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Abstract 

Background There is significant individual variation in the efficacy of cetuximab for the treatment of 
colorectal cancer (CRC). However, effective models to predict treatment outcomes are still lacking in 
clinical practice. 
Methods Datasets (GSE106582 and GSE83889) were used to identify differentially expressed genes 
(DEGs) in CRC by the 'Limma' package in R software. Hypoxia-related genes were retrieved from the 
Molecular Signatures Database and cross-referenced with CRC DEGs. Protein expression levels were 
verified using immunohistochemistry (IHC) data from the Human Protein Atlas (HPA), and prognostic 
significance was assessed through the Kaplan-Meier plotter platform. Additionally, pathway and immune 
infiltration analyses were performed using the GSCA platform. We also successfully constructed a 
prediction model for cetuximab treatment response using the K-nearest neighbors (KNN) algorithm in 
GSE108277 dataset, in which the feature selection was performed through the permutation importance 
method. 
Results Analysis of GSE106582 and GSE83889 identified 417 overlapping DEGs by comparing cancer 
tissues with normal controls, including 16 hypoxia-related genes. 6 genes (BGN, DDIT4, MIF, SLC2A1, 
STC2, and TGFBI) were upregulated, and 10 genes (CA12, CITED2, MT1E, MT2A, NEDD4L, PCK1, PLAC8, 
PPARGC1A, SELENBP1, and SRPX) were downregulated in CRC. Survival analysis revealed that the 16 
hypoxia-related DEGs were linked to the survival outcomes of CRC patients. Pathway analysis indicated 
that these genes were almost involved in EMT, cell cycle, and RTK pathways. Furthermore, these genes 
play a role in the infiltration of immune cells and may regulate the immune microenvironment. A 
prediction model for cetuximab response was developed, based on 10 key genes (CA12, DDIT4, MIF, 
MT2A, NEDD4L, PLAC8, SELENBP1, SLC2A1, SRPX, and TGFBI) and dataset from GSE108277. The model 
demonstrated robust performance with an accuracy of 0.9500, precision of 0.8378, recall of 1.0000, 
F1-score of 0.9118, and a receiver operating characteristic–area under the curve (ROC-AUC) of 0.9663. 
Conclusion Our study identifies 10 hypoxia-related DEGs as key players in CRC progression and 
cetuximab response. And we successfully developed a predictive model to forecast the response of CRC 
patients to cetuximab treatment. This study will provide valuable biomarkers for CRC prognosis and help 
guide more effective therapeutic strategies. 
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Introduction 
Colorectal cancer (CRC) is the third most 

common cancer and the fourth leading cause of 
deaths related to cancer worldwide. In China, both the 
incidence and mortality rates of CRC are on the rise, 
currently ranking as the second and fourth most 
common malignancy, respectively [1, 2]. Despite 
advancements in diagnostic techniques and 
therapeutic strategies, significant inter-patient 
variability in disease progression contributes to the 
poor prognosis of CRC patients [2]. Therefore, the 
selection of individualized treatment regimens and 
the evaluation of prognosis for CRC patients remains 
a challenge. 

The current treatment of CRC primarily involves 
a combination of surgery, radiotherapy, chemo-
therapy, and targeted therapy, surgical resection 
remains the most effective curative approach for 
localized CRC patients. In contrast, patients with 
advanced or metastatic CRC rely heavily on systemic 
treatments [3]. In recent years, tyrosine kinase 
inhibitors (TKIs) targeted therapies have brought new 
insights into therapeutic options for patients [4]. 
Among these, the epidermal growth factor receptor 
(EGFR) -target therapy remains central pillar in the 
molecular targeted treatment of CRC. EGFR plays a 
pivotal role in the initiation, progression, and 
metastasis of tumor cells by activating many 
downstream pathways in CRC, such as RAS/RAF/ 
MEK/ERK and PI3K/AKT/mTOR pathway [5]. 
EGFR-target therapy (cetuximab and panitumumab) 
and small-molecule TKIs have been reported to 
inhibit tumor growth and disease progression, which 
demonstrate the promising therapeutic option in CRC 
patients [6].  

Cetuximab is a monoclonal antibody targeting 
EGFR to block tumor cell growth and proliferation. It 
is widely used in the treatment of advanced and 
metastatic CRC. Treatment with cetuximab is 
recommended for patients with KRAS wild-type 
metastatic CRC, particularly for those with left-sided 
primary tumors. Furthermore, cetuximab is 
frequently administered in conjunction with chemo-
therapy protocols to bolster therapeutic effectiveness. 
Researches have shown that the combination of 
cetuximab with chemotherapy markedly enhances 
progression-free survival (PFS) and overall survival 
(OS) among CRC patients [7, 8]. However, the efficacy 
of cetuximab is substantially limited by the emergence 
of resistance over time [9]. Additionally, individual 
differences in drug response remain a key factor 
influencing the prognosis of CRC patients. Studies 
have shown that EGFR mutations, BRAF mutations, 
and changes in the tumor microenvironment were 

closely associated with cetuximab resistance [10]. 
However, the main mechanisms underlying 
cetuximab resistance remain unclear.  

Hypoxia is a common feature in tumor and is 
recognized as an important factor contributing to 
cancer development and drug resistance [11]. 
Hypoxia-inducible factor 1-alpha (HIF-1α) typically 
increased and activated epithelial-to-mesenchymal 
transition (EMT) under hypoxic conditions, which 
regulated the proliferation and activation of cancer 
stem cells (CSCs) [12]. Cetuximab effectively reverses 
the Warburg effect by inhibiting the HIF-1-mediated 
glycolytic process in cancer cells, thereby significantly 
suppressing their metabolic activity [13]. Previous 
studies have shown that hypoxia-related genes 
mediate cetuximab treatment response through 
various molecular mechanisms [14, 15]. In the 
treatment of head and neck squamous cell carcinomas 
(HNSCC), cetuximab demonstrates increased 
sensitivity under hypoxic conditions. Additionally, 
cetuximab treatment can partially reverse hypoxia- 
induced EMT and the expression of stem cell markers 
in HNSCC cells [14]. In CRC research, it has been 
demonstrated that circHIF1A promotes HIF1α- 
mediated metabolic changes, thereby inducing 
cetuximab resistance in CRC cells [16]. Furthermore, 
hypoxia-driven metabolic reprogramming, including 
increased glycolysis and lactate production, enhances 
tumor cell survival under stress conditions [17]. These 
metabolic adaptations coupled with activation of 
PI3K/AKT and RTK pathways can synergize with 
EGFR signaling to further weaken cetuximab’s 
antitumor effects [18, 19]. Therefore, thorough 
research into the aberrant expression of hypoxia- 
related genes and their mechanisms in CRC is crucial 
for enhancing the therapeutic efficacy of EGFR 
inhibitors such as cetuximab. 

The application of machine learning in 
personalized treatment is becoming increasingly 
widespread, with commonly used algorithms 
including k-nearest neighbors (KNN), support vector 
machines (SVM), Random Forests (RF), Neural 
Networks, and Gradient Boosting Trees. Machine 
learning has shown significant value in treatment 
decision-making and prognostic prediction for CRC. 
The COLOXIS AI model, developed by the University 
of Pittsburgh, precisely identifies patients who would 
benefit from oxaliplatin-based adjuvant chemo-
therapy by analyzing gene expression profiles of 
tumor tissues [20]. The model has helped avoid 
unnecessary side effects in approximately half of the 
patients and significantly improved the benefit-risk 
ratio of treatment, providing important decision 
support for clinical practice. The MUSK model from 
Stanford University combines medical imaging and 
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textual data to accurately predict survival rates and 
immune therapy responses for 16 types of cancer, 
including CRC [21]. Meanwhile, a research team from 
Zhejiang University identified macrophage-centered 
immune modules to predict chemotherapy responses 
and guide personalized treatment using multi-omics 
analysis and deep learning models [22]. Therefore, the 
application of machine learning in the treatment of 
CRC is of great significance for achieving 
personalized treatment, improving patients' quality of 
life, and enhancing treatment outcomes.  

This study aims to develop a machine learning- 
based model capable of predicting the cetuximab 
response of CRC patients. We intend to identify the 
key biomarkers that influence cetuximab efficacy by 
integrating hypoxia-related gene expression data with 
the genomic information of CRC patients. We also 
evaluated the predictive accuracy and interpretability 
of the model in clinical practice. The proposed model 
was expected to enhance therapeutic outcomes and 
provide critical support for clinical decision-making, 
thereby advancing the personalization of CRC 
treatment. 

Methods 
Data sources 

To investigate the genomic features associated 
with CRC and cetuximab efficacy, three publicly 
available datasets were retrieved from the Gene 
Expression Omnibus (GEO, http://www.ncbi.nlm. 
nih.gov/geo/) database. The datasets GSE106582, 
GSE83889, and GSE108277 were generated using the 
GPL10558 microarray platform, which provides a 
unified methodological foundation to maintain 
consistency throughout the data preprocessing and 
analysis stages. The datasets are detailed as follows: 
(I) GSE106582: This dataset encompasses a total of 194 
samples. For the purposes of this study, 68 CRC tissue 
samples and their corresponding 68 normal mucosal 
control samples were chosen for differential 
expression analysis. (II) GSE83889: This dataset 
consists of 136 samples, which include 35 normal 
tissue samples and 101 CRC tissue samples. We 
identified differentially expressed genes (DEGs) in 
CRC tissues compared to normal tissues with the 
GSE106582 and GSE83889 datasets. (III) GSE108277: 
This dataset comprises 120 samples with 
comprehensive cetuximab efficacy data. It was 
utilized to train and validate machine learning models 
designed to forecast cetuximab treatment responses, 
thereby aiding in the identification of biomarkers 
associated with drug sensitivity and resistance. 

Hypoxia-related genes were extracted from the 
hallmark gene set in the Molecular Signatures 

Database v7.0 (MSigDB, https://www.gsea-msigdb. 
org/gsea/msigdb). This hallmark gene set consists of 
200 genes that are directly or indirectly involved in 
hypoxia regulation pathways, identified from the 
literature available in PubMed and other biological 
public databases [23]. 

All datasets used in this study are publicly 
accessible and free to use. The study adhered strictly 
to data access policies and publication guidelines. 
Consequently, ethical approval from an Ethics 
Committee was not required. 

Identify the differential genes significantly 
associated with CRC 

The datasets GSE106582 and GSE83889 were 
obtained from the GEO database. Differential 
expression analysis of mRNAs was conducted using 
the “Limma” package (version 3.40.2) in R software 
(version 4.0.3). To minimize false positives, we 
applied Benjamini and Hochberg (BH) adjustment for 
statistical correction of p, controlling the false 
discovery rate (FDR). DEGs were identified based on 
the criteria: adjusted p < 0.05 and |logFC| > 1. 

To further explore the potential functions of the 
identified DEGs, functional enrichment analyses were 
performed. Gene ontology (GO) annotation was 
utilized to examine gene functions across three 
domains: Molecular Function (MF), Biological Process 
(BP), and Cellular Component (CC). Additionally, 
Kyoto encyclopedia of genes and genomes (KEGG) 
pathway enrichment analysis was conducted to 
investigate high-level functional insights and genomic 
pathways associated with the target genes. Both GO 
and KEGG analyses were carried out using the 
“ClusterProfiler” package in R software, with a 
significance threshold set at p < 0.05.  

Acquisition of Hypoxia-Related DEGs 
associated with CRC 

To investigate the involvement of hypoxia- 
related genes in CRC, the results from the differential 
expression analyses of GSE106582 and GSE83889 
were compared to identify overlapping genes. These 
overlapping DEGs were further matched with a 
curated list of 200 hypoxia-related genes from 
MSigDB v7.0, involving genes in hypoxia regulation 
pathways. This cross-referencing process identified a 
subset of hypoxia-related genes that were both 
dysregulated in CRC and linked to hypoxic processes, 
offering key candidates for further analysis and 
validation. 

Verification of protein expression levels of 
Hypoxia-Related DEGs in CRC  

The Human Protein Atlas (HPA, https://www. 
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proteinatlas.org/) database was employed to obtain 
immunohistochemistry (IHC) results for the proteins 
of interest [24]. The HPA database provides high- 
quality IHC images, allowing the visualization and 
confirmation of protein expression patterns in CRC 
tissues compared to normal tissues.  

Differential analysis of hypoxia-related DEGs 
in different pathological stages of CRC 

GEPIA (http://gepia2.cancer-pku.cn/#index) 
platform was utilized to analyze the expression of 
hypoxia-related genes and their correlation with 
prognosis across different pathological stages in CRC 
patients [25]. We applied log2 transformation to the 
RNA-seq data to ensure that the transcript per million 
values followed a normal distribution assumption. 
Subsequently, we performed one-way analysis of 
variance to compare gene expression levels across 
different pathological stages, with a significance 
threshold set at p < 0.05. 

The Association between Hypoxia-Related 
DEGs and the prognosis of CRC Patients 

The prognostic significance of hypoxia-related 
DEGs in CRC was evaluated using Kaplan-Meier 
plotter (https://kmplot.com/analysis/) to assess 
their association with OS, relapse-free survival (RFS), 
and post-progression survival (PPS) [26, 27]. The 
analysis for OS was conducted using data from 1,061 
CRC patients, for RFS with 1,336 CRC patients, and 
for PPS with 311 CRC patients. The CRC patients 
were stratified into high and low expression groups 
based on the best percentile cutoff automatically 
selected by the Kaplan-Meier plotter platform. For 
each survival analysis, the Affymetrix IDs for each 
gene were used. The log-rank test was used to 
evaluate the impact of gene expression on prognosis 
by calculating the hazard ratio (HR) and logrank p, 
with p < 0.05 considered statistically significant. 

The correlation between Hypoxia-Related 
DEGs with pathways and immune infiltration 
in CRC 

We employed two complementary approaches 
to evaluate the functional roles of the 16 
hypoxia-related DEGs in CRC. For pathway analysis, 
the effects of individual gene expression levels on 
pathway activity were assessed by calculating 
pathway activity scores (PAS) for ten key cancer- 
related pathways using reverse phase protein array 
data from the TCGA database. Differences in PAS 
between high- and low-expression groups for each 
gene were evaluated using student’s t-test, p-values 
adjusted by FDR. Genes were classified as pathway 

activators or inhibitors based on whether their high 
expression increased or decreased pathway activity, 
respectively. For immune infiltration analysis, the 
infiltration levels of 24 immune cell types were 
estimated using ImmuCellAI, based on predefined 
gene set signatures. The mRNA expression levels of 
individual genes were correlated with immune cell 
infiltration levels using Spearman correlation 
analysis, with p-values adjusted by FDR. The above 
analyses were conducted on the GSVA 
(https://guolab.wchscu.cn/GSCA/#/) platform to 
evaluate the functional roles of the 16 hypoxia-related 
DEGs in CRC [28, 29]. 

Screening of Hypoxia-Related DEGs 
associated with cetuximab response and 
construction of a treatment response 
prediction model 

We employed several classical machine learning 
algorithms for predictive modeling, assessing their 
performance using a 10-fold cross-validation 
framework. Each model was evaluated without 
hyperparameter tuning to ensure a fair and unbiased 
comparison of their stability and feasibility. The 
dataset, consisting of 120 samples and 16 features, was 
randomly partitioned into 70% training and 30% 
validation subsets for each iteration. Stratified 
sampling was applied to preserve class distribution 
within both the training and validation sets. 
Cross-validation was performed such that data 
splitting was independently randomized for each fold 
to enhance robustness and minimize overfitting. 
Hyperparameter tuning was conducted exclusively 
within the training subsets to avoid data leakage and 
preserve the integrity of the validation process. Model 
performance was assessed using various metrics, 
including accuracy, F1-score, precision, recall, and 
receiver operating characteristic–area under the curve 
(ROC-AUC) score. 

Results 
Identification of significant DEGs and 
functional enrichment analysis in CRC 

We analyzed datasets GSE106582 and GSE83889, 
a total of 459 and 1,103 significant DEGs were iden-
tified, respectively (adjusted p < 0.05, |logFC| > 1). 
Among these, 168 upregulated and 291 
downregulated genes were identified in GSE106582 
(Figure 1A-B, Supplemental Table 1), while GSE83889 
included 412 upregulated and 691 downregulated 
genes (Figure 1C-D, Supplemental Table 2). 
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Figure 1. Sixteen hypoxia-related genes significantly differentially expressed in CRC. A: Volcano plot illustrating gene expression differences in the GSE106582 
dataset. The x-axis represents log2 fold change (FC) in gene expression, while the y-axis shows statistical significance (-log10 p-value).  Gray dots: Genes that do not meet the 
significance threshold (non-significant, high P-value). Blue dots: Genes with significant p-values but without substantial fold changes (|logFC| ≤ 1). Red dots: Genes that are both 
statistically significant (adjusted p-value < 0.05) and exhibit notable expression changes (|logFC| > 1), indicating significant upregulation or downregulation. B: Circular heatmap 
of differentially expressed genes in the GSE106582 dataset. Red: Upregulated genes in colorectal cancer. Blue: Downregulated genes in colorectal cancer. C: Volcano plot for the 
GSE83889 dataset, following the same criteria as in panel A. D: Circular heatmap displaying differentially expressed genes in the GSE83889 dataset, similar to panel B. E: Venn 
diagram comparing differentially expressed genes between the GSE83889 and GSE106582 datasets, highlighting the overlap with hypoxia-related genes. 
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Functional enrichment analysis revealed distinct 
characteristics of upregulated and downregulated 
genes in both datasets. In GSE106582 (Supplemental 
Table 3), upregulated genes were associated with 
extracellular matrix organization, cell chemotaxis, and 
collagen metabolism (Supplemental Figure 1A), as 
well as enriched molecular functions such as 
chemokine receptor binding and cytokine activity. 
KEGG pathway analysis highlighted PI3K/AKT 
signaling, ECM-receptor interaction, and NF-kB 
signaling (Supplemental Figure 1B). Downregulated 
genes were linked to biological processes such as 
metal ion response, hormone metabolism, and stress 
response, with suppressed oxidoreductase activity 
and altered membrane transport (Supplemental 
Figure 1C-D). Key metabolic pathways, including 
fatty acid degradation and retinol metabolism, were 
also enriched. 

Similarly, in GSE83889 (Supplemental Table 4), 
upregulated genes were primarily involved in cell 
cycle-related processes such as ribosome biogenesis, 
mitotic nuclear division, and chromosome 
segregation, contributing to structural components 
like the mitotic spindle and extracellular matrix 
(Supplemental Figure 2A). Downregulated genes 
were enriched in lipid metabolism, immune functions 
such as MHC protein complex, and processes related 
to cytokine interactions (Supplemental Figure 2B). 
KEGG analysis further revealed upregulated genes 
were enriched in tumor-related pathways, including 
PI3K/AKT signaling, cell cycle, and DNA replication, 

while downregulated genes were associated with 
suppressed immune pathways and reduced metabolic 
activity (Supplemental Figure 2C, D).  

Verification of Hypoxia-Related DEGs in CRC 
and Protein Expression Levels 

A total of 417 overlapping DEGs were identified 
between GSE106582 (459 DEGs) and GSE83889 (1,103 
DEGs) (Figure 1E). These 417 DEGs were further 
intersected with a predefined list of 200 hypoxia- 
related genes, resulting in the identification of 16 
hypoxia-related DEGs (Figure 1E). Among these, 6 
genes (BGN, DDIT4, MIF, SLC2A1, STC2, and TGFBI) 
were upregulated, while 10 genes (CA12, CITED2, 
MT1E, MT2A, NEDD4L, PCK1, PLAC8, PPARGC1A, 
SELENBP1, and SRPX) were downregulated at the 
mRNA expression level. 

Protein level analysis further validated these 
findings, demonstrating strong protein expression for 
upregulated genes and weak or negligible expression 
for downregulated genes. IHC data from the HPA 
database provided robust support for the differential 
expression patterns of 9 hypoxia-related DEGs (BGN, 
CA12, MIF, MT1E, NEDD4L, PCK1, SELENBP1, 
SLC2A1, and TGFBI) in CRC patients, consistent with 
observations at both mRNA and protein levels (Figure 
2). Data for the remaining 7 genes (CITED2, DDIT4, 
MT2A, PLAC8, PPARGC1A, SRPX, and STC2) were 
unavailable in the HPA database.  

 

 
Figure 2. Immunohistochemistry of 9 hypoxia-related DEGs in CRC. Each set of images shows the difference in expression of a specific gene in normal tissue and CRC 
tumor tissue, visualized by tissue section staining technology. Brown represents the expression location of the target gene. Each panel (A–I) represents a distinct gene: (A)BGN; 
(B) CA12; (C) MIF; (D) MT1E; (E) NEDD4L; (F) PCK1; (G) SELENBP1; (H) SLC2A1; (I) TGFBI. 
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Figure 3. Expression distribution of four hypoxia-related DEGs in different pathological stages of CRC. The violin plots show the expression distribution of four 
hypoxia-related DEGs in 275 CRC tissue samples across different pathological stages. The y-axis represents the log2(TPM+1) transformed gene expression, and the x-axis 
corresponds to the clinical stages (Stage I, Stage II, Stage III, Stage IV) of CRC. Each plot’s thick black line represents the median gene expression, while the white dots indicate 
the distribution density of the gene expression data. A p-value < 0.05 was used to assess the statistical significance of the difference in gene expression between the stages. (A) 
BGN; (B) NEDD4L; (C) SLC2A1; (D) STC2. 

 

Hypoxia-Related DEGs correlated with the 
pathological stage of CRC 

Through our analysis, we found that the 
expression levels of BGN (p = 0.01), SLC2A1 (p = 
0.01), and STC2 (p = 0.03) significantly increased with 
the progression of CRC, while the expression level of 
NEDD4L (p = 0.04) decreased (Figure 3). These 
findings suggested that upregulation of BGN, 
SLC2A1, and STC2 and downregulation of NEDD4L 
may promote the proliferation, invasion, and 
metastasis of tumor cells in CRC. 

Hypoxia-Related DEGs correlated with 
prognostic significance in CRC 

We analyzed the prognostic significance of 16 
hypoxia-related DEGs in CRC. All genes significantly 
influenced the prognosis of CRC patients (p < 0.05). 
Seven genes (BGN, MIF, NEDD4L, SELENBP1, 
SLC2A1, SRPX, and TGFBI) were associated with 
prognosis in OS, RFS, and PPS (Figure 4, 
Supplemental Table 5). 

High expression of BGN correlated with poor 
prognosis, with HRs of 1.64 for OS, 1.88 for RFS, and 
1.51 for PPS. Similarly, high expression of SLC2A1 
(OS: HR = 1.49, RFS: HR = 1.53, PPS: HR = 1.46) and 
SRPX (OS: HR = 1.55, RFS: HR = 1.49, PPS: HR = 1.64) 

was associated with worse prognosis. Elevated TGFBI 
expression was linked to poor prognosis in both OS, 
RFS, and PPS (OS: HR = 1.39, RFS: HR = 1.45, PPS: HR 
= 1.45), further supporting its role in CRC 
prognostication. MIF exhibited a mixed pattern: high 
expression was linked to poor prognosis in OS and 
RFS (OS: HR = 1.30, RFS: HR = 1.31), while low 
expression was associated with worse prognosis in 
PPS (PPS: HR = 0.72), indicating distinct biological 
functions at different CRC stages. In contrast, low 
expression of NEDD4L (OS: HR = 0.75, RFS: HR = 
0.59, PPS: HR = 0.53) and SELENBP1 (OS: HR = 0.65, 
RFS: HR = 0.56, PPS: HR = 0.64) was associated with 
poor prognosis, suggesting a protective role by 
inhibiting tumor progression.  

Further analysis identified other genes 
significantly impacting CRC prognosis. CITED2, 
DDIT4, MT2A, PLAC8, and STC2 were significantly 
associated with OS (Supplemental Figure 3, 
Supplemental Table 5). CITED2 (HR = 1.24) and 
DDIT4 (HR = 1.43) were linked to poor OS, while 
MT2A (HR = 1.25) and STC2 (HR = 1.25) were 
associated with worse OS. PLAC8 was linked to better 
OS (HR = 0.77). Moreover, CITED2, DDIT4, MT1E, 
PPARGC1A, and STC2 were significantly associated 
with RFS, suggesting their roles in CRC recurrence 
and metastasis. Additionally, CA12, PCK1, and 
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PPARGC1A were significantly associated with PPS, 
highlighting their prognostic value in advanced-stage 

patients (Supplemental Figure 3, Supplemental Table 
5). 

 
 

 
Figure 4. Kaplan-Meier Survival Curves for Gene Expression and Their Prognostic Impact on OS, RFS, and PPS in CRC Patients. Kaplan-Meier survival 
analysis of the genes BGN (201261_x_at), SLC2A1 (201249_at), SRPX (204955_at), TGFBI (201506_at), MIF (221262_s_at), NEDD4L (212445_s_at), and SELENBP1 
(214433_s_at) across different survival outcomes: OS, RFS, and PPS. Each plot compares survival probabilities between high and low expression groups. HR and corresponding 
p-values are displayed for each gene, with statistical significance indicated (logrank p < 0.05). The black lines represent the low expression group, while the red lines represent 
the high expression group. 
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Hypoxia-Related DEGs regulated the diverse 
pathways in CRC   

We analyzed the association of hypoxia-related 
DEGs' expressions with the activity of various 
biological pathways in CRC. The results indicated that 
the expression levels of multiple genes were 
significantly correlated with pathway activity scores 
in pathways related to the cell cycle, DNA damage, 
EMT, RTK signaling, and hormone-related pathways. 
Specifically, in the apoptosis pathway, higher 
expression of MT1E and MT2A was significantly 
associated with increased pathway activity, while 
higher expression of PCK1 and TGFB1 was associated 
with decreased activity (Figure 5A-D). In the cell cycle 
pathway, higher expression of both BGN and SRPX 
was correlated with decreased pathway activity, 
suggesting their potential regulatory roles in cell cycle 
control (Figure 5E, F). Furthermore, higher expression 
of BGN was associated with decreased DNA damage 
pathway activity, while higher expression of CA12, 
DDIT4, and MT2A was correlated with decreased 
activity (Figure 5G-J). In the EMT pathway, higher 
expression of BGN, CITED2, MT2A, and SRPX was 
correlated with increased pathway activity, whereas 
higher expression of CA12 and SELENBP1 was 
associated with decreased activity (Figure 5K-P). In 
the RTK signaling pathway, higher expression of 
CITED2 and PLAC8 was associated with increased 
pathway activity (Figure 5Q, R). Additionally, higher 
expression of BGN was associated with increased 
activity in hormone-related pathways (Figure 5S). 
These correlative findings suggest the potential 
involvement of these specific hypoxia-related DEGs in 
modulating key biological pathways in CRC. 

Hypoxia-related DEGs were associated with 
immune cell infiltration in CRC 

In the immunological correlation analysis of 
hypoxia-related DEGs, different genes exhibited 
specific associations with various immune cell types 
in CRC, with all correlations showing at least 
moderate strength (correlation coefficients greater 
than 0.3) (Supplemental Figure 4, Supplemental Table 
6). Regarding B cells, BGN, DDIT4, MIF, TGFBI, and 
STC2 showed negative correlations, suggesting that 
these genes might have suppressed B cell infiltration 
or function in a hypoxic environment. For monocytes 
and macrophages, BGN and STC2 were positively 
correlated with monocytes, while BGN was also 
positively correlated with macrophages. This suggests 
that these genes may promote the activation of the 
monocyte-macrophage system, thereby enhancing 
immune regulation within the tumor micro-
environment. Additionally, dendritic cells exhibited a 

strong positive correlation with BGN, suggesting an 
enhanced immunoregulatory role. 

Among T cell subsets, CD8+ naïve T cells 
showed a positive correlation with BGN but negative 
correlations with CITED2, MT1E, MT2A, and PLAC8, 
implying that these genes might have influenced 
CD8+ T cell differentiation and maturation. For 
effector memory T cells, BGN was negatively 
correlated, whereas exhausted T cells were positively 
correlated with BGN and MIF, suggesting that 
hypoxia might have promoted an 
immunosuppressive state. Furthermore, regarding 
Treg cells, nTregs were negatively correlated with 
MIF but positively correlated with SLC2A1, while 
iTregs showed a positive correlation with DDIT4, 
indicating that these genes had differentially 
impacted T cell immunoregulation. 

For NK cells, TGFBI was negatively correlated, 
whereas MT2A, CITED2, SRPX, PLAC8, and MT1E 
showed strong positive correlations, suggesting that 
these genes might have promoted NK cell infiltration 
and activation. In cytotoxic T cells, MT2A, CITED2, 
SRPX, and MT1E exhibited positive correlations, 
indicating a role in enhancing antitumor immunity. 
Additionally, MAIT cells were negatively correlated 
with BGN and STC2 but positively correlated with 
PLAC8. Th2 cells were negatively correlated with 
STC2 but positively correlated with SRPX, indicating 
distinct effects of different genes on specific T cell 
subsets. 

Developing a machine learning-based model to 
predict cetuximab response of CRC patients 

As shown in Supplemental Figure 5 and 
Supplemental Table 7, the KNN model consistently 
outperformed other algorithms in terms of stability 
and generalization across the 10-fold cross-validation. 
This superior performance was observed on a 
moderate-dimensional, small-sample dataset 
comprising 120 samples and 16 features. The KNN 
model's inherent characteristics, including its low 
reliance on parameter tuning, balanced metric 
performance, and adaptability to local data 
distributions, contributed to its success. These 
advantages make KNN particularly well-suited for 
tasks requiring classification balance and robustness, 
especially in small-sample scenarios. Given its strong 
performance, the KNN model was selected as the final 
predictive model for this study, mitigating concerns 
of overfitting while providing a reliable and stable 
solution for predicting treatment response. 

To develop a prediction model for cetuximab 
treatment response, we combined KNN with the 
Permutation Importance method for feature selection. 
Sixteen hypoxia-related DEGs were ranked by their 
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importance using Permutation Importance (Figure 
6A-B). From this, 10 genes significantly related to 
cetuximab response were selected for inclusion in the 
final model: CA12, DDIT4, MIF, MT2A, NEDD4L, 

PLAC8, SELENBP1, SLC2A1, SRPX, and TGFBI 
(Figure 6C). These genes demonstrated the highest 
prediction capacity and discriminative ability for 
classification tasks (Figure 6D). 

 

 
Figure 5. Association of Hypoxia-Related DEGs with Pathway Activity in CRC. The figure illustrates the correlation between the expression of hypoxia-related DEGs 
and the activity of key biological pathways in CRC. Panels (A-D) show the relationship between the expression of MT1E, MT2A, PCK1, and TGFB1 with the activity of the 
apoptosis pathway. Panels (E, F) display the association of BGN and SRPX expression with the cell cycle pathway activity. In panels (G-J), the expression of BGN, CA12, DDIT4, 
and MT2A is correlated with the activity of the DNA damage pathway. Panels (K-P) present the correlation of BGN, CITED2, MT2A, SRPX, CA12, and SELENBP1 with the EMT 
pathway activity. Panels (Q, R) show the relationship between CITED2 and PLAC8 expression and the RTK signaling pathway activity. Panel (S) depicts the correlation of BGN 
expression with hormone-related pathway activity. 
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Figure 6. A prediction model for the response to cetuximab in CRC patients was successfully constructed using 10 hypoxia-related DEGs. (A): Horizontal 
axis: importance value, indicating the degree of influence of each gene on the prediction results of cetuximab treatment response. The larger the value, the more significant the 
contribution of the gene to the prediction results. Vertical axis: gene ID. (B): This figure shows the confusion matrix of the KNN algorithm, which is designed to evaluate the 
classification performance of the model. The horizontal axis represents the predicted category of the model, and the vertical axis represents the true category. Among them, 1 
represents a sample that is sensitive to cetuximab, and 0 represents a sample that is resistant to cetuximab. (C): The horizontal axis represents the number of genes, and the 
vertical axis represents the accuracy of the prediction model. (D): The True Positive Rate is on the y-axis, and the False Positive Rate is on the x-axis, with the curve showing the 
KNN model's performance. A curve nearer to the top-left corner signifies better class distinction. 

 
The model’s performance was evaluated using 

10-fold cross-validation, achieving the following 
metrics: accuracy = 0.9500, precision = 0.8378, recall = 
1.0000, F1-score = 0.9118, and area under the 
ROC-AUC = 0.9663. These results confirm the model's 
strong ability to differentiate between cetuximab- 
resistant and -sensitive cases. To assess the potential 
for overfitting, we compared the model’s performance 
across both the training and validation sets during 
10-fold cross-validation. Supplemental Table 7 
indicates high consistency between training and 
validation metrics, with average training accuracy of 
0.9650 (± 0.0064) and validation accuracy of 0.9442 (± 
0.0625). Precision, recall, and F1-scores also showed 
minimal performance gaps, suggesting stable and 
robust generalization of the KNN model without 
significant overfitting. This consistency highlights the 
model’s reliability on unseen data. 

To further investigate the contribution of each 
gene, we focused on TGFBI, a top-ranked gene that 
plays a role in regulating extracellular matrix 

interactions and is implicated in cancer progression 
and metastasis. The impact of TGFBI on model 
performance was assessed by comparing the accuracy 
and F1 scores of the model with and without this 
gene. As shown in Supplemental Figure 6, the model 
with TGFBI outperformed the version without, 
achieving a validation accuracy of 0.9442 and an F1 
score of 0.9422, compared to 0.8788 accuracy and 
0.8916 F1 score without TGFBI. While recall remained 
high in both versions, precision dropped significantly 
(from 0.9381 to 0.8433) when TGFBI was excluded, 
indicating an increase in false positive predictions. 
This suggests that TGFBI enhances the model’s ability 
to discriminate between cetuximab-sensitive and 
-resistant cases by providing biologically relevant 
information, thereby improving classification 
performance. 

Discussion 
This study systematically identified and 

characterized hypoxia-related genes with significant 
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roles in CRC, providing novel insights into their 
functional relevance, prognostic significance, and 
predictive potential for cetuximab treatment efficacy. 
Transcriptomic analyses of the GSE106582 and 
GSE83889 datasets identified 417 overlapping DEGs, 
including 16 hypoxia-related DEGs. Among these, 6 
genes (BGN, DDIT4, MIF, SLC2A1, STC2, and TGFBI) 
were consistently upregulated, while 10 (CA12, 
CITED2, MT1E, MT2A, NEDD4L, PCK1, PLAC8, 
PPARGC1A, SELENBP1, and SRPX) were 
downregulated at the mRNA level. The research 
demonstrated that these genes were associated with 
roles in multiple signaling pathways related to CRC 
and appeared to influence the immune 
microenvironment. Hypoxia-related DEGs 
involvement had a notable impact on the OS, RFS, and 
PPS of CRC patients. Therefore, a combination of the 
KNN algorithm and Permutation Importance method 
were utilized to perform feature selection and 
construct a prediction model for cetuximab treatment 
response. Furthermore, 10 significant gene features 
(CA12, DDIT4, MIF, MT2A, NEDD4L, PLAC8, 
SELENBP1, SLC2A1, SRPX, and TGFBI) were selected 
for constructing the prediction model of cetuximab 
response. The model was evaluated using 10-fold 
cross-validation, achieving high performance metrics: 
accuracy (0.9500), precision (0.8378), recall (1.0000), 
F1-score (0.9118), and ROC-AUC score (0.9663). These 
results indicated excellent classification performance 
in distinguishing cetuximab resistant from sensitive 
cases. 

The biological mechanisms underlying 
cetuximab response were further elucidated. 
Cetuximab is a monoclonal antibody targeting EGFR 
that inhibited tumor cell growth and promoted 
apoptosis by blocking the EGFR signaling pathway. 
However, resistance limited its clinical application 
[30]. Resistance was associated with various gene 
mutations and aberrant activation of signaling 
pathways, including RAS/RAF/PIK3CA, PI3K/ 
AKT/mTOR, Wnt/β-catenin, c-MET/HGF, and 
RAS-MAPK [10]. Hypoxia-related genes may 
influence cetuximab efficacy by potentially 
modulating these pathways. EMT enhanced the 
invasiveness of cancer cells and was closely linked to 
cetuximab resistance [31-33]. Studies show that 
hypoxia-related genes SRPX, BGN, CITED2, and 
MT2A expression is correlated with increased EMT 
pathway activity, suggesting a potential mechanism 
for promoting resistance to cetuximab. Additionally, 
in relation to cell cycle and DNA damage repair, 
higher expression of BGN was associated with 
decreased activity in both pathways, while higher 
expression of CA12, DDIT4, and MT2A was also 
correlated with decreased DNA damage repair 

activity. Given that the EGFR signaling pathway 
played a key role in promoting cell cycle progression 
and DNA repair [34], the regulatory associations of 
these genes might affect tumor cell sensitivity to 
EGFR blockade, potentially impacting cetuximab 
efficacy. Regarding apoptosis signaling, higher 
expression of MT1E and MT2A was associated with 
increased apoptosis pathway activity, whereas higher 
expression of PCK1 and TGFBI was associated with 
decreased activity. Since apoptosis was a crucial 
mechanism through which cetuximab induced tumor 
cell death [30], MT1E and MT2A expression might 
correlate with enhanced drug sensitivity, while PCK1 
and TGFBI expression might be linked to resistance. 
Therefore, the expression patterns of these genes 
could serve as potential biomarkers for cetuximab 
sensitivity or resistance, providing insights for 
personalized treatment strategies. Future studies 
could explore combination therapy approaches 
targeting these genes to improve clinical outcomes of 
cetuximab treatment. 

Immunological analysis indicated that hypoxia- 
related genes might have regulated cetuximab 
efficacy by potentially influencing immune cell 
infiltration and the tumor microenvironment [35]. 
Expression of BGN, DDIT4, MIF, TGFBI, and STC2 
was negatively correlated with B cell infiltration, 
suggesting a potential suppressive effect on B cell 
function that could impact antibody-mediated 
immunity. Meanwhile, expression of these genes was 
positively correlated with macrophage infiltration, 
possibly contributing to altered tumor-associated 
macrophage phenotypes, which might impact 
cetuximab response [36]. T cell exhaustion was a key 
mechanism of tumor immune evasion [37]. 
Expression of BGN and MIF was positively correlated 
with exhausted T cells, suggesting a potential role in T 
cell dysfunction and resistance. Treg cells promoted 
an immunosuppressive microenvironment by 
inhibiting CD8+ cytotoxic T cells [38]. Expression of 
SLC2A1 and DDIT4 was positively correlated with 
Treg infiltration, potentially enhancing immune 
suppression. NK cells and CD8+ cytotoxic T cells 
played critical roles in tumor immune surveillance 
and antibody-dependent cellular cytotoxicity [39-41]. 
Expression of MT2A, CITED2, SRPX, PLAC8, and 
MT1E was positively correlated with NK and 
cytotoxic T cell infiltration, potentially enhancing 
antitumor immunity and improving the potential for 
cetuximab efficacy. These findings highlighted the 
complex associations of these genes with oxidative 
stress and the immune microenvironment, 
underscoring their significance in CRC progression 
and therapy resistance. 
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Our hypoxia-related gene signature offers 
certain advantages over established cetuximab 
response predictors. While consensus molecular 
subtypes (CMS) provide valuable insights into CRC 
biology [42], they may lack the specificity required for 
accurately predicting responses to anti-EGFR 
therapies. Similarly, recent biomarker studies focused 
on phosphoproteomics [43], miRNA regulators (e.g., 
miR-196b) [44], or receptor internalization have 
contributed important findings [45, 46], but these 
approaches can face challenges in clinical translation 
due to their technical complexity or limitations related 
to single-gene markers. In contrast, our 10-gene 
hypoxia signature integrates multiple resistance 
mechanisms, including EMT, cell cycle dysregulation, 
and immune escape, which have previously been 
implicated in cetuximab resistance [46]. In addition, 
hypoxia has been shown to modulate immune cell 
infiltration and activity, further strengthening its role 
in therapeutic resistance [47]. By targeting these 
hypoxia-related genes, our model provides a more 
accurate and clinically useful tool for predicting the 
efficacy of cetuximab. In clinical practice, 
bevacizumab, another commonly used targeted 
therapy, exerts anti-tumor effects by inhibiting 
VEGF-mediated angiogenesis. However, studies have 
shown that this anti-angiogenic effect may exacerbate 
tumor hypoxia [48, 49], thereby influencing 
subsequent cetuximab treatment outcomes. Based on 
our model, it could serve as a tool for stratifying 
patients' cetuximab treatment response after 
bevacizumab therapy, helping to identify those whose 
treatment may be compromised due to tumor 
hypoxia, thus optimizing therapeutic strategies. 

In future studies, we will validate these 
predictive models in larger, independent cohorts and 
clinical settings. Incorporating additional features, 
such as genomic mutations, immune landscape data, 
or clinical parameters, could further improve the 
predictive accuracy and clinical utility of these 
models. Moreover, applying these models to guide 
combination therapies, such as pairing cetuximab 
with hypoxia-targeted agents or immunomodulators, 
will make optimizing treatment regimens and 
overcoming drug resistance a reality. 

Conclusion 
This study highlights the pivotal roles of 

hypoxia-related DEGs in cetuximab response, 
providing a foundation for the development of 
predictive models and personalized therapeutic 
strategies in CRC. By combining machine learning 
tools with biological insights, this research advances 
the understanding of hypoxia-driven mechanisms in 
CRC and offers new directions for precision medicine 

approaches aimed at improving patient outcomes. 
Further exploration of these strategies in clinical 
settings is essential to translate these findings into 
meaningful therapeutic advances. 
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