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Abstract 

Background: Gliomas, the predominant malignant neoplasm of the central nervous system, are 
notorious for their recurrence and unfavourable prognosis. Immune cells play a pivotal role in the 
progression of various solid tumors, including gliomas. This study aims to explore the potential causal 
effect of immune cells on the risk of glioma and the association between immune cells and clinical 
characteristics in glioma. 
Materials and Methods: This study used the public genome-wide association studies (GWAS) 
summary data of 731 immune cell traits and gliomas to perform two-sample Mendelian randomization 
(MR) analysis. The MR analysis primarily employed the inverse variance weighting (IVW) method, 
supplemented by three additional methods, alongside comprehensive pleiotropy and heterogeneity 
analyses. In addition, 151 glioma samples were collected for RNA-Seq to construct the CSUXY cohort, 
and RNA-Seq data and clinical information of 588 glioma samples in the TCGA cohort were collected. 
The associations between immune cell abundance and clinical characteristics and drug sensitivity of each 
sample were inferred in the two cohorts. 
Results: Based on the IVW method, this study identified potential causal associations between 16 
immune cell traits and the risk of glioma. The other three MR analysis methods had consistent causal 
directions with the IVW method and there was no horizontal pleiotropy and heterogeneity. Higher levels 
of immune cell infiltration were observed in IDH wild-type and 1p19q non-codel gliomas compared to 
IDH mutant and 1p19q codel gliomas across both the CSUXY and TCGA cohorts. In addition, the 
abundance of immune cells was also associated with the grade, histological subtype and prognosis of 
gliomas. Finally, this study also identified broad associations between immune cell abundance and drug 
sensitivity in glioma. 
Conclusion: This study supports the causal effects of specific immune cell traits on glioma and confirms 
the associations between immune cells and clinical characteristics, as well as drug sensitivity in glioma, 
providing evidence for the development of immune cell-based biomarkers. 
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Introduction 
Glioma is a neuroepithelial tumor and the most 

common primary malignant tumor in the central 
nervous system. Its main characteristics include poor 
prognosis, easy recurrence and resistance to a variety 
of treatment modalities. The median survival of 
high-grade gliomas is usually only 12 to 15 months, 

while the 5-year survival rate is less than 5% [1,2]. 
Despite a multi-modality treatment strategy 
comprising surgery, chemotherapy, radiation and/or 
immunotherapy, the outcomes still remain dismal [3]. 
Therefore, finding new therapeutic strategies to meet 
these challenges has become the core task of glioma 

 
Ivyspring  

International Publisher 



Int. J. Med. Sci. 2025, Vol. 22 

 
https://www.medsci.org 

2974 

research. Further exploration of the pathogenesis 
factors and potential biomarkers of glioma will 
contribute to the development of new therapeutic 
strategies. 

Recent advancements in tumor immunology 
highlight the significant role of immune cells as key 
components of the tumor microenvironment (TME), 
playing a crucial part in regulating tumor progression 
[4]. The interactions between these immune cells and 
tumor cells can either inhibit or promote the 
development of gliomas. This understanding is 
essential for advancing the development of 
immunotherapeutic agents. Immune cells have a 
complex role in tumorigenesis; they can suppress 
tumor growth by eliminating cancer cells, but they 
may also facilitate tumor progression by providing 
growth and survival factors [4,5].  

For example, tumor-associated macrophages 
(TAMs) represent the most abundant immune cell 
population within the TME of glioma, accounting for 
approximately 50% of the TME cells in gliomas [6,7]. 
These macrophages respond to various factors 
secreted by cancer cells, releasing a range of growth 
factors and cytokines, which play a crucial role in 
promoting tumor development within the TME. 
Studies have demonstrated that disrupting the 
function of microglia and macrophages in mouse 
models of gliomas significantly inhibits tumor 
proliferation [8]. Furthermore, the high infiltration 
rate of macrophages in gliomas is closely associated 
with poor prognosis [9], a pattern that mirrors 
observations in other tumor types [10].  

In contrast, dendritic cells (DCs) have the 
capability to recognize tumor antigens and transport 
them to tumor-draining deep cervical lymph nodes, 
thereby triggering T cell-mediated immune responses 
[11–13]. Furthermore, dendritic cells can produce 
chemokines that recruit cytotoxic T lymphocytes into 
the TME, effectively inhibiting the progression of 
gliomas [14,15]. Despite significant advancements in 
the study of immune cells, the relationship between 
immune cell traits and gliomas remains inconsistent. 
It is essential to further investigate the causal 
relationships and clinical implications between 
immune cell traits and glioma. 

Mendelian randomization (MR) leverages 
genetic variants as instrumental variables (IVs) to 
infer causal relationships between exposures (e.g., 
environmental factors, lifestyle choices, or immune 
cell traits) and glioma outcomes [16,17]. Unlike 
observational studies, which can be confounded by 
biases such as measurement errors or external 
variables, MR uses genetic variants that are randomly 
assigned at conception, minimizing confounding and 
providing more reliable results [18,19]. Additionally, 

MR is less susceptible to measurement errors, as 
genetic data is objective and precise compared to 
self-reported data, which can be inaccurate [20].  

Although randomized controlled trials (RCTs) 
are considered the gold standard for establishing 
causal effects, their practical implementation can be 
challenging [21]. MR serves as an alternative to RCTs 
by leveraging summary data from genome-wide 
association studies (GWAS) and employing single 
nucleotide polymorphisms (SNPs) to facilitate causal 
inference [19]. This method enhances the reliability of 
epidemiological research, making it less susceptible to 
biases and providing more robust insights into the 
relationships between various health-related variables 
[16,17]. Therefore, it is worthwhile to use MR methods 
to infer the potential causal relationship between 
immune cell traits and glioma.  

In addition, the rise of transcriptomic sequencing 
has promoted the inference of immune cell infiltration 
levels based on sequencing data. Previous studies 
have also confirmed the reliability of estimating 
immune cell infiltration from RNA sequencing 
(RNA-Seq) data [22,23]. In this study, we combined 
MR methods based on GWAS data and RNA-Seq data 
of a large number of glioma samples to explore the 
causal and clinical associations between immune cells 
and glioma. This study aims to further reveal the 
potential pathogenic factors and biomarkers of 
glioma. 

Methods 
Data source 

The GWAS summary data for immune cells used 
in this study were derived from the study by Orrù et 
al. [24] and can be downloaded from IEU Open 
GWAS (https://gwas.mrcieu.ac.uk/) with the 
accession numbers ebi-a-GCST90001391 to 
ebi-a-GCST90002121. The GWAS cohort covered 731 
broad immune traits from 3,757 Sardinians, including 
absolute cell counts, median fluorescence intensities 
of surface antigens, morphological parameters, and 
relative cell counts. The GWAS summary data of 
human gliomas was obtained from the FinnGen 
database (https://www.finngen.fi/en) [25], and this 
GWAS cohort included glioblastoma and 
astrocytoma. The data sources and characteristics of 
immune cell and glioma GWAS cohorts were 
summarized in Supplementary Table S1. For 
transcriptomic analysis, we collected 151 glioma 
samples from Xiangya Hospital, Central South 
University for RNA-Seq, and complete follow-up 
information was collected for all samples. The 
collection of human tissues was approved by the 
Medical Ethics Committee of Xiangya Hospital of 
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Central South University (Approval number: 
202401003) and written informed consent was 
provided by all of the patients. This cohort was 
named CSUXY, and the clinical characteristics of this 
cohort were summarized in Supplementary Table S2. 
We downloaded normalized RNA-Seq data and 
clinical information of 588 glioma samples from The 
Cancer Genome Atlas (TCGA) from UCSC Xena 
(https://xena.ucsc.edu/). All included patients had 
primary tumors, and the samples were sourced from 
their initial surgeries. In addition, we previously 
collected nine fresh glioma samples from the 
Department of Neurosurgery, Xiangya Hospital for 
single-cell RNA sequencing (scRNA-seq). Detailed 
information about the nine samples can be found in 
the previous study [26]. 

Instrumental variable selection 
In this study, SNPs were selected as IVs. 

Although the conventional threshold for IVs is P < 5 × 
10-8 to minimize the risk of false positives, this 
approach can be problematic in certain situations. For 
instance, when the number of IVs exceeding this 
threshold is small, the analysis may be inadequate, or 
in some unbiased screening situations, the results may 
be exaggerated [27]. The source literature for immune 
cell GWAS data adopted a more lenient threshold of P 
< 1 × 10-5 [24], which may increase the risk of false 
positives. After comprehensively considering the risk 
of false positives and the number of IVs, we adopted a 
genome-wide significance threshold of P < 5 × 10-6 for 
the selection of IVs related to immune cell traits. Ye et 
al. also used this threshold to screen IVs for immune 
cell traits [28]. To mitigate linkage disequilibrium 
among the IVs, we applied a clumping distance of 
10,000 kb and an R2 threshold of < 0.001 during the 
clumping process to evaluate the SNPs. Furthermore, 
to circumvent the issue of weak instrument bias, we 
excluded SNPs with F statistics < 10 from the analysis. 
Careful harmonization of the SNPs between the 
exposure and outcome variables was ensured, 
guaranteeing that they corresponded to the same 
alleles. Additionally, we also eliminated SNPs with a 
close association with glioma (P < 5 × 10-5) and 
palindromic SNPs. To rule out the possibility of 
reverse causal associations, we conducted the Steiger 
test, and we subsequently excluded SNPs that failed 
to meet the test criteria. 

RNA-seq of glioma samples 
RNA-Seq was performed as described 

previously [26,29,30]. Total RNA was extracted from 
tissue samples using TRIzol® Reagent following the 
manufacturer’s instructions. RNA quality and 
quantity were rigorously assessed using the Agilent 

5300 Bioanalyzer and ND-2000 NanoDrop. Only 
high-quality RNA samples meeting strict criteria were 
used for downstream processing: OD260/280 ratio of 
1.8 – 2.2, OD260/230 ratio ≥ 2.0, RNA Integrity 
Number (RIN) ≥ 6.5, 28S:18S ribosomal RNA ratio ≥ 
1.0, and total RNA quantity > 1 μg. For library 
preparation, 1 µg of total RNA was used to construct 
the RNA-seq transcriptome library using the 
Illumina® Stranded mRNA Prep, Ligation kit. 
Messenger RNA (mRNA) was isolated via polyA 
selection using oligo(dT) beads, followed by 
fragmentation to generate fragments of 
approximately 300 bp. Double-stranded cDNA was 
synthesized using a SuperScript double-stranded 
cDNA synthesis kit (Invitrogen, CA) with random 
hexamer primers. The cDNA underwent end-repair, 
phosphorylation, and 'A' base addition to prepare for 
adapter ligation. Libraries were size-selected using 2% 
Low Range Ultra Agarose to enrich for fragments of 
~300 bp and amplified by PCR with Phusion DNA 
polymerase (NEB) for 15 cycles. The final libraries 
were quantified using Qubit 4.0 and validated for size 
distribution using the Agilent Bioanalyzer. Paired-end 
sequencing (2 × 150 bp) was performed on the 
Illumina NovaSeq 6000 platform. Raw sequencing 
reads were subjected to stringent quality control using 
fastp. Adapter sequences and reads without insert 
fragments were removed, and low-quality bases 
(quality score < 20) were trimmed from the 3' end of 
reads. Reads with remaining bases having quality 
scores < 10 or an N (ambiguous base) ratio exceeding 
10% were discarded. Additionally, reads shorter than 
20 bp after trimming were excluded. These steps 
produced high-quality clean reads for downstream 
analysis. Quality metrics, including base composition 
distribution, base quality distribution, and base error 
rate distribution, were evaluated to confirm the 
reliability of the sequencing data. Clean reads were 
aligned to the reference genome in orientation-aware 
mode using HISAT2. The alignment results were 
assessed for sequencing saturation, gene coverage, 
and distribution of reads across genomic regions and 
chromosomes. Transcriptome assembly was 
performed using StringTie in a reference-based 
approach, which reconstructed transcript structures 
and quantified their abundances. Gene and transcript 
expression levels were quantified using RSEM 
(version 1.3.3) based on the number of reads mapped 
to genomic regions. Expression levels were 
normalized to transcripts per million (TPM) to 
account for differences in sequencing depth and 
transcript length across samples, enabling accurate 
cross-sample comparisons. 
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scRNA-seq and deconvolution analysis 
scRNA-seq was performed on nine glioma 

samples using the droplet-based 10× Genomics 
platform (10x Genomics, Pleasanton, CA, USA). The 
detailed quality control process and analysis methods 
of scRNA-seq can be found in our previous published 
research [26]. Briefly, after filtering, a total of 94629 
high quality cells were retained for subsequent 
analysis based on “Seurat” package. The Harmony 
algorithm was used to remove batch effects between 
samples. Classic cell markers were used to identify the 
cell type of each cluster. The BayesPrism 
deconvolution method was used to infer the cellular 
composition of the CSUXY and TCGA cohorts based 
on the expression matrix of the scRNA analysis 
according to default parameters [31]. 

MR analysis 
MR relies on three core assumptions to ensure 

valid causal inference: (1) the genetic variants used as 
instrumental variables (IVs) must be strongly 
associated with the exposure of interest (relevance 
assumption); (2) the genetic variants should not be 
associated with any confounding factors that affect 
the exposure-outcome relationship (independence 
assumption); and (3) the genetic variants must 
influence the outcome only through the exposure of 
interest, with no direct or alternative pathways 
(exclusion restriction assumption). To explore the 
causal relationship between immune cell traits and 
glioma, we employed four different methods for MR 
analysis. These methods included inverse 
variance-weighted (IVW) [32], MR-Egger regression 
[33], weighted median [34], and weighted mode [35]. 
A comparative study previously demonstrated the 
superior power of the IVW method under specific 
conditions [34]. In light of this, our study primarily 
focuses on the findings obtained using the IVW 
method, while considering the results from the other 
three methods as supplementary information. To 
address potential biases, especially horizontal 
pleiotropy, we implemented several robust methods 
and sensitivity analyses. First, we performed 
MR-Egger regression, which provides an estimate of 
causal effect that is less sensitive to pleiotropy by 
allowing for an intercept term that captures 
directional pleiotropy. Horizontal pleiotropy was 
assessed using the MR-Egger intercept, where a 
p-intercept < 0.05 indicated the presence of horizontal 
pleiotropy. Heterogeneity among the included single 
SNPs in each analysis was evaluated using Cochran’s 
Q test in IVW and MR-Egger methods, with a 
significance level of p < 0.05 indicating high 
heterogeneity. In addition, we conducted 
leave-one-out analyses to identify and exclude 

potential outlier SNPs that might disproportionately 
influence the results due to pleiotropic effects. All MR 
analyses were performed using the “TwoSampleMR” 
(version 0.5.7) and “MendelianRandomization” 
(version 0.8.0) packages. A suggestive causal 
association was defined as a p < 0.05. 

Immune infiltration analysis 
We performed immune infiltration analysis 

according to the methods used in previous studies 
[23,36–38]. Specifically, we collected a gene set of 28 
immune cells from the study of Charoentong et al. 
[39], and then we quantified the relative level of 
immune cell infiltration in each sample using the 
single-sample gene set enrichment analysis (ssGSEA) 
method based on the R package “GSVA”. In addition, 
we used the quanTIseq algorithm to quantify the 
absolute proportions of the 10 immune cell types in 
each sample [40]. 

Drug sensitivity analysis 
As previously described [41], we obtained the 

gene expression data of 809 tumor cell lines and 
corresponding response data for each cell line from 
the Genomics of Drug Sensitivity in Cancer (GDSC) 
database. The data was normalized and converted to 
IC50 values. Subsequently, the IC50 values for each 
drug were estimated for individual glioma patients 
using the oncoPredict algorithm [42] based on the 
gene expression profiles of cell lines and the drug 
response data. 

Statistical analysis 
Statistical comparisons between two groups 

were conducted using either an unpaired Student's 
t-test or a Wilcoxon rank sum test. On the other hand, 
when comparing differences among more than two 
groups, either a one-way ANOVA or a Kruskal-Wallis 
test was employed. Univariate Cox regression was 
used to assess the prognostic significance of 
individual immune cells. Spearman’s correlation 
analysis was used to quantify the correlation between 
two groups. All statistical calculations were 
performed using R software (version 4.3.1) and p < 
0.05 was regarded as statistically significant. 

Results 
Causal effects of immune cell traits on the risk 
of glioma 

In this study, we used two-sample MR analysis 
to explore the causal effects of 731 immune cell traits 
on the risk of glioma. The SNPs used for each immune 
cell trait were summarized in Supplementary Table 
S3, and the F statistics of theses SNPs ranged from 
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19.62 to 2435.82, with an average of 41.26, indicating 
that these SNPs were strong IVs. The results of MR 
analysis of all immune cell traits on glioma were 
summarized in Supplementary Table S4. Figure 1 
summarizes the causal effects of 16 immune cell traits 
on glioma risk based on IVW analysis. Among these, 
four B cell traits showed significant associations: IgD- 
CD27- B cell %B cell (OR = 0.70, 95%CI = 0.49~1.00, p 
= 0.047) was negatively correlated with glioma risk, 
while CD19 on IgD+ CD38dim B cell (OR = 1.11, 
95%CI = 1.00~1.24, p = 0.042), CD27 on CD24+ CD27+ 
B cell (OR = 1.24, 95%CI = 1.02~1.50, p = 0.031), and 
CD27 on unswitched memory B cell (OR = 1.21, 
95%CI = 1.00~1.46, p = 0.048) were positively 
correlated with glioma risk. In addition, IVW analysis 
showed that six T cell traits were associated with 
glioma, including CD8dim T cell %T cell (OR = 0.70, 
95%CI = 0.49~1.00, p = 0.047), CD4+ CD8dim T 
cell%lymphocyte (OR = 0.70, 95%CI = 0.50~0.98, p = 
0.038), CD8 on HLA DR+ CD8+ T cell (OR = 0.86, 
95%CI = 0.75~0.99, p = 0.040) and CD3 on CD39+ 
resting CD4 regulatory T cell (Tregs) (OR = 0.69, 
95%CI = 0.52~0.93, p = 0.016), which were negatively 
correlated with the risk of glioma, and CD28+ 
CD45RA+ CD8+ T cell Absolute Count (OR = 1.04, 
95%CI = 1.01~1.08, p = 0.015) and SSC-A on CD8+T 
cell (OR = 1.35, 95%CI = 1.23~1.63, p = 0.001), which 
were positively correlated with glioma. CD8+ T cells 
are critical components of the anti-tumor immune 
response, as they directly target and eliminate tumor 
cells through cytotoxic activity. The negative 
correlation between CD8 on HLA DR+ CD8+ T cells 
and glioma risk highlights the anti-tumor immune 
role of mature CD8+ T cells. In addition, IVW analysis 
also found that FSC-A on HLA DR+ Natural Killer 
(OR = 0.78, 95%CI = 0.67~0.92, p = 0.003), CCR2 on 
CD14-CD16+ monocyte (OR = 0.83, 95%CI = 
0.69~1.00, p = 0.046) and CD14 on Monocytic MDSCs 
(OR = 0.72, 95%CI = 0.56~0.93, p = 0.012) were 
negatively correlated with the risk of glioma, and 
Granulocyte Absolute Count (OR = 1.50, 95%CI = 
1.12~2.02, p = 0.007), CD16+ monocyte %monocyte 
(OR = 1.41, 95%CI = 1.03~1.93, p = 0.032) and CD45 on 
CD33+HLA DR+CD14dim (OR = 1.29, 95%CI = 
1.07~1.54, p = 0.007) were positively correlated with 
the risk of glioma. Monocytes can differentiate into 
TAMs, which are known to promote tumor growth, 
angiogenesis, and immune suppression in the glioma 
microenvironment. The association of CD16+ 
monocyte %monocyte with glioma emphasizes the 
potential role of monocytes and their derivatives in 
the pathogenesis of glioma. The results of the other 
three MR analysis methods showed the same causal 
direction as the IVW analysis, supporting and 

supplementing the IVW analysis. Figure 2 presents 
scatter plots illustrating the genetic associations 
between the 16 immune cell traits and glioma risk. 
Each plot displays the SNP-exposure and 
SNP-outcome associations, with the slope of the 
regression line representing the causal effect 
estimated by MR analysis. 

Next, we performed various sensitivity analyses 
on the MR analysis results between immune cell traits 
and glioma. The results of the horizontal pleiotropy 
analysis based on MR-Egger method were 
summarized in Supplementary Table S5, and the 
results of the heterogeneity analysis based on IVW 
and MR-Egger methods were summarized in 
Supplementary Table S6. As shown in Figure 1, we 
found no obvious horizontal pleiotropy or 
heterogeneity in the aforementioned 16 causal 
associations (all p > 0.05). Figure 3 shows the results of 
leave-one-out sensitivity analyses for the 16 immune 
cell traits. The consistent causal estimates across all 
analyses, with no single SNP driving the results, 
indicate the robustness of our findings and the 
absence of outlier SNPs. These results further support 
the complex and critical role of immune cells in the 
development of glioma. 

Immune cells in gliomas correlate with clinical 
characteristics 

To further explore the relationship between 
immune cells and tumor clinical characteristics in 
glioma, we collected 151 glioma samples and 
performed RNA-Seq to establish the CSUXY cohort. 
In this cohort, we used the ssGSEA method to infer 
the relative abundance of 28 immune cells in gliomas 
and found that almost all immune cells in IDH 
wild-type gliomas were more abundant than those in 
IDH mutant gliomas (Figure 4A), such as activated 
CD8+ T cells and macrophages. Similarly, the 
abundance of immune cells was higher in 1p19q 
non-codel gliomas than in 1p19q codel gliomas 
(Figure 4B). For different grades of glioma, we found 
that both grade I and IV gliomas had higher immune 
cell infiltration than grade II-III gliomas (Figure 4C). 
This observation may be attributed to the limited 
sample size of grade I gliomas (n=4) and requires 
validation in larger cohorts. It is possible that immune 
infiltration in grade I gliomas represents an early 
anti-tumor immune response aimed at controlling 
tumor growth at its initial stages. Activated CD8+ T 
cells, known for their cytotoxic activity, may infiltrate 
the tumor microenvironment to target neoplastic cells 
before the tumor develops advanced immune evasion 
mechanism.  
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Figure 1. Two sample MR results of causal effects of immune cell traits on glioma. Data are expressed as an odds ratio (OR) with corresponding 95% confidence 
interval (CI). The forest plot also includes the results of sensitivity analyses. * P < 0.05, ** P < 0.01. 

 
In addition, GBM had a higher abundance of 

immune cell infiltration compared to other 
histological subtypes of glioma, while 
oligodendroglioma had the lowest immune 
infiltration (Figure 4D). Univariate Cox analysis 
showed that the abundance of most immune cells was 
associated with poor prognosis in glioma (Figure 4E). 
We then used the TCGA cohort for validation 
analysis. Consistent with the CSUXY cohort, IDH 
wild-type and 1p19q non-codel gliomas had higher 
levels of immune cell infiltration than IDH mutant 
and 1p19q codel gliomas (Figure 5A-B). Grade IV 
gliomas had higher levels of immune infiltration than 

grade II-III gliomas (Figure 5C). In terms of 
histological subtypes, GBM also had the highest level 
of immune cell infiltration, while oligodendroglioma 
had the lowest level (Figure 5D). Interestingly, in the 
TCGA cohort, although the abundance of most 
immune cells was associated with poor prognosis in 
glioma, a higher abundance of activated B cells and 
eosinophils was associated with better prognosis in 
glioma (Figure 5E). Furthermore, we quantified the 
absolute proportions of 10 types of immune cells in 
both internal and external using the quanTIseq 
algorithm (Supplementary Table S7,S8). The immune 
cell composition of different samples in glioma has 
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obvious heterogeneity (Supplementary Figure S1). 
Most immune cells in gliomas were myeloid-derived 
cells such as M2 macrophages, while the absolute 
proportion of T-cells is very low, indicating the 
dominant role of suppressive macrophages in the 
TME of glioma (Figure 6). This result is also consistent 
with previous studies [6,7]. From a clinical 
perspective, in both the CSUXY and TCGA cohorts, 
the proportion of M2 macrophages was significantly 
higher in IDH wild-type and 1p19q non-codel gliomas 
compared to IDH mutant and 1p19q codel gliomas 
(Figure 6A,B). Conversely, the proportion of NK cells 
was significantly lower in IDH wild-type and 1p19q 

non-codel gliomas (Figure 6A,B). These findings 
suggest a predominance of immunosuppressive cells 
in IDH wild-type and 1p19q non-codel gliomas. 
Similarly, in both cohorts, the proportion of M2 
macrophages was significantly higher in grade IV 
gliomas compared to grade II-III gliomas, while the 
opposite was true for NK cells (Figure 6C). Regarding 
the distribution of immune cells across different 
glioma subtypes, M2 macrophages were most 
abundant in GBM and least abundant in 
oligodendroglioma, whereas NK cells were least 
abundant in GBM and most abundant in 
oligodendroglioma (Figure 6D).  

 

 
Figure 2. The scatter plots of causal effects of immune cell traits on glioma. (A) Potential causal effects of four B cell traits on glioma. (B) Potential causal effects of 
six T cell traits on glioma. (C) Potential causal effect of granulocyte absolute count on glioma. (D) Potential causal effect of FSC-A on HLA DR+ natural killer cells on glioma. (E) 
Potential causal effects of three monocyte traits on glioma. (F) Potential causal effect of CD14 on monocytic myeloid-derived suppressor cells on glioma. 
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Figure 3. Leave-one-out plots for two sample MR results of causal effects of immune cell traits on glioma. (A) Leave-one-out plots of four B cell traits on glioma. 
(B) Leave-one-out plots of six T cell traits on glioma. (C) Leave-one-out plot of granulocyte absolute count on glioma. (D) Leave-one-out plot of FSC-A on HLA DR+ natural 
killer cells on glioma. (E) Leave-one-out plots of three monocyte traits on glioma. (F) Leave-one-out plot of CD14 on monocytic myeloid-derived suppressor cells on glioma. 
Forest plot of causal estimates omitting each variant in turn. 

 
In addition, we performed scRNA-seq on nine 

glioma samples and identified seven major cell types 
based on the expression of signature genes (Figure 
7A,B). We then performed deconvolution analysis on 
the CSUXY and TCGA cohorts based on the 
scRNA-seq results to infer the cell composition. 
Consistent with previous results, scRNA-seq-based 
analysis also showed that in addition to tumor cells 

and oligodendrocytes, the most common immune cell 
type was macrophages, while the absolute 
proportions of T cells and B cells were low (Figure 
7B-F). In both the CSUXY and TCGA cohorts, IDH 
wild-type and 1p19q non-codel gliomas had higher 
proportions of macrophages, fibroblasts, and T cells 
compared with IDH mutant and 1p19q codel gliomas 
(Figure 7C,D). Regarding different grades of glioma, 
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in both cohorts, the proportions of macrophages, 
fibroblasts, and T cells were significantly higher in 
grade IV gliomas than in grade II-III gliomas (Figure 
7E). For different glioma subtypes, macrophages, 

fibroblasts, and T cells were most abundant in GBM 
and least abundant in oligodendrogliomas (Figure 
7F). 

 
 

 
Figure 4. The relationship between immune cells and clinical characteristics in CSUXY cohort. (A) The abundance differences of immune cells between IDH 
mutant and IDH wild-type gliomas. (B) The abundance differences of immune cells between 1p19q codel and 1p19q non-codel gliomas. (C) The abundance differences of 
immune cells among different WHO grades. (D) The abundance differences of immune cells among different histological subtypes. (E) Univariate Cox regression analysis of 
overall survival for 28 immune cells in glioma. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. 
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Figure 5. The relationship between relative immune cells abundance and clinical characteristics in TCGA cohort. (A) The abundance differences of immune 
cells between IDH mutant and IDH wild-type gliomas. (B) The abundance differences of immune cells between 1p19q codel and 1p19q non-codel gliomas. (C) The abundance 
differences of immune cells among different WHO grades. (D) The abundance differences of immune cells among different histological subtypes. (E) Univariate Cox regression 
analysis of overall survival for 28 immune cells in glioma. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. 



Int. J. Med. Sci. 2025, Vol. 22 

 
https://www.medsci.org 

2983 

 
Figure 6. The relationship between absolute immune cell proportion and clinical characteristics in CSUXY and TCGA cohorts. (A) The proportion 
differences of immune cells between IDH mutant and IDH wild-type gliomas. (B) The proportion differences of immune cells between 1p19q codel and 1p19q non-codel gliomas. 
(C) The proportion differences of immune cells among different WHO grades. (D) The proportion differences of immune cells among different histological subtypes. * P < 0.05, 
** P < 0.01, *** P < 0.001, **** P < 0.0001. 
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Figure 7. The relationship between absolute immune cell proportion and clinical characteristics in CSUXY and TCGA cohorts based on scRNA-seq. (A) 
The dot plot shows the expression of characteristic genes in seven cell types. The size of the dots indicates the proportion of cells expressing a specific marker, and the color 
indicates the average expression level of the markers. (B) The UMAP plot of the seven main cell types in glioma. (C) The proportion differences of immune cells between IDH 
mutant and IDH wild-type gliomas. (D) The proportion differences of immune cells between 1p19q codel and 1p19q non-codel gliomas. (E) The proportion differences of 
immune cells among different WHO grades. (F) The proportion differences of immune cells among different histological subtypes. * P < 0.05, ** P < 0.01, *** P < 0.001, **** 
P < 0.0001. 



Int. J. Med. Sci. 2025, Vol. 22 
 

 
https://www.medsci.org 

2985 

Immune cells in gliomas correlate with drug 
sensitivities 

We have shown in a previous study that the 
TME status of tumors is associated with drug 
sensitivity [23], so we speculated that the infiltration 
abundance of specific immune cells may be associated 
with the drug sensitivity of gliomas. Based on the 
response data of 198 drugs from GDSC, we estimated 
the IC50 value of each sample in CSUXY and TCGA 
cohorts and then calculated the correlation of each 
drug’s IC50 value with specific immune cells. 
Detailed information and targets of each drug were 
summarized in Supplementary Table S9. As shown in 
Figure 8A, in the CSUXY cohort, CD56dim natural 
killer cells were significantly positively correlated 
with the IC50 values of RTK inhibitors such as 
Savolitinib and AZD3759, representing lower 
sensitivity to RTK inhibitors. Effector memory CD4+ 
T cells were specifically negatively correlated with the 
IC50 values of BMS.754807, JQ1, and Doramapimod. 
Other immune cells were positively correlated with 
the IC50 values of nearly half of drugs, and negatively 
correlated with the IC50 values of the other half of 
drugs. In particular, most immune cells were strongly 
positively correlated with the IC50 values of cell cycle 
or DNA damage-related drugs such as B1.2536, 
Linsitinib, and Pyridostatin. These results were 
replicated in the TCGA cohort (Figure 8B). The 
extensive associations observed between immune 
cells and drug IC50 values imply the promising utility 
of immune cells as potential biomarkers for predicting 
drug sensitivity in glioma. 

Discussion 
Gliomas are notorious for their high malignancy 

and poor prognosis, necessitating further exploration 
of risk factors and biomarkers for gliomas [43]. While 
the complex role of immune cells in the development 
and progression of gliomas has been established [38], 
further research is needed to determine whether 
immune cells are associated with glioma risk. 
Exploring the potential of immune cells as biomarkers 
for gliomas also holds significant translational 
significance. In this study, we analyzed 731 immune 
cell traits using MR method and identified 16 immune 
cell traits that may affect glioma susceptibility. 
Furthermore, through the analysis of internal and 
external transcriptomics cohorts, we examined the 
association between the abundance of 28 immune 
cells and the clinical characteristics of glioma, and 
explored the correlation between immune cells and 
drug sensitivity. 

Our analysis revealed that specific immune cell 
traits, particularly certain B and T cell populations, are 

associated with glioma risk. B cells play a 
multifaceted and often underappreciated role in 
glioma, where they can infiltrate the tumor 
microenvironment and adopt regulatory functions. 
Recent studies suggest that infiltrating B cells can 
produce immunosuppressive cytokines such as IL-10 
and TGF-β, as well as express immune checkpoint 
molecules like PD-L1, which contribute to the 
establishment of an immunosuppressive milieu that 
favors tumor progression [44]. These B cells are often 
found in an immature state, resembling plasmablasts, 
and express markers characteristic of regulatory B 
cells (Bregs), indicating a potential blockade in their 
maturation process [44]. In terms of B cells, we 
observed that CD27 on CD24+ CD27+ B cell and CD27 
on unswitched memory B cell were positively 
correlated with glioma risk, suggesting that CD27 on 
B cell might play a role in tumor development. CD27 
is a memory B-cell marker [45], and the CD27 
expression has been used to distinguish between 
memory and naive B cells [46]. The significance of 
CD27 expression on B cells in the context of tumors 
remains sparsely reported. However, recent studies 
suggest that memory B cells may play a crucial role in 
tumor immunity and are associated with the 
prognosis of various solid tumors [47], especially the 
stressed memory B cells which correlate with poorer 
prognosis in most tumors [48]. Interestingly, in our 
internal cohort (CSUXY) consisting of 151 glioma 
samples, the abundance of memory B cells was 
significantly negatively correlated with the prognosis 
of glioma patients, and this negative correlation was 
also confirmed in the external cohort (TCGA). From a 
mechanistic perspective, in the context of glioma, 
memory B cells may contribute to tumor growth by 
promoting an immunosuppressive microenvironment 
through the secretion of cytokines such as IL-10, 
which can inhibit anti-tumor T cell responses [49,50]. 
Additionally, the presence of CD27+ memory B cells 
may enhance the recruitment of Tregs and MDSCs, 
further dampening the immune response against the 
tumor [50–52]. From the perspective of literature 
comparison, our findings are both consistent with and 
extend previous research on the role of immune cells 
in glioma. For instance, the association between 
memory B cells (CD27+ CD24+ B cells) and increased 
glioma risk aligns with recent studies suggesting that 
memory B cells may contribute to tumor progression 
by promoting an immunosuppressive 
microenvironment [50,53]. Further investigation into 
the precise roles and mechanisms of B cells in gliomas 
is crucial for developing novel immunotherapeutic 
strategies. Such strategies may enhance antitumor 
immunity by modulating B-cell functions within the 
TME. 
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Figure 8. Correlations between abundance of immune cells and drug sensitivities in CSUXY cohort (A) and TCGA cohort (B). Correlation coefficients are 
calculated by Spearman’s correlation analysis, with blue representing negative correlations and red representing positive correlations. * P < 0.05, ** P < 0.01, *** P < 0.001. 
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In terms of T cells, we discovered that the 
absolute count of CD28+CD45RA+CD8+ T cells and 
SSC-A on CD8+ T cells were also associated with an 
increased risk of glioma. Although current studies 
have demonstrated that tumor infiltration of CD28+ 
CD8+ T cells is associated with better prognosis in 
glioma [54], CD45RA, as a marker of naive T cells, 
indicates that CD28+ CD45RA+ CD8+ T cells possess 
characteristics of naive T cells. The presence of 
CD45RA on CD8+ T cells suggests that these cells may 
have a reduced capacity to proliferate and mount an 
effective anti-tumor response [55]. Existing research 
has shown that pancreatic cancer patients with a 
lower proportion of peripheral naive T cells have a 
longer survival time [56]. Furthermore, a study by 
Javier Carrasco et.al also revealed that CD45RA+ T 
cells lack proliferative capacity [57]. The association 
between CD28+ CD45RA+ CD8+ T cells and 
increased glioma risk may be mediated through the 
exhaustion of naive T cells. SSC represents the 
inherent cell granularity of lymphocytes, which is 
closely related to cell function and state. The 
granularity of CD8+ T cells, as indicated by SSC-A, 
may reflect their functional state, with higher 
granularity associated with reduced proliferative 
capacity and impaired anti-tumor activity. Recent 
studies also have shown that CD8+ T cells with low 
SSC have a significantly higher proliferation rate than 
those with high SSC [58]. CD28+CD45RA+CD8+ T 
cells and SSC-A on CD8+ T cells may increase the risk 
of glioma through lower anti-tumor immunity. These 
findings suggest that the immune landscape in glioma 
is shaped by a complex interplay of immune cell 
subsets, each contributing to tumor progression 
through distinct biological pathways. The negative 
correlation between CD8dim T cells and glioma risk is 
consistent with the well-established role of CD8+ T 
cells in anti-tumor immunity, where their reduced 
infiltration or functional exhaustion is often 
associated with poorer outcomes in various cancers, 
including glioma [59,60]. These findings corroborate 
the importance of T cell-mediated immunity in 
controlling tumor growth and highlight the potential 
of targeting T cell exhaustion as a therapeutic strategy 
in glioma. However, some of our findings represent 
novel insights into the immune landscape of glioma. 
For example, the positive association between SSC-A 
on CD8+ T cells and glioma risk has not been 
previously reported. While previous studies have 
linked T cell granularity to proliferative capacity in 
other cancers [58], our study is the first to implicate 
this trait in glioma pathogenesis. T cells play a critical 
role in the immune response against gliomas, and 
their functionality varies significantly across different 
molecular subtypes of the tumor. In mesenchymal 

(MES)-like GBM, there is a higher infiltration of CD3+ 
and CD8+ T cells, which correlates with a more 
aggressive tumor phenotype and poorer prognosis. 
Conversely, the proneural subtype tends to exhibit a 
lower density of tumor-infiltrating lymphocytes, 
which may contribute to its relatively better clinical 
outcomes [61]. Understanding these subtype-specific 
T cell dynamics is essential for developing tailored 
immunotherapeutic strategies that can enhance T cell 
responses and improve patient outcomes in glioma. 

In this study, we collected 151 glioma samples 
with varying clinical characteristics for RNA-Seq 
analysis to explore the relationship between immune 
cell abundance and clinical features. The higher levels 
of immune infiltration observed in IDH wild-type and 
1p19q non-codel gliomas suggest that these tumors 
may possess features that render them more 
immunogenic. This aligns with the hypothesis that 
certain genetic alterations can influence the immune 
landscape of tumors, potentially affecting treatment 
responses [62]. Our findings indicated that gliomas of 
different grades exhibited varying levels of immune 
cell infiltration. Specifically, in both internal and 
external cohorts, high-grade gliomas tend to exhibit a 
higher degree of anti-tumor immune cell infiltration, 
such as activated CD8 T cells, compared to low-grade 
gliomas, but they also show a higher level of 
immunosuppressive cell infiltration, including Tregs 
and MDSCs. Consistent with this, the abundance of 
most immune cells is negatively correlated with the 
prognosis of gliomas, suggesting that the function of 
anti-tumor immune cells may be exhausted or 
suppressed in high-grade gliomas. Our results 
regarding the association between immune cell 
infiltration and glioma grade are consistent with 
previous studies showing that high-grade gliomas 
exhibit increased immune cell infiltration, particularly 
of immunosuppressive cell types such as Tregs and 
MDSCs [63–65]. However, it also suggests another 
therapeutic opportunity. Although glioma patients 
(such as MES-like GBM) with higher levels of immune 
infiltration have poorer prognosis, they could also 
respond more positively to dendritic cell vaccination 
or checkpoint inhibitors (such as anti-CTLA4 
ipilimumab, anti-PD1 nivolumab, and 
pembrolizumab) [65]. This may be because 
pre-existing anti-tumor immunity is released as 
immunosuppression is lifted [38,65,66]. However, it is 
worth noting that the hypothesis that MES-like GBM 
is more susceptible to immune checkpoint inhibition 
has not yet been supported by clinical data, and 
clinical trials related to this are ongoing [65], and 
continued research is needed to better understand the 
clinical significance of these findings. While grade IV 
gliomas demonstrated heightened immune 
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infiltration compared to lower-grade tumors, the 
association of grade I gliomas with higher immune 
abundance was unexpected and warrants further 
investigation. The small sample size of grade I 
gliomas in our cohort may not provide a 
comprehensive view and should be expanded in 
future studies to better understand this relationship. 
Furthermore, the correlation between the abundance 
of immune cells and prognosis in glioma patients 
suggests the feasibility of predicting glioma prognosis 
based on the TME. This feasibility has been confirmed 
in numerous studies [23,67], indicating the potential 
of immune cells as biomarkers to facilitate 
individualized treatment decisions for glioma.  

Using RNA-Seq data, we have also conducted an 
initial exploration of the association between immune 
cells and drug sensitivity. In both cohorts, we 
identified widespread associations between immune 
cell abundance and sensitivity to various drugs, 
particularly notable for the majority of immune cells 
being associated with cell cycle or DNA 
damage-related therapeutics. It is established that the 
inhibition of DNA damage repair can elevate 
cytoplasmic DNA, trigger cGAS to produce cGAMP, 
promote the generation of neoantigens in tumors, and 
ultimately induce immune cell proliferation and 
antitumor immunity [68–70]. However, patients 
already exhibiting high levels of immune cell 
abundance may derive lesser benefit from the 
antitumor immunity induced by DNA damage. In 
summary, the extensive associations observed 
between immune cell traits and drug sensitivity in 
glioma patients open new avenues for personalized 
medicine. The correlation of specific immune 
populations with IC50 values for various drugs 
suggests that the immune landscape could serve as a 
predictive biomarker for treatment response.  

Given the heterogeneity of gliomas and the 
complexity of the immune response, incorporating 
immune profiling into clinical practice could lead to 
more effective treatment strategies. Our findings 
suggest that specific immune cell traits, such as the 
abundance of memory B cells and CD8+ T cells, could 
serve as biomarkers to guide personalized treatment 
decisions. For instance, patients with high levels of 
CD8+ T cell infiltration may benefit from immune 
checkpoint inhibitors, such as anti-PD-1 or 
anti-CTLA-4 therapies, which have shown efficacy in 
other cancers with a similar immune profile [71,72]. 
Conversely, patients with high levels of 
immunosuppressive cells, such as Tregs or MDSCs, 
may require therapies that target these cell 
populations, such as CSF1R inhibitors or IDO 
inhibitors, to enhance the efficacy of 
immunotherapies [73,74]. In addition to guiding 

treatment selection, immune profiling could also be 
used to predict treatment response. For example, our 
observation that high immune infiltration is 
associated with poorer prognosis but better response 
to checkpoint inhibitors suggests that immune 
profiling could help identify patients who are most 
likely to benefit from these therapies. This is 
particularly relevant for high-grade gliomas, where 
the immune landscape is often more complex and 
heterogeneous [75]. However, the TME in gliomas is 
characterized by complex interactions among various 
immune cell populations, including T cells, B cells, 
macrophages, and MDSCs. These interactions can 
significantly influence the immunogenicity of the 
tumor and the effectiveness of immunotherapy. For 
instance, while anti-PD-1 or anti-CTLA-4 therapy may 
be effective in patients with high levels of CD8+ T cell 
infiltration, the function of CD8+ T cells can also be 
impaired by the presence of immunosuppressive cells 
such as Tregs and MDSCs. These cells inhibit the 
activation and proliferation of T cells, thereby 
affecting the efficacy of immune checkpoint blockers 
[76]. To optimize immunotherapy strategies, it is 
essential to adopt a holistic approach that considers 
the dynamic interactions among these immune cell 
types. This includes targeting not only the tumor cells 
but also the supportive immune cells within the TME. 
Strategies such as depleting MDSCs, reprogramming 
TAMs to a pro-inflammatory state, and enhancing the 
activation of CD8+ T cells can create a more favorable 
immune landscape that promotes effective anti-tumor 
responses [77,78]. By comprehensively analyzing 
these immune interactions, it is possible to develop 
more effective and personalized immunotherapy 
approaches for glioma patients. For instance, the 
concurrent use of PD-1 inhibitors and CSF1R 
inhibitors targeting macrophages, combined with 
chemotherapy drugs, may hold promise. In addition, 
by incorporating immune profiling into routine 
clinical practice, clinicians could stratify patients 
based on their immune profiles and tailor treatment 
regimens accordingly, potentially improving survival 
outcomes. Furthermore, immune profiling could 
inform the development of novel immunotherapeutic 
strategies. For instance, the identification of specific 
immune cell subsets, such as CD16+ monocytes or 
SSC-A-high CD8+ T cells, as risk factors for glioma 
progression provides new targets for therapeutic 
intervention. Monoclonal antibodies or small 
molecule inhibitors targeting these cell populations 
could be developed to disrupt their pro-tumorigenic 
functions and enhance anti-tumor immunity. 
Furthermore, the association between infiltrating 
immune cells and circulating immune cells represents 
a critical aspect of tumor immunology. Studies have 
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demonstrated dynamic interactions between these 
two populations. For instance, elevated levels of 
peripheral regulatory T cells correlate with increased 
tumor-infiltrating lymphocyte density [79], 
suggesting that systemic immune profiles may mirror 
the local tumor immune microenvironment. 
Consequently, investigating approaches to infer 
intratumoral immune status through peripheral blood 
could offer a promising non-invasive detection 
strategy. 

Utilizing MR analysis and transcriptome data, 
this study explored the causal and clinical 
associations between immune cells and gliomas. 
Although our research offers valuable insights, there 
are admittedly some limitations. Despite our efforts to 
eliminate confounding factors, relying on GWAS 
summary data to investigate immune characteristics 
may still introduce potential biases related to 
population stratification and confounding variables, 
such as the inability to conduct stratified analysis 
based on gender and age. Furthermore, as the data in 
this study primarily originated from individuals of 
European descent, the ability to extrapolate the results 
to populations of other lineages is limited. 
Additionally, while the RNA-Seq analysis conducted 
on glioma samples is reliable, the cohort size needs to 
be further expanded, and the obtained results require 
confirmation in subsequent experiments. Future 
research should aim to validate these associations in 
larger and more diverse cohorts, and explore the 
underlying mechanisms that drive the relationship 
between immune cells and glioma progression. 

Conclusion 
In summary, our study elucidates the causal 

relationship between immune cell traits and glioma 
risk, alongside their associations with clinical 
characteristics and drug sensitivity. These findings 
advance the development of immune-based 
biomarkers and therapeutic strategies for glioma, 
with potential implications for improving patient 
outcomes. Continued research in this area holds the 
promise of transforming glioma treatment through 
innovative, personalized approaches that leverage the 
body’s immune response. 
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