis 

PPI enrichment analysis was performed using 
Metascape [38], a web-based platform. Differentially 
expressed proteins (DEPs) with a log2FC > 1 were 
selected from each cancer type and used as input for 
Metascape to identify key protein interactions in the 
IGF2BP-H condition. For a comprehensive 
assessment, a PPI network analysis was conducted 
using a combined dataset of six cancer types. The 
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interactome network was constructed using the 
Metascape integrated knowledge base, incorporating 
high-confidence PPIs. A complex molecular detection 
(MCODE) algorithm was applied to extract densely 
connected subnetworks and identify biologically 
relevant modules. Each MCODE component was 
functionally annotated based on the three most 
significantly enriched pathways. 

Collection and Analysis of IGF2BPs-associated 
Sequencing Data 

For the collection and analysis of IGF2BPs 
RIP-seq and m6A-seq data, we used publicly available 
datasets generated by Huang et al. (2018) [39] and 
Shwartz et al. (2014) [40], which are accessible 
through the GEO database. We analyzed RIP-seq data 
for IGF2BP1, IGF2BP2, and IGF2BP3 in the HepG2 cell 
line (GSE90639) and m6A-seq data (GSE90642 and 
GSE55572). Raw FASTQ files were aligned to the 
human reference genome (GRCh38) using the 
HISAT2 aligner. The aligned BAM files were used to 
generate coverage plots using the KaryoploteR 
(v1.28.0) R package [41]. Additionally, we examined 
the RNA-seq data from HepG2 cells subjected to 
shRNA-mediated knockdown of IGF2BP1, IGF2BP2, 
and IGF2BP3 (GSE90684). Raw count data were 
normalized using between-sample quantile 
normalization, and data from replicates 1 and 2 
treated with shRNA for one hour, were used for 
further analysis. Differential expression analysis was 
performed using the DESeq2 package to determine 
the significance of the changes in gene expression 
levels. 

Kinase Library Enrichment Analysis 
The Kinase Library is a database that 

experimentally characterizes the substrate motif 
specificity of 303 Ser/Thr protein kinases and 78 Tyr 
protein kinases [42, 43]. In this study, phosphorylation 
site motifs were scored based on their similarity to the 
preferred motifs of 303 Ser/Thr and 78 Tyr protein 
kinases using percentile scores. Each unique singly 
phosphorylated site was assigned to a biochemically 
predicted kinase if it ranked within the top 15 Ser/Thr 
kinases or within the top eight Tyr kinases, based on 
these scores. For motif-based enrichment analysis, 
phosphorylation sites with log2FC > 0.5 and FDR < 
0.05 were set as the foreground dataset, while all other 
phosphorylation sites were used as the background 
dataset. The log₂ frequency factor for each kinase was 
calculated by comparing the proportion of 
biochemically favored phosphorylation sites for that 
kinase in the foreground and background sets. The 
Haldane correction was applied by adding a count of 
0.5 to correct for zero-frequency cases. Statistical 

significance was assessed using a one-sided Fisher’s 
exact test, and p-values were adjusted using the 
Benjamini–Hochberg method. 

Immunotherapy Response Prediction Using 
Tumor Immune Dysfunction and Exclusion 
(TIDE) 

We used a TIDE computational framework to 
predict the response of NSCLC samples to 
immunotherapy [44]. Bulk RNA-seq data from LSCC 
and LUAD samples were input into the TIDE web tool 
(http://tide.dfci.harvard.edu/), which predicts the 
response to immune checkpoint blockade (ICB) based 
on two mechanisms of tumor immune evasion: T-cell 
dysfunction and T-cell exclusion. For each cancer 
type, tumors were classified as either responders or 
non-responders based on the TIDE prediction score. 
We counted the number of true-positive (responders) 
and false-positive (non-responders) samples in each 
group for both LSCC and LUAD, and Fisher’s exact 
test was used to determine if the differences in 
immunotherapy response between these groups were 
statistically significant. 

Use of Generative AI in the Writing Process 
During manuscript preparation, OpenAI’s 

ChatGPT-4o was used to improve the clarity and 
readability of the text. Following the use of this tool, 
all content was thoroughly reviewed and revised by 
the authors, who take full responsibility for the final 
version of the manuscript. 

Results 
IGF2BPs Highlight a Distinct m6A Subgroup 
Across Six Cancer Types 

We investigated 25 m6A-associated genes to 
identify subgroups with distinct m6A modification 
patterns that exhibit dynamic regulation within cells. 
We used transcriptomic, proteomic, and phosphor-
proteomic datasets from 1,060 patients with 10 cancer 
types: BRCA, ccRCC, COAD, GBM, HGSC, HNSCC, 
LSCC, LUAD, PDAC, and UCEC. 

When conducting transcriptome-based cluster-
ing of each cancer type with 25 m6A-associated genes, 
only six cancer types (ccRCC, HNSCC, LSCC, LUAD, 
PDAC, and UCEC) were clustered with silhouette 
scores >0.6 (Fig. 1A, Table S1A, S1B). This suggested 
that the samples from these six cancer types can be 
distinguished by their distinct m6A modification 
patterns and grouped among the cancer types. 
Moreover, when we performed proteomics-based 
clustering of the same samples into three groups, 
patients exhibited clustering patterns similar to those 
identified by the transcriptomics-based approach for 
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all cancer types except ccRCC (Fig. S1A). These 
findings implied that the distinct m6A modification 
signatures identified at the transcript level are 
consistently reflected at the protein level, 
underscoring the robustness of these m6A-associated 
patterns across different molecular layers. 

The expression levels of m6A-associated genes 
varied significantly between clusters, with the IGF2BP 
family exhibiting the most pronounced differences 
among subgroups across all six cancer types and 
demonstrating the highest feature importance among 
the 25 examined genes in the clustering analysis (Fig. 
1B, S1B). Examination of IGF2BPs expression across 

each cluster further revealed that IGF2BP1, IGF2BP2, 
and IGF2BP3 consistently displayed similar patterns, 
with all three transcripts being the most highly 
expressed in one cluster, showing intermediate 
expression in another, and the lowest expression in 
the third (Fig. 1C). Consistent with these findings, 
proteomics-based clustering stratified IGF2BPs 
expression into high-, intermediate-, and low- 
expression groups, a pattern that was consistent 
across both the transcriptomic and proteomic levels 
(Fig. S1C). Based on these consistent patterns, we 
subsequently named the clusters as IGF2BP high 
(IGF2BP-H), middle (IGF2BP-M), and low (IGF2BP-L) 

 
 

 
Figure 1. Identification of m6A regulatory pattern in 10 cancer types. A: UMAP clustering of samples from six cancer types (ccRCC, HNSCC, LSCC, LUAD, PDAC, 
and UCEC), based on the expression of 25 m6A-associated genes. Samples were grouped into three distinct clusters for each cancer type. ccRCC, Clear cell renal cell carcinoma; 
HNSCC, Head and neck squamous cell carcinoma; LSCC, Lung squamous cell carcinoma; LUAD, Lung adenocarcinoma; PDAC, Pancreatic ductal adenocarcinoma; UCEC, 
Uterine corpus endometrial carcinoma. B: Heatmap showing the statistical significance of differential expression of m6A-associated genes between clusters in each cancer type. 
IGF2BP1, IGF2BP2, and IGF2BP3 consistently served as the most significant regulators, distinguishing clusters across all six cancer types. Statistical significance was assessed using 
the Kruskal–Wallis test, followed by FDR correction. ns indicates non-significance. C: Boxplots illustrating the expression levels of IGF2BP1, IGF2BP2, and IGF2BP3 across the 
three clusters (IGF2BP-H, IGF2BP-M, and IGF2BP-L) in each cancer type. D: UMAP visualization of all cancer samples based on the expression of the 25 m6A-associated genes. 
Among the six cancer types that formed distinct clusters, five (excluding ccRCC) were grouped. na represents cancer types not included in the six cancer types. E: Kaplan–Meier 
survival analysis comparing the IGF2BP-H and -L groups in ccRCC (left) and LUAD (right). Significant differences in survival probability were observed between both cancer types 
(ccRCC, p = 0.00039; LUAD, p = 0.013), indicating the potential prognostic role of IGF2BPs. 
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groups, considering the overall expression profiles of 
IGF2BP1,2 and 3. We further confirmed this 
classification by calculating the average expression of 
IGF2BP1, IGF2BP2, and IGF2BP3 across cancer types 
and clusters, which consistently showed the highest 
levels in IGF2BP-H, intermediate in IGF2BP-M, and 
lowest in IGF2BP-L (Table S1C). 

Furthermore, when projecting all cancer samples 
onto UMAP, we observed that among the six cancer 
types that formed distinct m6A-based clusters, five 
(excluding ccRCC) were clustered. Each of the 
IGF2BP-H, -M, and -L groups formed distinct clusters, 
irrespective of the cancer type (Fig. 1D), indicating 
that the IGF2BPs clusters shared common molecular 
characteristics among these five cancer types. When 
comparing survival rates between the IGF2BP-H and 
IGF2BP-L groups, significant differences were 
observed in ccRCC and LUAD (ccRCC, p = 3.9 × 10⁻⁴; 
LUAD, p = 0.013), whereas no significant differences 
were found in the other cancer types (Fig. 1E). When 
all three subgroups were compared, the IGF2BP-M 
group exhibited intermediate survival in ccRCC and 
LUAD, whereas survival differences among the 
subgroups remained non-significant in the other 
cancer types (Fig S1D). These findings highlighted 
the emergence of a distinct IGF2BP-driven m6A 
subtype across multiple cancer types, where elevated 
IGF2BPs expression correlated with poorer outcomes 
in some cases. 

Gene Amplification and Transcription Factor- 
mediated Upregulation of IGF2BPs in Six 
Cancer Types 

We analyzed the expression levels of 25 
regulatory genes across six cancer types and 
compared them with the corresponding normal tissue 
samples to investigate dysregulated m6A-associated 
gene expression in tumors compared to normal 
tissues in each group. Notably, IGF2BP1, IGF2BP2, 
and IGF2BP3 exhibited the most pronounced 
differences (Fig. 2A, Table S2A). In the IGF2BP-H 
group, all three IGF2BPs were distinctly upregulated 
compared with those in normal cells, whereas their 
expression levels in the IGF2BP-L group were 
comparable to or lower than those in normal cells. 
Previous studies have shown that IGF2BP1, IGF2BP2, 
and IGF2BP3 exhibit peak expression levels during 
specific stages of embryonic development, with only 
IGF2BP2 remaining active in adult tissues. However, 
abnormal expression of IGF2BP2 and reactivation of 
IGF2BP1 and IGF2BP3 are frequently observed during 
cancer progression [45]. Therefore, the significant 
upregulation of IGF2BP family members in the 

IGF2BP-H group suggested a potential link between 
tumorigenesis and cancer progression. 

We next investigated the cause of the elevated 
expression of IGF2BPs and hypothesized that this 
could be attributed to two possible factors: gene 
amplification and TF activation. CNV gains of 
IGF2BP1, 2, and 3 were significantly more prevalent 
in IGF2BP-H group than in IGF2BP-L group in both 
LSCC and HNSCC (LSCC, adjusted p < 0.05; HNSCC, 
adjusted p < 0.1) (Fig. 2B, Table S2B). These findings 
indicated that the higher expression levels of IGF2BPs 
in LSCC and HNSCC are likely due to gene 
amplification, leading to an increased number of 
copies of these genes, thereby boosting their 
expression. TF activation also plays a crucial role in 
the elevated expression of IGF2BPs. According to the 
TF-target database, TFs associated with IGF2BPs 
include CRX, HIF1A, HMG2, MYC, NFKB, NFKB1, 
and RELA [35]. We observed significant activation of 
several TFs in ccRCC and PDAC (ccRCC, FDR < 0.08; 
PDAC, FDR < 0.03) by estimating the activity of these 
TFs based on transcriptome data. Additionally, LUAD 
and UCEC showed the activation of one transcription 
factor each, MYC for LUAD and CRX for UCEC 
(LUAD, FDR = 1.3 x 10-13; UCEC, FDR = 0.027) (Fig. 
2C, Table S2C). Therefore, while LSCC and HNSCC 
appear to experience increased IGF2BP1, 2, and 3 
expressions due to gene amplification, ccRCC, LUAD, 
PDAC, and UCEC are likely to experience higher 
expression levels through the activation of 
transcription factors. 

Cell Cycle Pathways Are Upregulated in the 
IGF2BP-H Group 

We then sought to identify the key pathways 
associated with each group based on transcriptomic 
data (Fig. 3A, Table S3A). In the IGF2BP-H group, 
cell cycle-related pathways were significantly 
upregulated across all six cancer types examined, 
indicating consistent enhancement of cell 
proliferation mechanisms. In contrast, the IGF2BP-L 
group predominantly exhibited elevated immune 
response pathways, suggesting heightened immune 
activity in these samples. The cell motility pathways 
were also more active in the IGF2BP-L group. In both 
LSCC and LUAD, the IGF2BP-H group showed 
increased activation of metabolic- and splicing–
related pathways. The IGF2BP-M group generally 
exhibited characteristics intermediate between those 
of the IGF2BP-H and -L groups. Consequently, 
subsequent analyses focused primarily on 
comparisons between the IGF2BP-H and -L groups. 
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Figure 2. Overexpression of IGF2BPs through copy number amplification and TF activation. A: Heatmap showing the differential expression of 25 m6A-associated 
genes between tumor and normal tissues across six cancer types. IGF2BP1, IGF2BP2, and IGF2BP3 exhibited the most significant differences in their expression levels, with a clear 
separation between the IGF2BP-H, -M, and -L groups. B: CNV analysis comparing IGF2BP-H and -L groups. Significant copy number gain was observed in LSCC and HNSCC, 
particularly in IGF2BP1 and IGF2BP3. Statistical significance was assessed using Fisher’s exact test with FDR correction. C: Analysis of TF activity in IGF2BPs-related regulatory 
networks across different cancer types. TF activity was significantly enriched in ccRCC, LUAD, PDAC, and UCEC, indicating potential regulatory roles of IGF2BPs in these tumor 
types. CNV copy number variation, TF transcription factor. 

 
Consistent with these results, a comparison of 

IGF2BP-H and IGF2BP-L across the six cancer types 
using proteomic (Table S3B) and phosphoproteomic 
(Table S3C) expression data revealed the enrichment 
of cell cycle-related terms (Fig. 3B). These findings 
demonstrated a significant enrichment of cell 
cycle-related terms across multiple molecular layers 
in the IGF2BP-H group compared to the IGF2BP-L 
group. LUAD exhibited the most pronounced 
enrichment, whereas UCEC showed minimal 
differences between the IGF2BP-H and -L groups (Fig. 
S2A, Table S3D). 

PPI enrichment analysis also showed cell 
cycle-related networks were upregulated in the 
IGF2BP-H group (Fig. 3C, S2B, Table S3E). Proteins 
interacting with IGF2BP1, 2, and 3 were 
predominantly enriched in pathways related to 
chromatin condensation and segregation. 
Additionally, the KIF protein family, as well as 
RACGAP1, NIP7, and NOP2 were significantly 
enriched in pathways critical for mitotic spindle 
assembly. Moreover, proteins such as SPP1, ITGB6, 
and ITGB8 were notably enriched in the pathways 
involved in kinetochore organization. The enhanced 
functionality of these protein interactions in the 
IGF2BP-H group facilitated active cell division, 
contributing to the observed proliferative 
characteristics. 

IGF2BPs Regulate Cell Cycle by Targeting 
TOP2A, ANLN, and TFRC 

IGF2BPs function as m6A readers, bind to cell 
cycle-related genes, enhance their stability, and 
promote their translation [39, 46]. We examined the 
highly expressed proteins in the IGF2BP-H group to 
gain more detailed insights into how IGF2BPs 
regulate the cell cycle within the IGF2BP-H group. 
Proteins, including TOP2A, BPI, PSAT1, ANLN, and 
TFRC, were upregulated in five of the six cancer types 
(Fig. 4A, Table S4A). Of these, TOP2A, ANLN, and 
TFRC are well-known for their roles in cell cycle 
regulation. Specifically, TOP2A encodes a DNA 
topoisomerase that relaxes double-helical DNA and is 
critical for chromosome segregation [47], ANLN is 
involved in cytokinesis [48], and TFRC regulates iron 
metabolism that is essential for cell growth [49]. These 
three genes were also upregulated at the 
transcriptional level (Fig. S3A), and further pathway 
analysis showed that the subgroup of patients with 
high expression of these genes manifested activated 
cell cycle-related pathways, supporting the idea that 
these genes play key roles in cell cycling (Fig. S3B, 
Table S4B). These findings suggested that TOP2A, 
ANLN, and TFRC are candidate IGF2BPs targets that 
drive cell cycle progression in IGF2BP-H group. 
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Figure 3. Enriched pathways in IGF2BPs groups. A: Bubble plot showing enriched biological pathways in the IGF2BP-H, -M, and -L groups across six cancer types. Bubble 
size represents the significance level (-log10 FDR) and color indicates the enrichment score. B: Single-sample gene set enrichment analysis comparing protein and phosphoprotein 
expression between the IGF2BP-H and -L groups, highlighting their potential roles in tumor progression. P-values were calculated using Welch’s t-test and adjusted with FDR. C: 
Functional protein-protein interaction enrichment analysis of significantly upregulated proteins in the IGF2BP-H group. Each node represents a protein identified as significantly 
upregulated in the IGF2BP-H group. The colors within the pie chart indicate the cancer types (ccRCC, HNSCC, LSCC, LUAD, PDAC, UCEC) in which the protein was detected 
as a differentially expressed protein. 

 
In the HepG2 cell line, we confirmed that the 

transcripts of TOP2A, ANLN, and TFRC are marked 
by m6A methylation and bound by IGF2BP1/2/3, as 
revealed through the integration of RIP-seq and 
m6A-seq datasets (Fig. 4B). Data from the m6A-Atlas 
[50] further support the presence of m6A 
modifications in all three transcripts across several 
independent datasets (Fig. S3C). Upon silencing of 
IGF2BP1/2/3 in HepG2 cells, we observed a 
significant reduction in the abundance of these 
targets—TOP2A (FDR < 2.0 × 10-34), ANLN (FDR < 1.0 
× 10-12), and TFRC (FDR < 0.017)—indicating that 
IGF2BP proteins contribute to the stability and/or 
translation of these transcripts (Fig. 4C, Table S4C). 
To assess whether these effects depend on m6A 
methylation, we re-analyzed RNA-seq datasets from 
multiple cancer cell lines under m6A writer silencing 
conditions [40, 51, 52]. In most cases, knockout of 
these writers led to significant downregulation of the 
IGF2BPs targets, underscoring a functional 
dependency on m6A modification for their expression 
(Fig. S3D, Table S4D). 

Further insights into the mechanistic 
underpinnings of enhanced cell cycle activity were 
obtained by examining phosphoprotein and kinase 
profiles (Fig. 4D, Table S4E). Estimation of kinase 
activity based on differentially expressed 
phosphoproteins revealed that the IGF2BP-H group 
exhibited significant activation of cyclin-dependent 

kinases (CDKs), which are pivotal in regulating the 
cell cycle [53]. Additionally, kinases within the MAPK 
pathway, such as ERK7 [54] and, as well as TNIK [55], 
which can activate the Wnt/β-catenin signaling 
pathway, and MYO3A [56], involved in cytoskeletal 
regulation and cell motility, were activated. 
Conversely, kinases that regulate inflammation and 
immune responses, including PKCA, PKCD, PKCH, 
PKCT, IRAK4, RIPK1, RIPK2, RIPK3, and 
TBK1[57-59], were downregulated in at least three 
cancer types within IGF2BP-H group, with the 
exception of ccRCC, in which immune pathways were 
activated, consistent with our pathway enrichment 
results (Fig. 3A). Moreover, kinases that influence 
cytoskeletal dynamics and cell motility, such as PAK2, 
PAK3, and PAK5[60], were similarly downregulated 
in IGF2BP-H group, further supporting our pathway 
enrichment findings regarding cellular structural and 
motility changes (Fig. 3A). 

m6A Subgroup Dependent Immune 
Landscape and Immunotherapy Resistance 

Because the IGF2BP-H group exhibited a 
downregulated immune response pathway, we 
sought to characterize the immune landscape of this 
group. The IGF2BP-H group was characterized by a 
higher percentage of tumor cells and lower stromal, 
immune, and ESTIMATE scores, suggesting that 
immune cell infiltration was suppressed in this group 
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(Fig. 5A). This indicated that the IGF2BP-H group was 
in a state of immune suppression or evasion, 
potentially facilitating tumor growth and progression. 
Consistent with this, a comprehensive analysis of 
individual cell infiltration levels revealed that 
immune cell infiltration was generally lower in the 
IGF2BP-H group (Fig. S4A). Specifically, the 
infiltration levels of CD8+ T cells were significantly 
lower in the IGF2BP-H group than in the IGF2BP-L 
group (p < 0.0045), except in UCEC (Fig. 5B). In 
UCEC, the overall immune cell infiltration rate was 
low, which may explain the lack of significant 
differences in this subgroup. 

Based on these findings, we hypothesized that 
the IGF2BP-H group would exhibit poor response to 
immunotherapy. When predicting the response to 
immunotherapy in LSCC and LUAD, a significantly 
higher number of samples in the IGF2BP-H group 
were predicted to not respond to immune treatment 
(p = 0.038, Fisher’s exact test), reinforcing the 
hypothesis that immune evasion mechanisms are 
involved (Fig. 5C). This highlights the need for 
alternative therapeutic strategies as standard immune 
checkpoint inhibitors may be less effective in these 
patients. 

 The suppressed immune response observed in 
the IGF2BP-H group prompted further investigation 
of potential immunosuppressive mechanisms. By 
examining the expression levels of immuno-

suppressive cytokines in the IGF2BP-H and IGF2BP-L 
groups, we found that VEGFA expression was 
significantly higher in the IGF2BP-H group in both 
HNSCC and PDAC (Fig. 5D). VEGFA is a well-known 
cytokine that promotes angiogenesis and vascular 
permeability and has been implicated in creating an 
immunosuppressive tumor microenvironment by 
inhibiting the function of immune cells, such as T cells 
and dendritic cells [61]. Notably, in the PDAC 
subgroup, the IGF2BP-H group exhibited significantly 
elevated enrichment scores associated with 
angiogenesis and hypoxia, suggesting that these 
microenvironmental conditions may have contributed 
to immune suppression (Fig. 5E). Furthermore, 
VEGFA was identified as both a target of IGF2BPs and 
an m6A methylation site (Fig. 5F). In addition, 
HOXB9 was significantly upregulated in the 
high-expression group across multiple cancer types 
(Fig. S4B). Given its known roles in tumor 
progression and immune modulation [62, 63], HOXB9 
upregulation may further contribute to the immune 
suppression observed in the IGF2BP-H group. These 
findings combined indicated that the overexpression 
of VEGFA in IGF2BP-H tumors, potentially regulated 
by IGF2BPs, may influence the immune 
microenvironment in HNSCC and PDAC, thereby 
contributing to the complex mechanisms underlying 
immune evasion. 

 

 
Figure 4. IGF2BPs mediated regulatory interactions and downstream kinase activity shifts. A: Volcano plot highlighting ANLN, TFRC, and TOP2A as consistently 
upregulated proteins in the IGF2BP-H group across the six cancer types. B: Coverage plots from m6A-seq and RIP-seq data in HepG2 cells. m6A(WT) and m6A(KO) represent 
m6A peak coverage in wild-type and m6A writer knockout conditions, respectively. IGF2BP1, IGF2BP2, and IGF2BP3 tracks show RIP-seq read coverage, indicating binding of 
each protein to the respective transcripts (TOP2A, ANLN, and TFRC). WT wild type, KO knock out. C: Gene expression changes in TFRC, TOP2A, and ANLN upon silencing 
of IGF2BP1, IGF2BP2, and IGF2BP3. *FDR < 0.05, **FDR < 0.01, ***FDR < 0.001. D: Differences in kinase activity predicted from phosphoproteomic analysis between the 
IGF2BP-H and -L groups, with significant changes marked by asterisks. 
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Figure 5. Immune activity of IGF2BPs group. A: Heatmap showing the average z-scores of tumor percentage, stromal score, immune score, and ESTIMATE score across 
the IGF2BP-H, -M, and -L groups for different cancer types. B: Violin plots comparing CD8+ T cell infiltration levels between the IGF2BP-H and -L groups across the six cancer 
types. Infiltration was significantly lower in the IGF2BP-H for most cancers. P-values were calculated using the Wilcoxon rank-sum test. C: Fisher’s exact test was used to 
compare immunotherapy responses between the groups. The proportion of responders was significantly lower in the IGF2BP-H group than that in the IGF2BP-L group (p = 
0.038). D: Violin plots comparing VEGFA expression levels between the IGF2BP-H and IGF2BP-L groups in HNSCC and PDAC. P-values were calculated using the Wilcoxon 
rank-sum test. E: Bar plot showing the enriched pathways in the IGF2BP-H PDAC group. The pathways related to hypoxia and angiogenesis were significantly upregulated in the 
IGF2BP-H group. F: Coverage plot displaying m6A-seq and RIP-seq data for the VEGFA transcript in HepG2 cells. m6A(WT) and m6A(KO) indicate m6A-seq coverage in 
wild-type and m6A writer knockout conditions. IGF2BP1, IGF2BP2, and IGF2BP tracks show RIP-seq coverage of each respective IGF2BP protein. The VEGFA transcript exhibits 
m6A methylation and IGF2BPs binding, suggesting post-transcriptional regulation by m6A readers. WT wild type, KO knock out. 

 

Discussion 
The dynamic regulation of m6A within cells has 

been increasingly recognized in cancer biology, 
revealing complex patterns across various cancer 
types. In this study, we aimed to comprehensively 
elucidate the impact of m6A regulation and associated 
genes in defining cancer subgroups across multiple 
cancer types. 

Our subgrouping analysis based on 25 
m6A-associated genes revealed distinct m6A 
regulation-driven subgroups in six cancers, with 
IGF2BP family members (IGF2BP1, IGF2BP2, 
IGF2BP3; all known m6A readers) emerging as a 
central factor distinguishing these subgroups. 
Previous studies have established that IGF2BP 
proteins exert oncogenic effects by m6A-dependent 
binding to various oncogenic transcripts [39, 64]. The 
frequent overexpression of IGF2BPs observed in 
cancer patients [65], along with substantial variation 
in expression levels between patients, likely explains 
their significant role in subgroup differentiation. 

Clinically, samples with high IGF2BPs 
expression demonstrated poorer survival outcomes, 
particularly in ccRCC and LUAD. Notably, IGF2BPs 
overexpression in HNSCC and LSCC appeared 
primarily driven by CNVs, whereas in ccRCC, LUAD, 
PDAC, and UCEC, transcriptional activation of 
IGF2BP genes was predominant. Li et al. [66] 

previously reported that HNSCC and LSCC samples 
often belong to a multi-omic subgroup characterized 
by a high burden of copy number-altered oncogenes, 
potentially explaining the observed CNV-driven 
IGF2BPs overexpression in these cancers. 

Existing research indicates that m6A 
modifications are pivotal in cancer progression and 
cell cycle regulation [67-69]. Additional studies have 
shown that IGF2BPs enhance the expression of cell 
cycle-related genes through m6A-dependent 
mechanisms [39]. In the present study, we further 
clarified how IGF2BPs regulate the cell cycle in 
various types of cancers. We observed that tumors 
exhibiting high IGF2BPs expression (IGF2BP-H) had 
significantly elevated cell cycle activity. 
Mechanistically, IGF2BPs bind to m6A sites on target 
genes such as TOP2A, ANLN, and TFRC, 
upregulating their expression and thereby driving cell 
cycle progression. These findings provide a molecular 
basis for the increased proliferative capacity seen in 
IGF2BP-H tumors. 

The role of m6A in tumor immunity has also 
been the focus of recent research. m6A modifications 
influence both innate and adaptive immune 
responses, with studies implicating m6A 
modifications in genes, such as STAT1[70] and 
FOXO3[71] in immune cell activation. Our study adds 
to this body of knowledge by demonstrating that high 
IGF2BPs expression is correlated with suppressed 
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immune responses in tumors. Specifically, IGF2BP-H 
tumors exhibited reduced immune cell infiltration, 
particularly of CD8+ T cells, which are critical for 
antitumor immunity. In PDAC and HNSCC, we 
observed that m6A-IGF2BPs-dependent upregulation 
of VEGFA was associated with immune suppression. 
These findings are consistent with previous research 
showing that IGF2BP1 knockout inflamed the tumor 
microenvironment by increasing NK cells and 
tumor-associated myeloid cells [45] and that high 
IGF2BP1 and IGF2BP3 levels are associated with 
immunotherapy resistance in melanoma patients [45]. 

Our study highlights the significant implications 
of m6A modifications in defining tumor subgroups 
and influencing cancer progression through 
post-transcriptional regulatory networks. Identifying 
IGF2BPs as a key driver of these networks suggested 
that targeting IGF2BPs interactions with oncogenic 
transcripts may represent a promising therapeutic 
strategy, particularly in the context of RNA-targeted 
therapies. However, our study has several limitations. 
Although we utilized multi-omics data to identify 
IGF2BPs-driven regulatory networks, further 
experimental validation across different cancer 
models is necessary to confirm the functional impact 
of these interactions. Additionally, the broader 
landscape of RNA modifications, including m5C and 
pseudo-uridylation, warrants further investigation to 
fully understand the epitranscriptomic regulation of 
cancer cells. 

In conclusion, our findings provide new insights 
into the roles of m6A and IGF2BPs in cancer biology, 
particularly in regulating cell cycle activity and 
immune responses. By defining m6A-driven 
subgroups and elucidating the mechanisms 
underlying IGF2BP-mediated oncogenesis, this study 
contributes to the growing understanding of 
epitranscriptomic regulation in cancer and highlights 
potential avenues for therapeutic interventions. 
Future studies should focus on validating these 
findings using experimental models and exploring the 
interplay between m6A and other RNA modifications 
to elucidate the complexities of cancer biology further. 
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