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Abstract 

Background: Residual back pain (RBP) following vertebral augmentation (VA) represents a significant 
challenge in managing osteoporotic vertebral compression fractures (OVCFs). While conventional predictive 
models have shown moderate accuracy, their preoperative risk stratification capabilities remain suboptimal. 
CT-based radiomics has demonstrated success in vertebral fracture assessment, yet its integration with 
artificial intelligence (AI) for predicting RBP remains unexplored. 
Objective: This study aims to identify the optimal AI model for predicting RBP by systematically comparing 
multiple algorithms that integrate CT radiomics features with clinical parameters, with the goal of enabling 
preoperative risk stratification for improved surgical decision-making. 
Methods: This prospective study enrolled patients who underwent VA for OVCFs. Potential predictors were 
identified through clinical variable analysis. Radiomics features were extracted from preoperative CT images 
using standardized vertebral segmentation protocols. The study population was divided into training and testing 
cohorts at a ratio of 7:3. Five AI models were constructed through integration of clinical predictors and 
radiomics features. Model performance evaluation was conducted in the independent testing cohort through 
discrimination, calibration, and clinical utility analyses. The predictive mechanisms of the optimal model were 
interpreted through feature importance analysis. 
Results: Among 856 enrolled patients, RBP developed in 102 cases (11.9%). TabNet exhibited optimal 
performance metrics (AUROC: 0.927, Recall: 0.833) among all evaluated algorithms. Feature importance 
analysis revealed intravertebral vacuum cleft and bone mineral density as principal clinical predictors, 
complemented by wavelet-based texture parameters and quantitative intensity metrics. Ablation experiments 
demonstrated that clinical parameters were critical for false-positive reduction, while radiomics features 
enhanced specificity in non-RBP identification. The model maintained consistent clinical utility across varying 
threshold probabilities. 
Conclusion: The integration of clinical parameters and CT-based radiomics through a deep learning 
framework enabled accurate preoperative prediction of RBP. 

Keywords: osteoporotic vertebral compression fracture; residual back pain; radiomics; artificial intelligence; risk prediction; 
vertebral augmentation 

Introduction 
Osteoporotic vertebral compression fractures 

(OVCFs) represent a significant clinical challenge, 
particularly among aging populations, leading to 
chronic pain, functional impairment, and reduced 
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quality of life [1, 2]. Given the limited efficacy of 
conservative management, vertebral augmentation 
(VA) procedures have been established as the primary 
surgical intervention for symptomatic OVCFs [3]. 
However, despite the widespread implementation of 
these procedures, a considerable proportion of 
patients continue to experience residual back pain 
(RBP) postoperatively, with reported incidence rates 
ranging from 9% to 35% [4]. This persistent pain not 
only undermines patient confidence in surgical 
outcomes but also necessitates prolonged 
rehabilitation, thereby amplifying the burden on 
healthcare systems [5, 6]. 

Current investigations have identified multiple 
risk factors associated with post-operative RBP, 
including reduced bone mineral density (BMD), 
presence of intravertebral vacuum cleft (IVC), 
paravertebral muscle degeneration, inadequate 
cement distribution, and thoracolumbar fascia (TLF) 
injury [7, 8]. Despite these advances in understanding 
the contributory factors, current predictive models 
based on conventional clinical and radiological 
parameters, while achieving moderate predictive 
accuracy, still face challenges in reliably identifying 
high-risk patients preoperatively, highlighting an 
unmet need for more robust preoperative risk 
stratification tools [5]. 

Recent advances in radiomics have 
demonstrated substantial potential in orthopedic 
research through the extraction of quantitative 
features from medical images [9, 10]. Radiomics 
analysis extends beyond conventional imaging 
interpretation by detecting complex spatial and 
textural patterns within computed tomography (CT) 
scans, thereby revealing pathophysiological 
characteristics that cannot be identified through 
visual assessment alone [11]. Multiple studies have 
documented the successful application of CT-based 
radiomics in VCFs, with validated results in several 
domains: the differentiation between benign and 
malignant fractures [12], determination of fracture 
acuity [13], and prediction of secondary fracture 
occurrence [14]. However, the application of 
radiomics for predicting postoperative RBP remains 
to be investigated. 

While our preliminary research has established 
the feasibility of a radiomics-based nomogram for 
RBP prediction [15], this initial model was limited by 
insufficient capacity to process extensive radiomic 
datasets, detect complex nonlinear relationships, and 
perform optimal feature selection. The rapid 
evolution of artificial intelligence (AI) technology now 
enables the implementation of sophisticated 
algorithms to analyze comprehensive radiomics and 
clinical parameters [16, 17]. Therefore, this study aims 

to perform a systematic comparison of multiple AI 
models that incorporate CT radiomics features and 
clinical variables for postoperative RBP risk 
prediction. By systematically evaluating the 
performance metrics of different algorithms in 
processing these high-dimensional data, we seek to 
identify the optimal predictive model for preoperative 
risk stratification. This comparative analysis will not 
only advance our understanding of the relative 
strengths of different AI approaches but also establish 
a more reliable tool for identifying high-risk patients 
preoperatively, ultimately facilitating personalized 
treatment strategies and improved patient outcomes. 

Materials and Methods 
This prospective cohort study was conducted in 

accordance with the Declaration of Helsinki and 
received approval from the Ethics Committee of 
Ruijin Hospital, Shanghai Jiao Tong University School 
of Medicine (Approval No: 2013-60). Written 
informed consent was obtained from all participants 
prior to enrollment, encompassing the use of clinical 
data and imaging materials for research purposes. 
Patient privacy was protected through comprehensive 
data anonymization protocols, with all personal 
identifiers removed from clinical records and imaging 
data before analysis. The study protocol and data 
management procedures were designed to ensure 
rigorous adherence to patient confidentiality 
standards throughout the investigation and 
subsequent reporting phases. 

Study design and patient selection 
We evaluated patients who underwent unilateral 

percutaneous kyphoplasty (PKP) for OVCFs at our 
institution between January 2015 and January 2024. 
Based on Power Analysis and Sample Size (PASS) 
software calculations, assuming an RBP rate of 15%, a 
clinically significant difference of 25%, a significance 
level of 0.05, and a statistical power of 0.90, the 
minimum required sample size was determined to be 
158 patients. Among 1,253 consecutive patients 
screened, those meeting the following inclusion 
criteria were selected: (1) age ≥ 55 years; (2) primary 
PKP intervention without previous VA; (3) 
single-level vertebral fracture located between T4 and 
L5; (4) MRI confirmation of acute fracture; (5) 
documented osteoporosis (T-score ≤ -2.5) on 
dual-energy X-ray absorptiometry; and (6) significant 
back pain (Visual Analog Scale [VAS] score ≥ 6) with 
associated functional limitations. Among patients 
meeting all inclusion criteria, subsequent exclusion 
was applied for the following conditions: (1) 
concurrent spinal pathologies (malignancy, active 
infection of vertebral body or adjacent tissues, 
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previous surgical intervention); (2) posterior column 
involvement with spinal canal compromise; (3) severe 
cardiopulmonary disease contraindicating surgical 
intervention; (4) newly developed vertebral fractures 
within three months after surgery; and (5) insufficient 
follow-up data. 

Standard PKP procedures were performed 
according to established surgical protocols through a 
unilateral transpedicular approach under 
fluoroscopic guidance. The procedure was terminated 
if cement extravasation was observed. 
Postoperatively, patients were monitored for 12 
months with standardized follow-up assessments. 
Early mobilization was encouraged from 
postoperative day one, and standardized 
anti-osteoporotic therapy was initiated, including 
calcium and vitamin D supplementation combined 
with antiresorptive or anabolic agents based on 
individual risk profiles. Pain intensity was 
systematically evaluated using VAS at four 
predetermined time points: postoperative days 1, 3, 7, 
and 30. To minimize the confounding effect of 
analgesics, all VAS assessments were conducted after 
a standardized 12-hour washout period from 
short-acting analgesic medications. Based on 
established clinical experience and comprehensive 
literature analysis [18-20], RBP was defined as VAS 
score ≥ 4 at both postoperative day 3 and day 30, as no 
consensus guidelines currently exist for this clinical 
entity. Patients meeting these criteria were assigned to 
the RBP group, with the remainder constituting the 
control group. 

Potential clinical predictors for RBP 
Clinical variables were analyzed between RBP 

and control groups. Preoperative baseline data 
included patient demographics, medical history, and 
BMD measurements. Fracture characteristics were 
documented, and functional status was evaluated 
using the VAS score for pain assessment and 
Oswestry Disability Index (ODI) for disability 
quantification. Preoperative imaging parameters were 
analyzed, including vertebral height reduction ratio, 
segmental Cobb angle (the angle between the superior 
and inferior endplate of the fractured level), presence 
of IVC, and TLF integrity. Statistical analysis was 
performed to identify potential clinical predictors, 
with parameters demonstrating significance at P < 0.1 
selected for subsequent analysis. 

Image acquisition and processing 
All preoperative CT examinations were 

performed on a 64-detector CT system (Aquilion 
Prime Model TSX-303A, Toshiba Medical Systems 

Corp., Tokyo, Japan). Standard imaging protocols 
were implemented with the following technical 
parameters: tube potential of 120-130 kV, automatic 
tube current modulation with a target noise index of 
25, gantry rotation time of 0.5-0.75 seconds, and 
reconstruction matrix of 512 × 512 pixels. Image 
acquisition consisted of contiguous axial sections at 
3-mm slice thickness, with subsequent multiplanar 
reformations in sagittal and coronal planes generated 
using dedicated postprocessing software. All imaging 
data were archived in Digital Imaging and 
Communications in Medicine (DICOM) format to 
maintain standardized image quality and ensure 
compatibility with radiomics analysis platforms. 

Image segmentation and feature extraction 
The segmentation of vertebral bodies was 

conducted using 3D Slicer software (version 5.0.2) by 
two fellowship-trained radiologists with 8 and 10 
years of experience in spinal imaging, who were 
blinded to clinical outcomes. A standardized 
segmentation protocol was implemented, as 
demonstrated in Figure 1. The process began with 
semi-automatic delineation of vertebral margins 
utilizing density-based thresholding to distinguish 
bone from adjacent soft tissues. Manual adjustments 
were subsequently performed to optimize boundary 
definition, particularly at regions of complex 
anatomical interfaces. The final region of interest 
(ROI) encompassed the complete vertebral body, 
including both the cancellous core and cortical shell.  

Radiomics features were extracted using 
PyRadiomics (version 3.0) with standardized 
preprocessing configurations. The preprocessing 
parameters were systematically defined: voxel 
resampling to isotropic spacing (1 × 1 × 1 mm), 
intensity normalization with a scale factor of 100, 
outlier removal at 3 standard deviations, and 
gray-level discretization with a binning width of 25 
Hounsfield units. The feature extraction pipeline was 
specifically configured to preserve the physical 
significance of CT values, implementing selected 
image transformations: original images, Laplacian of 
Gaussian (LoG) with three sigma levels (1.0, 3.0, 5.0), 
wavelet decomposition, and gradient maps. For each 
transformed image, comprehensive feature sets were 
computed, including shape-based metrics, first-order 
statistics, and higher-order textural features derived 
from gray-level matrices (co-occurrence, run length, 
size zone, dependence, and neighboring gray tone 
difference). Basic mask validation and correction 
procedures were applied to ensure segmentation 
integrity. 
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Figure 1. Vertebral segmentation protocol and three-dimensional reconstruction. A: Axial CT image showing semi-automatic segmentation of the vertebral body (blue). B: 
Coronal reconstruction demonstrating the segmented vertebral region. C: Sagittal view of the segmented vertebral body. D: Three-dimensional reconstruction of the segmented 
vertebral volume of interest. 

 
Feature preprocessing and selection 

Prior to analysis, radiomics features underwent 
adaptive standardization based on their statistical 
distributions. Features demonstrating approximately 
normal distributions (skewness < 2, kurtosis < 7) were 
processed using standard z-score normalization to 
achieve a mean of zero and standard deviation of one. 
For features with non-normal distributions or 
substantial outliers (>10%), robust scaling was 
applied, centering the data at a median of zero with 
an interquartile range of one, thereby minimizing the 
influence of extreme values. 

The endpoint variable was defined as a binary 
outcome, with the absence or presence of RBP 
encoded as 0 and 1, respectively. Feature selection 
proceeded through a systematic multi-step validation 
process. Initially, interobserver reproducibility was 
assessed for all extracted radiomic features using the 
concordance correlation coefficient (CCC), with a 
stringent threshold of 0.85 applied to ensure robust 
feature stability. The subset of reproducible features 
underwent statistical evaluation using Wilcoxon 
rank-sum (WRS) tests, where features demonstrating 
significant discriminative capability (P < 0.1) were 
identified. Final feature refinement employed 
minimum redundancy maximum relevance (mRMR) 
analysis to optimize the feature set while controlling 
for multicollinearity, resulting in the selection of 20 
CT-based radiomics features. To validate the 

methodological approach, principal component 
analysis (PCA) was conducted on both the post-WRS 
significant features and the mRMR-selected subset for 
comparative assessment of dimensionality reduction 
effectiveness and feature independence validation, 
thereby establishing the methodological integrity of 
the radiomics signature. 

Data partition and sampling strategy 
The final dataset, comprising selected clinical 

predictors and radiomics features for each patient, 
was partitioned into training and testing cohorts 
through stratified randomization at a 7:3 ratio to 
maintain proportional RBP representation. Given the 
inherent class imbalance in the training cohort, a 
sequential sampling protocol was implemented to 
optimize the training data distribution. This protocol 
comprised adaptive synthetic oversampling 
(ADASYN) to generate synthetic RBP cases with 
emphasis on boundary regions [21], followed by 
TomekLinks undersampling to refine the control 
group distribution [22], ultimately achieving a more 
balanced representation for subsequent model 
development. 

Model training and hyperparameter 
optimization 

Five AI prediction models were selected for RBP 
prediction: four machine learning (ML) algorithms 
including logistic regression (LR), which offered clear 
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interpretability of feature relationships; random forest 
(RF) and XGBoost, which enabled identification of 
complex variable interactions and feature importance 
analysis; and support vector machine (SVM), which 
showed effectiveness in analyzing high-dimensional 
radiomics features. Additionally, TabNet, a deep 
learning (DL) architecture specifically optimized for 
tabular data, was implemented to leverage its 
sequential attention mechanism and dynamic feature 
selection capabilities. 

For the ML models, hyperparameter 
optimization was conducted through randomized 
grid search with 5-fold cross-validation. The 
parameter grid for LR encompassed regularization 
strength and penalty type; RF optimization focused 
on tree depth, number of estimators, and minimum 
samples per leaf; XGBoost parameters included 
learning rate, maximum depth, and number of 
estimators; and SVM optimization addressed kernel 
selection, regularization parameter, and kernel 
coefficient. Each model underwent 100 iterations of 
parameter search, with area under the receiver 
operating characteristic curve (AUROC) serving as 
the optimization metric. Following the identification 
of optimal parameters, final models were trained on 
the complete training dataset using these optimized 
configurations to maximize the utilization of available 
training data. 

For TabNet optimization, a systematic 
two-phase approach was implemented. The initial 
phase employed randomized grid search with 5-fold 
cross-validation to optimize architectural parameters, 
including feature transformation dimensions, 
decision steps, independent and shared feature layers, 
and sparsity coefficient. Each parameter combination 
was evaluated across 100 iterations, using AUROC as 
the optimization metric. During the training process, 
early stopping was implemented with a patience of 10 
epochs on the validation set to prevent overfitting. 
The second phase focused on training parameters, 
optimizing learning rate, batch size, and decay 
schedule. After determining the optimal 
configuration, the final TabNet model was trained on 
the complete training dataset with a held-out 
validation set (ratio 8:2) for performance monitoring 
and early stopping. 

Model comparison 
A model comparative test was conducted in the 

independent testing cohort through three critical 
dimensions to identify the optimal AI model for RBP 
risk stratification. First, discrimination analysis was 
conducted to assess each model's ability to 
differentiate between RBP and non-RBP cases. 
Second, calibration analysis examined the agreement 

between predicted probabilities and actual outcomes. 
Third, clinical utility was evaluated through the 
assessment of model prediction accuracy across 
different risk thresholds. Performance metrics derived 
from confusion matrices provided standardized 
evaluation parameters, including predictive values 
and classification accuracy.  

Interpretation of the optimal AI model 
A systematic evaluation was conducted to 

examine the predictive mechanisms within the 
optimal AI model. Feature importance analysis 
identified and ranked the ten most influential 
variables for RBP prediction, incorporating both 
radiomics parameters and clinical indicators. An 
ablation experiment was subsequently performed to 
validate the predictive contribution of key features 
through sequential feature elimination, 
demonstrating their relative importance within the 
model framework. 

Statistical analysis 
All statistical evaluations were performed using 

Python (version 3.12.0) with established analytical 
libraries. Demographic and clinical characteristics 
between RBP and control groups were compared 
using chi-square tests for categorical variables and 
WRS tests for continuous variables. Model 
performance assessment encompassed multiple 
complementary approaches: discrimination capability 
was quantified through ROC curve analysis and 
corresponding AUC values; calibration assessment 
utilized calibration curves complemented by Brier 
scores (BS) to evaluate prediction accuracy; and 
clinical utility was determined through decision curve 
analysis (DCA) to assess net benefit across different 
threshold probabilities. Comprehensive performance 
metrics were calculated from confusion matrices, 
including accuracy, precision, recall, F1-score, and 
Cohen's kappa coefficient, providing a thorough 
evaluation of classification performance. 

Results 
Patient characteristics and cohort distribution 

Among 1,253 OVCF patients initially screened, 
856 eligible cases were enrolled after applying the 
inclusion and exclusion criteria (Figure 2). Of these 
enrolled patients, 102 (11.9%) developed RBP 
following VA procedures, while 754 patients 
maintained satisfactory outcomes. The study 
population was systematically allocated into training 
(n=600) and testing (n=256) cohorts, comprising 72 
(12.0%) and 30 (11.7%) RBP patients, respectively. 
Comprehensive analysis of demographic and clinical 
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characteristics revealed no statistically significant 
differences between the training and testing cohorts 
across all evaluated parameters (all P > 0.05), as 
detailed in Table S1. 

 

Table 1. Comparison of clinical characteristics between control 
and RBP groups in the training cohort 

Variable Control group (n=528) RBP group (n=72) P value 
Age, year 70 (67, 72) 69 (67, 73) 0.249 
BMI, kg/m2 23.5 (21.8, 25.4) 23.7 (22.1, 25.4) 0.896 
BMD, T-score -3.1 (-3.3, -2.8) -3.3 (-3.6, -3.0) <0.001 
Preoperative VAS, score 7 (6, 8) 7 (6, 8) 0.298 
Preoperative ODI, score 42 (40, 44) 43 (41, 45) 0.041 
Vertebral height loss (%) 33.9 (30.1, 37.6) 33.4 (28.7, 36.3) 0.161 
Cobb angle, (°) 27.1 (24.0, 30.1) 27.0 (23.3, 29.4) 0.173 
Gender, n(%) Male 109 (20.6) 19 (26.4) 0.264 

Female 419 (79.4) 53 (73.6) 
Fracture position, n 
(%) 

T4 - T10 51 (9.7) 7 (9.7) 0.009 
T11 - L2 249 (47.2) 47 (65.3) 
L3 - L5 228 (43.2) 18 (25.0) 

Hypertension, n (%) 233 (44.1) 30 (41.7) 0.693 
Diabetes, n (%) 49 (9.3) 6 (8.3) 0.794 
Smoking, n (%) 86 (16.3) 9 (12.5) 0.409 
IVC, n (%) 39 (7.4) 11 (15.3) 0.023 
TLF injury, n (%) 31 (5.9) 13 (18.1) <0.001 

 

Clinical predictors of RBP 
In the training cohort, several potential clinical 

predictors were identified through comparative 
analysis to be associated with RBP development. 
Lower BMD values and elevated preoperative ODI 
scores were observed in patients with RBP. The 
distribution of fracture locations was found to be 

significantly different, with T11-L2 fractures being 
predominantly observed in the RBP group. Moreover, 
imaging features including IVC and TLF injury were 
detected more frequently in patients who developed 
RBP (Table 1). 

Radiomics feature extraction and selection 
Initial radiomics analysis extracted 1,223 

quantitative features from each segmented vertebral 
body. After standardization procedures, interobserver 
reproducibility evaluation retained 940 features 
demonstrating high stability (CCC ≥ 0.85). Subsequent 
statistical analysis identified 106 features with 
significant discriminative potential between RBP and 
control groups. The mRMR algorithm further refined 
this feature set to 20 optimal parameters (Figure 3). 
These selected features represented diverse aspects of 
vertebral characteristics, including intensity 
distribution metrics derived from first-order statistics, 
textural features obtained through gray-level matrices 
analysis, and advanced wavelet-based parameters 
capturing multi-scale image properties.  

PCA of the post-WRS significant features 
revealed highly distributed variance across 
components, with the first principal component 
explaining only 1.7% of total variance and the first 
three components cumulatively accounting for 4.9% 
(Figure 4A). This uniform variance distribution 
indicated substantial feature diversity without 
dominant underlying patterns, supporting the 
rationale for the mRMR feature selection. 
Comparative PCA analysis of the mRMR-selected 
features demonstrated marked improvement in 

 

 
Figure 2. Flow chart illustrating patient selection and cohort distribution.  
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feature coherence, with the first principal component 
explaining 6.1% of variance (3.6-fold increase, Figure 
4B) and the first three components cumulatively 
accounting for 18.0% (3.7-fold increase, Figure 4C). 
This enhanced variance concentration confirmed that 
mRMR successfully identified radiomics features that 
more effectively capture the underlying vertebral 
characteristics relevant to RBP prediction. 

Model training and optimization 
Five predictive models were constructed to 

assess the risk of RBP, incorporating four ML 
approaches (LR, SVM, RF, and XGBoost) alongside a 
DL framework (TabNet). A systematic cross- 
validation strategy was implemented for parameter 
optimization, with hyperparameter combinations 
being systematically evaluated through 100 
optimization cycles. The finalized hyperparameter 
configurations are documented in Table S2, which 
were subsequently employed for final model training 
on the complete training dataset. 

Model comparison and performance analysis 
A comparative experiment across multiple AI 

models demonstrated heterogeneous predictive 
capabilities, as illustrated in Figure 5, which provides 
a comprehensive evaluation through discrimination 
ability, calibration performance, and clinical utility 
assessment. In the testing cohort, TabNet and 
XGBoost were found to outperform others, with 
AUROC values of 0.927 and 0.911 being achieved, 
respectively. Model calibration comparison through 
BS values indicated higher probability estimation 
precision for these advanced models (TabNet: 0.022; 
XGBoost: 0.010), which reflected alignment between 
predicted and observed outcomes. Clinical utility of 
TabNet and XGBoost was further validated through 
DCA, where these models demonstrated sustained 
net benefit across threshold probabilities (0-95%). The 
confusion matrices (Figure 6) and performance 
metrics analysis (Table 2) revealed TabNet to 
demonstrate superior diagnostic capability, 
particularly in reducing false-negative predictions. 
Within the comparative framework, TabNet exhibited 
optimal sensitivity with a recall rate of 0.833, which 
enabled identification of one additional RBP case 
compared to XGBoost in the testing cohort, while 
equivalent accuracy (0.977) was maintained between 
these models. Based on the enhanced detection 
capability and robust performance metrics (F1 score: 
0.893; Kappa: 0.882), TabNet was established as the 
optimal algorithmic framework for preoperative RBP 
risk stratification. 

 

Table 2. Comparative performance metrics of AI Models in RBP 
prediction 

Model Accuracy Precision Recall F1 score Kappa 
LR 0.715 0.179 0.400 0.247 0.104 
RF 0.684 0.160 0.400 0.229 0.073 
SVM 0.723 0.127 0.233 0.164 0.014 
XGBoost 0.977 1.000 0.800 0.889 0.878 
TabNet 0.977 0.962 0.833 0.893 0.882 

 

Feature importance and ablation analysis 
Feature importance analysis through the TabNet 

model identified ten critical predictive variables, as 
shown in Figure 7. Among these, IVC and BMD were 
determined as the primary clinical predictors, 
indicating the significance of structural defects and 
bone quality in RBP development. The remaining 
seven radiomics features were predominantly 
characterized by wavelet-based parameters, 
comprising two distinct categories: texture features 
that captured tissue heterogeneity patterns, and 
quantitative intensity metrics that reflected vertebral 
density distribution. These complementary radiomics 
characteristics, quantifying both structural 
heterogeneity and density variations, demonstrated 
significant predictive value for RBP development. 

The contribution patterns were systematically 
validated through two-phase ablation experiments, 
with results presented in Table 3. In the first phase, 
sequential elimination of the top five features 
demonstrated a graduated impact on model 
performance, where the removal of higher-ranked 
features resulted in more substantial performance 
decreases. In the second phase, complete ablation of 
radiomics features led to a marked reduction in true 
negative predictions (from 225 to 157), indicating 
compromised specificity in identifying non-RBP 
cases. Conversely, the elimination of clinical features 
resulted in a significant increase in false positives 
(from 1 to 137), suggesting that clinical parameters 
were instrumental in reducing overdiagnosis. These 
findings indicated that while radiomics features 
enhanced the model's ability to correctly identify 
non-RBP cases, clinical parameters were crucial for 
maintaining diagnostic precision. 

Discussion 
Despite the widespread implementation of VA 

procedures for OVCFs, the persistent challenge of 
RBP continues to impact patient outcomes, with 
current prediction models based on conventional 
clinical parameters showing limited preoperative risk 
stratification capabilities. In this study, we developed 
and validated an innovative AI framework that 
integrates CT-based radiomics features with clinical 
parameters for preoperative RBP prediction, 
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achieving remarkable predictive performance 
through the TabNet architecture. This comprehensive 
model demonstrates superior capability in identifying 
patients at risk for RBP compared to other AI models, 
with its feature importance analysis revealing novel 
insights into the predictive value of wavelet-based 
texture parameters and quantitative intensity metrics 
alongside established clinical risk factors. Our study 

represents the first systematic comparison of multiple 
radiomics-based AI algorithms for RBP prediction in 
OVCF patients, establishing a robust framework that 
not only enhances preoperative risk stratification but 
also provides clinically actionable insights for 
personalized treatment planning, potentially enabling 
early preventive interventions for high-risk patients. 

 

Table 3. Ablation analysis of feature contributions to model performance in RBP prediction. 

Model TP TN FP FN Accuracy Precision Recall F1 score Kappa 
Baseline model 25 225 1 5 0.977 0.962 0.833 0.893 0.882 
Without IVC 8 204 22 22 0.828 0.267 0.267 0.267 0.265 
Without BMD 11 211 15 19 0.867 0.423 0.367 0.393 0.330 
Without wavelet-HHL_gldm_GrayLevelVariance 15 219 7 15 0.914 0.682 0.500 0.577 0.520 
Without gradient_glszm_GrayLevelNonUniformityNormalized 13 223 3 17 0.922 0.813 0.433 0.565 0.527 
Without wavelet-LLH_glszm_ZonePercentage 20 218 8 10 0.930 0.714 0.667 0.690 0.668 
Without clinical features 20 89 137 10 0.426 0.127 0.667 0.214 0.021 
Without radiomics features 22 157 69 8 0.699 0.242 0.733 0.364 0.120 

 TP: true positive; TN: true negative; FP: false positive; FN: false negative 

 
 

 
Figure 3. Correlation matrix of selected radiomics features. Heatmap visualization of correlations among 20 mRMR-selected features. Color intensity indicates correlation 
strength (red: positive correlation; blue: minimal correlation). The predominant light coloring demonstrates low inter-feature redundancy. 
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Figure 4. PCA validation results comparing feature independence between post-WRS and post-mRMR feature sets. (A) PC1 variance comparison. (B) PC1-PC3 cumulative 
variance comparison. (C) Cumulative variance curves across six principal components. 

 
 

 
Figure 5. Performance evaluation of different AI Models for RBP prediction. A: ROC curves comparing discriminative capabilities. B: Calibration curves demonstrating 
probability estimation accuracy. C: DCA showing clinical utility across threshold probabilities. 
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Figure 6. Confusion matrices of AI models in the independent testing cohort. A-E: Confusion matrices for LR, RF, SVM, XGBoost, and TabNet models, respectively. 

 
Figure 7. Relative importance of the top 10 features identified by the TabNet model in RBP prediction. 

 
CT-based radiomics offers unique advantages in 

analyzing vertebral pathology, primarily due to its 
superior capability in providing comprehensive 
three-dimensional visualization of the injured 
vertebrae with high spatial resolution and excellent 

bone-soft tissue contrast [23]. This imaging modality 
enables detailed characterization of both cortical and 
trabecular bone architecture, allowing for extraction 
of quantitative features that capture subtle structural 
variations that may be imperceptible to visual 
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assessment [24]. The emerging field of CT-based 
radiomics in vertebral analysis has gained increasing 
attention in recent years, with several pioneering 
studies demonstrating its potential utility. Previous 
investigations focusing on fracture characterization 
have consistently identified gray-level textural 
features and intensity-based statistical parameters as 
key predictors [13, 25]. Our analysis of RBP prediction 
revealed similar patterns but demonstrated a critical 
finding regarding the predominance of 
wavelet-transformed features among our top 
predictors. Notably, five of the seven radiomics 
features required wavelet transformation to achieve 
predictive value, including three texture-based 
features and two first-order statistical features. This 
pattern indicates that the microstructural alterations 
associated with RBP are not evident in raw CT images 
but emerge only when vertebral structure is analyzed 
at specific spatial frequencies. The texture features 
likely remained non-predictive in their original form 
because normal trabecular patterns mask subtle 
pathological changes. In contrast, wavelet decompo-
sition successfully isolates these abnormalities by 
separating high-frequency components that reveal 
microfractures from low-frequency components that 
capture architectural deformities [26]. Similarly, 
first-order intensity features become informative only 
after wavelet filtering separates pathological 
variations from the inherent density heterogeneity of 
osteoporotic bone. This frequency-specific 
information suggests that RBP development involves 
multi-scale structural abnormalities ranging from fine 
trabecular disruptions to larger architectural 
distortions affecting load distribution. The emergence 
of gradient-based features as additional predictors 
further supports this interpretation by identifying 
transition zones representing active remodeling or 
incomplete healing [27]. When compared to our 
preliminary research utilizing traditional linear 
prediction methods [15], the current AI-based 
approach revealed a more diverse feature set. This 
expanded feature profile likely reflects the TabNet 
architecture's superior capability in capturing 
complex non-linear relationships within the imaging 
data, particularly through its attention mechanism 
that dynamically weights different frequency 
components based on their predictive relevance [28]. 

In the comparative analysis of AI models, 
TabNet and XGBoost demonstrated superior 
predictive capabilities, primarily due to their 
optimized architectures for processing tabular data 
with complex feature interactions [29, 30]. TabNet 
exhibited enhanced sensitivity compared to other 
models, aligning with clinical priorities wherein 
identification of potential RBP cases takes precedence 

over false-positive reduction. This characteristic, 
combined with robust overall performance metrics, 
established TabNet as the optimal model for clinical 
implementation. Feature importance analysis 
indicated that radiomics features constituted seven of 
the top ten predictive variables, with clinical 
parameters including IVC, BMD, and TLF injury 
comprising the remainder. Although IVC and BMD 
demonstrated the highest individual predictive 
weights among all variables, the collective 
contribution of radiomics features was determined to 
be substantial for model performance. Ablation 
experiments substantiated this observation, wherein 
exclusion of radiomics features resulted in marked 
deterioration in model precision, indicating their 
essential role in reducing false-positive predictions. 
The model performance declined more significantly 
when clinical features were removed, suggesting that 
accurate RBP risk stratification requires integration of 
both radiomics and clinical parameters. These find-
ings demonstrate the complementary roles of clinical 
variables in providing fundamental risk assessment 
and radiomics features in enhancing discriminative 
capability through tissue characterization. 

The developed predictive framework advances 
the field of RBP prediction through its novel 
integration of CT-based radiomics features with AI 
algorithms. To our knowledge, this represents the first 
investigation to utilize quantitative imaging 
biomarkers for preoperative RBP risk assessment in 
OVCF patients, whereas previous studies relied 
exclusively on clinical parameters analyzed through 
traditional statistical methods [19, 20, 31]. Compared 
to our preliminary radiomics-based nomogram study 
[15], the current investigation demonstrates 
substantial methodological improvements through 
the transition from linear regression to sophisticated 
AI algorithms capable of capturing complex 
non-linear relationships, implementation of rigorous 
multi-step feature selection, and incorporation of an 
independent testing cohort to ensure model 
generalizability. These advances enabled the 
identification of previously unrecognized predictive 
patterns, resulting in significantly enhanced 
predictive performance that surpasses both our 
preliminary work and existing clinical prediction 
models. This enhanced discrimination capability 
enables accurate preoperative identification of 
patients at elevated risk for RBP, facilitating the 
implementation of individualized preventive 
strategies and patient-specific treatment planning. 
Furthermore, the model provides an objective, 
evidence-based tool for physicians to conduct 
informed discussions with patients regarding 
expected outcomes and potential complications, 
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thereby establishing realistic therapeutic expectations. 
By transforming RBP management from reactive 
treatment to proactive prevention through 
personalized risk-adapted care pathways, this 
AI-driven radiomics approach offers significant 
potential for improving surgical outcomes and patient 
satisfaction in vertebral augmentation procedures. 

However, several limitations warrant 
consideration in interpreting these findings. First, the 
study population was derived from a single medical 
center, potentially limiting the generalizability of 
results across different clinical settings and patient 
populations. Second, as a preoperative prediction 
model, our approach was intentionally restricted to 
preoperative parameters to enable early risk 
stratification. However, this design inherently 
excludes potentially significant intraoperative and 
postoperative factors, such as cement injection 
pressure, cement viscosity, and cement distribution 
patterns, that may substantially influence RBP 
development and treatment outcomes [32]. Third, the 
model application remained restricted to 
single-segment vertebral fractures, and validation in 
patients with multiple OVCF segments has yet to be 
conducted. Future investigations should focus on 
developing dynamic prediction models that can 
incorporate real-time perioperative variables to adjust 
initial risk predictions, thereby providing more 
clinically relevant and adaptive risk stratification 
tools. Additionally, multicenter validation studies and 
model adaptation for complex vertebral fracture 
patterns will facilitate broader clinical 
implementation and expand the applications of RBP 
risk prediction in VA procedures. 

In conclusion, an innovative TabNet DL 
framework integrating CT-based radiomics features 
with clinical parameters was established for 
predicting RBP. The model demonstrated robust 
predictive performance through the synergistic 
contribution of clinical and radiomics features. This 
predictive tool enables preoperative risk stratification 
and facilitates personalized treatment planning in VA 
procedures. 
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