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Abstract

Lung adenocarcinoma (LUAD) remains a leading cause of cancer mortality, necessitating novel
therapeutic targets and prognostic strategies. This study investigates the role of extracellular matrix
cancer-associated fibroblasts (eCAFs) and their interaction with SPP1+ macrophages in LUAD
progression and prognosis. Utilizing single-cell RNA sequencing from 15 LUAD tumors and integrating
multi-cohort transcriptomic data (TCGA, GSE31210, GSE72094), we identified eCAFs as a dominant
CAF subtype in advanced-stage tumors and high-grade pathological subtypes, correlating with poor
patient survival. Similarly, SPP1+ macrophages exhibited increased abundance in advanced tumors and
adverse prognosis. Pseudotime trajectory analysis revealed eCAFs as an evolutionary endpoint in CAF
differentiation, associated with extracellular matrix remodeling pathways (COLLAGEN, FNI1). Cell-cell
communication analysis highlighted eCAFs-SPP1+ macrophage interactions via COLIAI-CD44 and
COL1A2-CD44 ligand-receptor pairs, suggesting a mechanism for immune-excluded
microenvironments. A prognostic model incorporating 28 eCAFs-related genes, validated through
101-machine learning algorithms, effectively stratified patients into high- and low-risk groups across
cohorts. This study underscores eCAFs as key drivers of LUAD progression and proposes their interplay
with SPP1+ macrophages as a therapeutic target. The developed prognostic signature offers clinical utility
for risk stratification, though further experimental validation is warranted. These findings advance
understanding of stromal-immune crosstalk in LUAD and highlight ECM remodeling as a critical pathway
in tumor evolution.
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Introduction

In recent years, cancer has emerged as a major
global public health challenge, imposing disparate
healthcare burdens across nations while remaining as

a leading cause of mortality worldwide [1]. Lung
cancer persistently maintains its status as one of the
most lethal malignancies in both incidence and
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mortality rates [1-3]. Non-small cell lung cancer
(NSCLC) accounts for the predominant histological
subtype, with adenocarcinoma representing its most
frequent variant [4, 5]. Notwithstanding advances in
therapeutic ~ target  identification for lung
adenocarcinoma, persistent clinical challenges
remain, stemming from intratumoral heterogeneity,
interpatient variability, and the development of
therapeutic resistance [6, 7]. Furthermore, lung cancer
is frequently diagnosed at advanced stages,
contributing to unfavorable patient prognosis [8].
Therefore, considering these established challenges, it
is essential to identify new therapeutic targets that
influence patient prognosis in lung adenocarcinoma
and to evaluate novel prognostic approaches, thereby
expanding clinical benefits for patients.
Cancer-associated fibroblasts (CAFs) represent
pivotal stromal constituents within the tumor
microenvironment, demonstrating marked
heterogeneity across cancer types and tissue niches.
CAFs receive bidirectional signaling from tumor cells,
immune populations, and other stromal elements in
the tumor microenvironment, thereby regulating the
growth, metastasis, and therapeutic resistance of the
tumor [9]. Although previous studies have primarily
focused on the signaling and interactions between
CAFs and tumor cells, increasing evidence suggests
that the reciprocal effects between CAFs and the
tumor immune microenvironment also play a crucial
role in tumor development [10]. Therefore, a deeper
understanding of the mechanisms linking CAFs and
immune cells may provide new strategies for
subsequent targeted immunotherapy, offering fresh
insights into precision treatment for cancer patients.
CAFs are highly heterogeneous, composed of
different subpopulations with complex cellular
origins and diverse biological functions, playing
distinct roles in tumors [11]. In various cancer types,
CAFs can mainly be classified into antigen-presenting
CAFs (apCAFs), myofibroblastic CAFs (myCAFs),
and inflammatory CAFs (iCAFs) [9]. However, with
the advancement of single-cell technologies, we are
now able to identify different cellular subpopulations
with greater resolution [12]. In gastric cancer,
extracellular matrix CAFs (eCAFs) identified via the
expression of POSTN demonstrate pro-invasive
properties [13]. Furthermore, it has been reported that
these extracellular matrix-related CAFs interact
closely with immune cells, particularly macrophages
[14]. Nevertheless, the biological significance of
eCAFs in lung  adenocarcinoma  remains
underexplored. Therefore, this study aims to
rigorously identify eCAFs while ensuring data
reliability and further investigate their detailed

biological functions and their interactions with
macrophages.

We found that eCAFs account for a higher
proportion of CAFs in advanced tumors and in
pathological subtypes with higher malignancy, and
the abundance level of eCAFs is closely associated
with poor prognosis in lung adenocarcinoma patients.
Lineage trajectory analysis demonstrated that eCAF
development is evolutionarily linked to tumor
progression cascades, positioning this subpopulation
as a central mediator of malignant transformation. A
similar pattern was also observed in SPP1+
macrophages. Mechanistically, we identified ligand-
receptor axes (COL1A1-CD44 and COL1A2-CD44)
mediating functional cross-talk between eCAFs and
SPP1+ macrophages. Additionally, we observed high
activity of eCAFs in the COLLAGEN signaling
pathway and FN1 signaling pathway. Finally, we
established a novel prognostic model for lung
adenocarcinoma patients using 101-combination
machine learning algorithms. In conclusion, the
prognostic value of eCAFs and their potential as a key
therapeutic  strategy are critical for lung
adenocarcinoma patients.

Materials and Methods

Data acquisition and pre-processing

Derived from the Gene Expression Omnibus
Series (GEO), the GSE131907 dataset comprises 58
single-cell RNA sequencing samples obtained from
different lung adenocarcinoma patients. These
samples include primary tumors, lymph nodes, brain
metastases, pleural effusion, as well as normal lung
tissue and lymph nodes. Subsequently, we selected 15
lung adenocarcinoma tumor samples from the dataset
for further analysis. Bulk RNA transcriptome data
and clinical data were collected from the LUAD
cohort of The Cancer Genome Atlas (TCGA,
https:/ /portal.gdc.cancer.gov/) using the
“TCGAbiolinks” package [15], as well as the GSE72094
and the GSE31210 dataset from GEO database.
Single-cell RNA sequencing data were processed and
analyzed utilizing the Seurat package (v4.3.0) based
on the R programming language (v4.3.3). In order to
ensure the quality and reliability of single-cell
transcriptomic data, the routine quality control was
performed on each dataset with the following criteria
applied: nFeature RNA 2> 200, nFeature_ RNA <
10,000, nCount_RNA = 100, nCount_RNA < 150,000,
and percent_mito < 20. The potential doublets were
removed using the R software package DoubletFinder
(version 2.0.3) [16]. Harmony (version 1.2.0) [17] was
implemented for the integration of heterogeneous
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sample datasets and the elimination of batch effects.
Sctransform (version 0.3.5) [18] was subsequently
employed for data normalization and the removal of
technical variation sources.

Downstream analysis of sc-RNA
transcriptome sequencing data

The biological functional markers used to
annotate different cell populations were derived from
the CellMarker 2.0 online database [19] and published
literature. The Dotplot and Vinplot functions from the
Seurat (version 4.3.0) package were used to visualize
the expression levels of different biological markers
across various cell populations. The FeaturePlot
function was used to visually depict the distribution
of cell populations and ensure the reliability of
annotations for different cell groups. The
FindMarkers function was employed to identify
characteristic differentially expressed genes of eCAFs
and CAFs. Combined alluvial diagram and stacked
bar chart were conducted with the R package
ggalluvial (version 0.12.5). The R package ramcharts4
(version 1.6.0) was used to create a pie chart
visualizing the proportion of different cells. The
ggplot2 package (version 3.5.1) was used to enhance
the clarity and aesthetic appeal of the results.

Identification of survival phenotype-associated
cells

We systematically identified cells associated
with survival phenotypes by integrating TCGA bulk
RNA-seq datasets with matched clinical survival data.
Through the implementation of the Scissor R package
(version 2.0.0) [20], we established quantitative
associations between gene expression profiles and
single-cell ~ transcriptomic  signatures, = while
integrating  survival phenotypes into a
network-constrained sparse regression framework.
This computational strategy enabled the detection of
putative survival-relevant cellular subsets. Notably,
the Scissor+ cells subpopulation was considered to be
correlated with poor clinical outcomes.

Survival analysis

To further evaluate the association between
eCAF subsets and SPP1+ macrophage subsets with
patient survival, we screened lung adenocarcinoma
datasets containing both bulk transcriptomic profiles
and survival information. Ultimately, three
independent cohorts were included: 503 samples from
the TCGA-LUAD cohort, 226 samples from the
GSE31210 cohort, and 398 samples from the GSE72094
cohort. The CIBERSORTx platform [21] was
employed to integrate single-cell RNA sequencing
data with bulk transcriptomic data. Using the

CIBERSORTx deconvolution algorithm in absolute
mode [22], we estimated the relative proportions of
specific cellular subsets by leveraging reference gene
expression signatures derived from single-cell RNA
data. Patients were subsequently stratified into
high-infiltration and low-infiltration groups based on
the relative abundance of corresponding cellular
subsets. Kaplan-Meier (KM) survival curves were
generated for selected cell subpopulations, with a
p-value < 0.05 indicating statistical significance.

Cell pseudo-time trajectory analysis

To further elucidate the potential developmental
trajectories and evolutionary characteristics of cellular
subpopulations, we employed the SCP package
(https:/ / github.com/zhanghao-njmu/SCP) to infer
pseudo-time developmental trajectories using the
Slingshot algorithm. Concurrently, we conducted
comprehensive analyses of dynamic biological
functional  alterations  within  these cellular
populations, encompassing both gene expression
profiling and Gene Ontology (GO) enrichment
analysis. Meanwhile, the GSVA package (version
1.50.5) and the clusterProfiler package (version 4.12.2)
were used to analyze hallmark pathway activity
across different cell populations.

Cell to cell communication

Cell-to-cell ~communication analysis was
performed utilizing CellChat (version 1.6.1) [23] with
the CellChatDB.human database for analytical
purposes. To further investigate potential cellular
communication between eCAFs and SPP1+
macrophage in lung adenocarcinoma, we
systematically identified ligand-receptor interactions
by designating SPP1+ macrophage cells as the target
population and CAFs as the source population. These
interactions were subsequently visualized through
bubble plot. Additionally, we performed heatmap
analysis to delineate key biological signaling
pathways associated with these cellular interactions.

Machine-learning framework

Machine learning workflows were implemented
with the Mimel package (version 0.0.0.9) [24], a
comprehensive toolkit integrating 101-machine
learning algorithms for model training, validation,
and evaluation. The FindMarkers function was
systematically applied to identify signature genes
distinguishing CAFs from other cell types, followed
by intra-CAFs differential analysis to delineate the
eCAFs-specific ~ signatures  within the CAFs
population. Intersection of these comparative gene
sets revealed 289 consensus genes co-expressing both
pan-CAFs and eCAFs signatures. Subsequently,
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stringent thresholds (log2FC > 1, adjusted p-value <
0.05) were implemented to screen 888 upregulated
genes in the tumor tissues of TCGA-LUAD cohort
using limma package (version 3.58.1). Ultimately, 28
core molecular signatures were prioritized for
integration into the machine learning workflow. The
parameter configuration was established such that
only genes demonstrating statistically significant
associations in univariate Cox proportional hazards
analysis were incorporated into subsequent analytical
workflows. The TCGA-LUAD cohort served as the
primary training dataset (datasetl), while the
GSE31210 and GSE72094 cohorts were designated as
independent validation datasets (dataset2 and
dataset3, respectively).

Statistics

All statistical analyses were performed using R
software (version 4.3.3). p<0.05 was considered
statistically significant.

Results
Detailed annotation of CAFs, macrophages in
single-cell data

As shown in the workflow diagram in Figure 1A,
this tudy aims to elucidate the biological functions of

cancer-associated  fibroblasts (CAFs) in lung
adenocarcinoma (LUAD) and investigate their
interplay with macrophages in the tumor

microenvironment. Rigorous cellular annotation was
therefore necessarily performed. Following batch
quality control, batch effect correction, and doublet
removal, high-quality single-cell data were obtained.
Optimal  dimensionality = reduction clustering
resolution was determined using clustree analysis,
with subsequent visualization through t-Distributed
Stochastic Neighbor Embedding (t-SNE) and Uniform
Manifold Approximation and Projection (UMAP)
algorithms (Figure 1B-C). Primary cell classification
was achieved using classic markers: EPCAM/KRT19
for epithelial cells, PECAM1/ACTA2 for stromal cells
and PTPRC for immune cells. Subpopulation
identification revealed T helper cells (IL7R+),
cytotoxic T lymphocytes (CD8A+), natural killer cells
(GNLY+), plasma cells (MZB1+), and myeloid cells

(CD14+) (Figure 1D). Given the functional
heterogeneity of CAFs, we performed secondary
clustering to define four distinct subtypes:

antigen-presenting CAFs (apCAFs), myofibroblastic
CAFs (myCAFs), extracellular matrix CAFs (eCAFs),
and inflammatory CAFs (iCAFs) (Figure 2A). These
subtypes exhibited characteristic expression profiles:
apCAFs demonstrated up-regulated MHC class 1I

molecules; myCAFs expressed myofibroblastic
molecules markers (ACTA2, MYLK, TAGLN); eCAFs
showed extracellular matrix remodeling signatures
(MMP14, POSTN); while iCAFs were enriched in
inflammatory factors (CCL2, CXCL12, CXCL14)
(Figure 2B). Within the myeloid compartment, we
identified four distinct macrophage subpopulations
through the selection of top-ranked and functionally
specific marker genes: SPP1+ macrophages, RPLPO+
macrophages, RETN+ macrophages, and
FOLR2+APOC1+ macrophages (Figure 2F-G).

ECAFs and SPP1+ macrophages
demonstrated a significant association with
poor prognostic outcomes

To integrate bulk transcriptomic data with
single-cell data, we employed the Scissor algorithm to
further identify potential associations between cells of
interest and patient prognosis [20]. After collecting
bulk RNA sequencing data and survival data from
TCGA, we identified Scissor+ cells associated with
poor survival outcomes in both CAFs and
macrophages (Figure 2C, H). Researchers found that
eCAFs constitute a significant component of Scissors+
cells, accounting for 75.9% of the subpopulation
proportion in Scissors+ cells, while iCAFs represent
the majority of Scissors- cells (Figure 2D-E). Within
the macrophage population, we found that SPP1+
macrophages constitute a significant component of
Scissors+ cells, accounting for 62.4% of the cellular
subpopulation proportion in Scissors+ cells (Figure
21-]). Therefore, we reasonably conclude that both
eCAFs and SPP1+ macrophages are closely associated
with the poor survival outcomes. To validate this
association, we implemented the CIBERSORTx
computational algorithm to quantify eCAF and SPP1+
macrophage infiltration levels across three
independent cohorts (TCGA, GSE31210, GSE72094).
Patients were then divided into high-infiltration and
low-infiltration groups based on the median values of
infiltration abundance level. It's worth noting that
racial background did not substantially affect the
infiltration levels of these cell subsets (Supplementary
Tables 1 and 2). Subsequent Kaplan-Meier survival
analysis revealed that in the TCGA cohort (p=0.0033,
Figure 3A), GSE31210 cohort (p=0.034, Figure 3C),
and GSE72094 cohort (p=0.012, Figure 3E), the
high-infiltration —group of eCAFs exhibited
significantly worse survival outcomes compared to
the  low-infiltration  group.  Similarly, the
high-infiltration group of SPP1+ macrophages
demonstrated poorer survival in the TCGA cohort
(p=0.0049, Figure 3B), GSE31210 cohort (p=0.0095,
Figure 3D), and GSE72094 cohort (p=0.046, Figure 3F).
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Figure 1. Workflow chart and the annotation of single-cell transcriptome data of lung adenocarcinoma. (A) Workflow chart of the study. (B) t-Distributed
Stochastic Neighbor Embedding (t-SNE)-based (right) dimensionality reduction map. (C) Uniform Manifold Approximation and Projection (UMAP)-based dimensionality
reduction map. The cell cluster annotations are marked with different colors. (D) Schematic illustration of markers used for preliminary cell clustering in UMAP: EPCAM and
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cells; and CD14 for myeloid cells.
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dimensionality reduction map of fibroblast subtypes, including eCAFs, iCAFs, myCAFs, and apCAFs. Different cell clusters are represented by distinct colors. (B) Dotplot showing
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The proportion of eCAFs and SPP1+
Macrophages varies with the stage and
pathological classification

Tumor cells typically alter the surrounding
microenvironment  during  progression,  often
accompanied by changes in the cellular composition.
Building upon the established prognostic significance
of eCAFs and SPP1+ macrophages, we performed
systematic quantification of their temporal-spatial
distribution patterns across tumor stages and
histological differentiation grades. We observed that
in advanced-stage LUAD, the proportions of both
eCAFs and SPP1+ macrophages increased with the
progression of tumor (Figure 2K, M). In pathological
classification, eCAFs proportion increased with
decreasing differentiation (Figure 2L). However, this
pattern was absent in SPP1+ macrophages, which
exhibited peak abundance in  moderately-
differentiated tumors and lowest levels in
well-differentiated tumors (Figure 2N).

The intrinsic developmental trajectories of
CAFs and macrophages

Considering the strong association between
eCAFs and SPPl1+ macrophages within their
respective cellular subpopulations and their relevance
to prognosis and tumor progression, researchers
performed pseudotime analysis to further explore
their intrinsic lineage evolution processes. We found
that both CAFs and macrophages exhibit distinct
trends in cellular development and evolution. Based
on pseudotime progression, two lineage evolution
processes were observed in CAFs. In Lineagel, CAFs
demonstrated a differentiation trajectory from
myCAFs toward iCAFs. In Lineage2, eCAFs served as
the developmental endpoint, with CAFs exhibiting a
differentiation trajectory from myCAFs to eCAFs
(Figure 4B-C). Simultaneously, the heatmap revealed
the biological functional evolution during the
developmental process. In Lineage2, the expression
changes of key genes demonstrated a functional
transition of CAFs from muscle contraction-related
activities to immune regulation, followed by Wnt
signaling pathway modulation, and ultimately to
extracellular matrix remodeling (Figure 4A). Within
the macrophages, we also observed two distinct
intrinsic lineage differentiation trajectories. In the
Lineagel of macrophages, RETN+ macrophages
progressively differentiated into FOLR2+APOC1+
macrophages and ultimately evolved into SPP1+
macrophages. In the Lineage2, RETN+ macrophages
exhibited a differentiation trajectory toward RPLPO+
macrophages (Figure 4E-F). Notably, in the functional

evolution Lineagel, macrophages transitioned from
cellular immunity and antigen presentation functions
to lipoprotein-associated functions, subsequently
shifted toward signaling regulation and immune cell
recruitment (Figure 4D).

Functional enrichment analysis

To further characterize the biological features of
eCAFs and SPP1+ macrophages, we performed Gene
Set Variation Analysis (GSVA) functional enrichment
analysis on the signature gene sets. Compared to
other CAF subtypes, eCAFs exhibited significant
enrichment in pathways including angiogenesis,
epithelial-mesenchymal transition, protein secretion,
Notch signaling, apical junction, and glycolysis
(Figure 5A). In the macrophages population, SPP1+
macrophages exhibited significant enrichment in
pathways  including angiogenesis, epithelial-
mesenchymal transition, inflammatory response,
G2/M checkpoint, TNF-a signaling via NF-xB,
Hedgehog signaling, and Notch signaling (Figure 5B).

Intercellular communication among the
various components of the tumor
microenvironment

Intercellular communication within the tumor
microenvironment constitutes a fundamental driver
of tumor initiation, progression, and therapy
resistance. Investigating these interactions not only
reveals the evolutionary logic of tumors but also
provides deeper insights into their dynamic
adaptability and heterogeneity. Given the close
association between eCAFs, SPP1+ macrophages, and
poor prognosis, researchers further conducted an
intercellular communication analysis. Bubble plot
analysis revealed close communication between
eCAFs and SPP1+ macrophages, with significant
enrichment in the COL1A1-CD44 and COL1A2-CD44
pathways (Figure 5C). Subsequent analysis of selected
functional pathways demonstrated that eCAFs
exhibited strong communication activity across
multiple  receptor-ligand  pairs  within  the
COLLAGEN signaling network, indicating their
pivotal role in this network. Furthermore, this
pathway showed the most significant enrichment in
the communication between eCAFs and epithelial
cells (Figure 6A). In the FN1 signaling network, we
observed high activity between four distinct types of
CAFs and other cells. Notably, eCAFs showed the
most pronounced activity, particularly in the
communication between eCAFs and epithelial cells
(Figure 6B).

https://www.medsci.org



Int. J. Med. Sci. 2025, Vol. 22

2963

Strata == High =#= Low

A
1.00
=
F 075
©
Q
<]
a 0.50
©
2
2
0.25
a p =0.0033
0.00
0 2000 4000 6000 8000
Time
Number at risk
©
w High1252 18 0 0 0
5 Low {251 27 6 3 0
0 2000 4000 6000 8000
Time
Strata == High == Low
C
1.00
&
F 075
®
o)
<]
o 0.50
©
2
2
0.25
a p=0.034
0.00
0 1000 2000 3000 4000
Time
Number at risk
[0
© High113 90 30 S 0
5 Lowq113 103 32 6 0
0 1000 2000 3000 4000
Time
Strata == High == Low
E
1.00
2
F 075
®©
Q
<]
o 0.50
©
2
c
0.25
a p=0.012
0.00
0 500 1000 1500 2000
Time
Number at risk
©
w© High1199 150 46 11 0
5 Low{199 160 57 13 1
0 500 1000 1500 2000
Time

Strata == High =#= Low

B
1.00
by
Z 075
©
Q
<]
o 0.50
©
=2
c
0.25
. p = 0.0049
0.00
0 2000 4000 6000 8000
Time
Number at risk
@©
‘® High{252 19 1 0 0
5 Low4251 26 5 3 0
0 2000 4000 6000 8000
Time
Strata =#= High == Low
D
1.00
=
=075
®©
Ke)
<]
o 0.50
©
2
c
0.25
a p = 0.0095
0.00
0 1000 2000 3000 4000
Time
Number at risk
@©
© Hioh113 90 30 6 0
& Low{113 103 32 5 0
0 1000 2000 3000 4000
Time
Strata == High == Low
F
1.00
2>
=075
®©
Q
o
a 0.50
©
=
2
0.25
a p=0.046
0.00
0 500 1000 1500 2000
Time
Number at risk
©
® High{199 143 47 4 0
5 Low{199 167 56 20 1
0 500 1000 1500 2000
Time

Figure 3. High infiltration of eCAFs and SPP1+ macrophages suggests a poor prognosis. (A, C, E) Kaplan-Meier curves for eCAFs of high infiltration level and low
infiltration level. (B, D, F) Corresponding survival analyses for SPP1+ macrophages. (A-B) TCGA cohort; (C-D) GSE31210 cohort; (E-F) GSE72094 cohort. Log-rank p-values are
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Figure 5. Identification of potential receptor-ligands for eCAFs-SPP1+ macrophage communication and the functional enrichment analysis of CAFs and
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Figure 6. Cell-cell communication networks mediated by COLLAGEN and FNI signaling pathways. CellChat analysis depicting intercellular communication
probabilities across diverse cell populations. Collagen Signaling Network (A) and FN1 Signaling Network (B) are illustrated by heatmaps. The sender cell types are indicated, and
the strength of communication from sender to receiver is represented by the color intensity.

Identification of the eCAFs signatures microenvironment, we aimed to identify a clinically
valuable prognostic model through machine learning.

Initially, we established specific signatures for eCAFs.
This involved three sequential steps: (1) identifying

Given the unique biological function and
proportion of eCAFs in the LUAD tumor
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characteristic signatures distinguishing CAFs from
other cell types, (2) defining eCAFs-specific signatures
within the CAFs population, and (3) screening
tumor-upregulated differentially expressed genes in
the TCGA dataset. Ultimately, the 28 specific
signatures of eCAFs were incorporated into
subsequent machine learning modeling. We
visualized the top 5 and top 10 genes to assess their
specific expression in eCAFs (Figure 7A-B).

Construction of the machine learning model
framework

After analyzing 101 machine learning model
combinations, we ranked them based on the mean
C-index across all cohorts to identify the
best-performing modeling method (Figure 7C). The
StepCox[forward] + plsRcox model demonstrated the
most favorable results. The C-index of this model was
0.65 in the training set, 0.75 in the validation set
GSE31210, and 0.63 in the validation set GSE72094
(Figure 8A). After dividing the patients into two
subgroups based on the median risk score, the
univariate Cox regression meta-analysis showed that
the model was positively correlated with the risk of
patient mortality (HR > 1), and all datasets
demonstrated significant p-values (Figure 8B). In the
meta-analysis, the HR values for the Random Effect
Model and the Fixed Effect Model were 2.66 (1.24 -
5.71) and 2.05 (1.64 - 2.58), respectively. The combined
results showed a significant increase in risk and the
effect of risk scores remaining stable. Using the
median score from the model, patients were
categorized into high-risk and low-risk groups. In the
training set (HR = 1.92, 95% CI: 1.43-2.58, p < 0.001),
the GSE31210 validation set (HR = 7.41, 95% CI: 3.8-
14.42, p < 0.001), and the GSE72094 validation set (HR
= 1.81, 95% CIL: 1.25-2.62, p = 0.002), the high-risk
group consistently demonstrated poorer prognosis
(Figure 8C-E). The ROC curve analysis revealed the
following AUCs: 1-year AUCs for TCGA-training set:
0.673, GSE31210: 0.805, GSE72094: 0.663; 3-year AUCs
for TCGA-training set: 0.686, GSE31210: 0.771,
GSE72094: 0.623; and 5-year AUCs for TCGA-training
set: 0.6, GSE31210: 0.78, GSE72094: 0.659 (Figure
8F-H).

Discussion

To our knowledge, this study is the first to
systematically characterize the significant role of
eCAFs in prognosis and their potential interactions
with  immune cells  within the  tumor
microenvironment in lung adenocarcinoma. We
integrated high-quality single-cell data from multiple
samples, multi-cohort transcriptomic data, and
diverse machine learning frameworks, which

logically emphasize the critical role of eCAFs in lung
adenocarcinoma prognosis. We delineate the
infiltration levels, intrinsic lineage trajectories,
functional evolution, and crosstalk between eCAFs
and SPP1* macrophages in the lung adenocarcinoma
microenvironment, as well as their prognostic value.

While the presence of cancer-associated
fibroblasts (CAFs) in tumor microenvironment is
well-documented, their functional duality remains
debated. Some reports have shown that CAFs directly
influence many biological functions of cancer cells,
such as proliferation, migration, and drug resistance,
thereby being considered as pro-tumorigenic [25].
However, other studies suggest that CAF subtypes
with different characteristics may also exert
tumor-suppressive effects [26]. CAFs can either
promote or suppress tumor growth, with their
functional and phenotypic diversity linked to
differential expression of tumor and stromal cell
signals, markers, and genetic characteristics, which in
turn is closely related to patient prognosis [9]. This
heterogeneity of CAFs is also a critical issue in our
study. Single-cell technological advancements now
permit precise functional characterization of CAF
subtypes. This study elucidates the close correlation
between eCAFs and prognosis in lung
adenocarcinoma patients using single-cell and
transcriptomic data, investigates the interactions of
eCAFs with other components of the tumor
microenvironment, explores their = functional
evolution and innovatively establishes a scoring
signature (eCAFsRS) to assess patient prognosis.

The interplay between CAFs and immune cells
has also garnered growing attention, particularly
macrophages. In colorectal cancer, Qi et al
demonstrated that CAFs and SPP1" macrophages
collaborate to remodel the ECM, creating a fibrotic
stroma that impedes lymphocyte infiltration into the
tumor core [27]. Similarly, You et al. reported in
gastric cancer that eCAFs-derived periostin (POSTN)
mediates macrophage chemoattraction through
cellular crosstalk, consequently modulating responses
to immune checkpoint blockade (ICB) therapy [14].
These findings motivate our investigation into

whether analogous mechanisms exist in lung
adenocarcinoma.
Our findings suggest that the infiltration

abundance of eCAFs and SPP1+ macrophages act as
prognostic markers of poor patient survival. Notably,
within Scissors+ cells associated with adverse
survival phenotypes, eCAFs constituted the
predominant CAF subtype (75.9%), while SPP1+
macrophages represented the majority (62.4%) of
Scissors+ macrophages, underscoring their clinical
relevance.
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Figure 7. Machine-learning framework. (A) The expression levels of the top 5 eCAFs-related signatures across different CAF cell populations are displayed using violin
plots. (B) Dotplot demonstrates the specificity of the top 10 expressed eCAFs-related genes. (C) The C-index of 101-machine learning algorithms is presented across different
cohorts. The algorithm ranked first is the best-performing model. Dataset] = TCGA, Dataset2 = GSE31210, Dataset3 = GSE72094.
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Figure 8. Prognostic performance and validation of the StepCox[forward] + plsRcox risk model across multiple cohorts. (A) Bar plot showing the C-index
values for the risk model in three independent datasets. (B) Meta-analysis of the C-index using univariate Cox regression in random and fixed effect models, with percentage
contributions from each dataset. Hazard ratios (HR) and 95% confidence intervals (95% ClI) are on the right. (C-E) Kaplan-Meier survival curves stratified by low-risk and high-risk
groups in datasetl, dataset2 and dataset3. p-values and HRs are annotated. (F-H) Time-dependent receiver operating characteristic (ROC) curves for 1-year, 3-year, and 5-year

survival predictions in datasetl, dataset2 and dataset3.

As tumors progress, the proportion of eCAFs
within the CAF cell population increases, and the

proportion of SPP1+ macrophages within the
macrophage population also rises. Pathological
stratification revealed a significant correlation

between higher eCAFs abundance and malignant
grades, whereas SPP1+ macrophage distribution
showed no such association. Crucially, multi-cohort
validation (TCGA, GSE31210, GSE72094) consistently
demonstrated significantly shorter overall survival in
high-infiltration groups for both cellular subtypes.
These results collectively highlight the central role of
eCAFs in driving aggressive tumor behavior and
unfavorable clinical outcomes. While our study
demonstrates that the infiltration levels of eCAFs and

SPP1* macrophages are significantly associated with
patient survival across multiple LUAD cohorts, we
acknowledge that these findings are derived from
transcriptomic analyses and do not account for other
important clinical variables such as treatment
regimen, tumor stage, or comorbid conditions.
Therefore, although the identified associations are
biologically and prognostically relevant, future
prospective studies incorporating comprehensive
clinical metadata are warranted to validate and
extend the clinical applicability of our findings.

The classification of CAFs reflects not simple
stratification but dynamic transformation [28]. To
elucidate this complexity, researchers aim to further
investigate whether there is an intrinsic lineage
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evolution process within CAFs. Pseudotemporal
trajectory  analysis revealed two  divergent
differentiation paths, with Lineage2 terminating at
eCAFs as the evolutionary endpoint. While
esophageal CAFs reportedly promote tumor growth
via epithelial-mesenchymal transition (EMT) [29], our
pathway enrichment data position eCAFs as pivotal
EMT drivers in lung adenocarcinoma. Furthermore,
pseudotime analysis indicates the potential presence
of a developmental trajectory within the CAF
subpopulation that leads to the formation of
malignant phenotype-associated eCAFs. As the
endpoint of this trajectory, eCAFs could be a potential
marker for disease progression and poor prognosis in
lung adenocarcinoma patients. Notably, analogous
differentiation dynamics were observed in SPP1+
macrophages. SPP1  (Secreted Phosphoprotein 1)
encodes osteopontin which is involved in various
functions such as cell signaling, immune modulation,
cell adhesion, and migration. Liu et al. demonstrated
that SPP1* macrophages form a tumor immune
barrier in hepatocellular carcinoma, contributing to
immunotherapy resistance [30]. Other studies have
also shown that SPP1+ macrophages are considered
key fibrotic cells in certain chronic organ injuries [31].
In functional enrichment of SPP1+ macrophages, we
also observed the enrichment of malignant pathways
including angiogenesis. These phenomena underscore
the malignant role of SPP1+ macrophages in tumors.
Recent studies have revealed close intercellular
interactions between CAFs and SPP1+ macrophages
[27]. This prompted our investigation into the
crosstalk between eCAFs and SPP1* macrophages.
We identified that eCAFs exert significant effects on
SPP1+ macrophages through the COL1A1-CD44 and
COL1A2-CD44 ligand-receptor pairs. The two al
chains encoded by COL1A1 and COL1A2, along with
one a2 chain, constitute type I collagen, which serves
as a major component of the extracellular matrix
(ECM) [32]. CD44, a member of the transmembrane
glycoprotein family, mediates cell-ECM
communication and adhesion, and has been reported
to mediate critical steps in bone metastasis [33]. For a
long time, the extracellular matrix (ECM) was
regarded as an inert framework and largely
overlooked. However, it is now recognized as a highly
dynamic partner of the immune system, providing
not only dynamic tissue integrity but also acting as a
signaling molecule that participates in and drives
numerous biological responses, including interactions
with immune cells [34]. The density, composition, and
stiffness of the ECM influence the infiltration of
immune cells into the core of the tumor, thus affecting
the antitumor immune response [35]. It has been
confirmed that dense collagen in the tumor

microenvironment (TME) inhibits T cell infiltration
[36]. In ovarian cancer, collagens produced by
fibroblasts correlate with the expression of Treg and T
helper 2 cell (TH2) differentiation markers, suggesting
their immune-suppressive and tumor-promoting
roles [37]. Fibronectin (FN1), an ECM protein, has
been reported to be associated with tumorigenesis
[38]. Notably, we observed pronounced eCAF activity
in both COLLAGEN and FN1 signaling, suggesting
that eCAFs may enhance ECM density in lung
adenocarcinoma and foster an immune-suppressive
niche.

The application of machine learning algorithms
is gaining increasing attention, as they offer powerful
tools for extracting meaningful biological patterns
from high-dimensional data. Compared to traditional
approaches, these algorithms are often more effective
in handling a wide range of complex biological tasks
[39, 40]. Therefore, we innovatively selected 28
eCAFs-related genes to construct a scoring signature
and wused 101-machine learning algorithms to
establish and select the most effective prognostic
model. The results showed that the signature
constructed from these 28 genes has potential
prognostic stratification value. Recent researches in
investigating CAF-related signatures  have
highlighted their prognostic and therapeutic potential
across cancer types. For instance, Zhang et al
previously developed a prognostic risk score model
based on cancer-associated fibroblasts (CAFs)
signatures in cervical cancer [41]. Although our study
shares methodological similarities with theirs study,
we have employed machine learning algorithms to
identify the model with optimal performance during
the construction of the scoring system, as opposed to
the conventional LASSO model. Similarly, analogous
studies have been reported in ovarian cancer, further
corroborating the applicability of this methodological
framework [42]. In contrast, our study has achieved a
precise characterization of the microenvironment of
eCAFs and SPP1+ macrophages in LUAD by
integrating multi-omics data and combining the
crosstalk between specific CAF subpopulations and
SPP1+ macrophages. This advancement is crucial for
understanding the local stromal-immune interaction.

To further illustrate the superiority of the model,
the researchers selected several clinically recognized
immune checkpoints, prognostic biomarkers as well
as markers previously reported to be associated with
LUAD prognosis to draw time-dependent ROC
curves [43, 44]. We discovered that this model has a
more remarkable performance at 1-, 3-, and 5-year
survival time points (Supplementary Figure 4).

In summary, this study identified eCAFs closely
associated  with  poor prognosis in lung
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adenocarcinoma, characterized eCAFs' role in ECM
remodeling via extracellular matrix proteins, and
explored the interactions between eCAFs and SPP1+
macrophages, including potential ligand-receptor
pairs which provided potential targets for targeting
eCAFs  therapy. Furthermore, we  derived
eCAFs-related signatures, offering novel tools and
strategies for clinical prognostic stratification.
However, our study has certain limitations. First, the
samples are still insufficient and need to be expanded.
Second, our study lacks in vivo and in vitro
experimental validation, and we plan to supplement
experiments in the future to make our conclusions
more reliable. Third, the prognostic stratification
model we built requires validation with more datasets
and real clinical cohorts. Meanwhile, although the
model demonstrates acceptable generalizability
across independent LUAD datasets, its performance
remains at a moderate level. Fourth, while the
CIBERSORTx deconvolution algorithm may not be
entirely precise, it remains the mainstream method for
data processing. At the same time, as a highly
interactive system, the tumor microenvironment
involves intricate interactions among its components.
While our study highlights eCAFs and SPP1+
macrophages as key drivers, their roles are likely
intertwined with other TME constituents. This
complexity is acknowledged as another limitation and
we propose that our findings serve as a foundational
framework for future research to dissect intercellular
interactions in greater detail of the TME.

While our study establishes a robust association
between eCAF-SPP1+ macrophages interactions and
LUAD progression through multi-omics integration,
we acknowledge that the correlative nature of bulk
transcriptomic analyses inherently limits causal
inference. Nonetheless, these limitations mentioned
above do not undermine the overall reliability of our
findings. Based on the findings of multi-omics
studies, verifying the interactions between the matrix
and the immune system through experimental
systems will be the focus of subsequent research. This
includes but is not limited to constructing orthotopic
LUAD animal models, analyzing the
microenvironment remodeling induced by treatment

through longitudinal  spatial  transcriptomics,
screening  with  high-throughput organoids to
determine combined targeting strategies, and

validating signaling pathways in vitro, among other
experiments. We have preliminarily established the
prognostic significance of the interaction between
eCAFs and SPP1+ macrophages. We believe that our
study can provide new insights for the further
exploration of the crosstalk between fibroblasts and
macrophages.

Supplementary Material

Supplementary figures and tables.
https:/ /www.medsci.org/v22p2956s1.pdf
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