
Int. J. Med. Sci. 2025, Vol. 22 
 

 
https://www.medsci.org 

2956 

International Journal of Medical Sciences 
2025; 22(12): 2956-2972. doi: 10.7150/ijms.113580 

Research Paper 

Integration of Multi-Scale Profiling and Machine Learning 
Reveals the Prognostic Role of Extracellular 
Matrix-Related Cancer-Associated Fibroblasts in Lung 
Adenocarcinoma 
Ziyi Chen1,2†, Mengyuan Chen1,3†, Changqing Yang4†, Jiajing Wang1,2, Yuan Gao1,2, Yuanying Feng1,2, 
Dongqi Yuan1,2, Peng Chen1,2 

1. Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, 
Tianjin, 300060, China.  

2. Tianjin's Clinical Research Center for Cancer, Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin 
Medical University, Tianjin, 300060, China.  

3. Department of Nutrition, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China. 
4. Respiratory Department, Tianjin Medical University General Hospital, Tianjin, 300052, China. 

† These authors contributed equally to this work. 

 Corresponding authors: Prof. Peng Chen, Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical 
University, Tianjin, 300060, PR China, E-mail: chenpeng@tjmuch.com. Dr. Dongqi Yuan, Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin 
Cancer Institute & Hospital, Tianjin Medical University, Tianjin, 300060, PR China, E-mail: 15530171617@163.com.  

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). 
See https://ivyspring.com/terms for full terms and conditions. 

Received: 2025.03.11; Accepted: 2025.05.29; Published: 2025.06.12 

Abstract 

Lung adenocarcinoma (LUAD) remains a leading cause of cancer mortality, necessitating novel 
therapeutic targets and prognostic strategies. This study investigates the role of extracellular matrix 
cancer-associated fibroblasts (eCAFs) and their interaction with SPP1+ macrophages in LUAD 
progression and prognosis. Utilizing single-cell RNA sequencing from 15 LUAD tumors and integrating 
multi-cohort transcriptomic data (TCGA, GSE31210, GSE72094), we identified eCAFs as a dominant 
CAF subtype in advanced-stage tumors and high-grade pathological subtypes, correlating with poor 
patient survival. Similarly, SPP1+ macrophages exhibited increased abundance in advanced tumors and 
adverse prognosis. Pseudotime trajectory analysis revealed eCAFs as an evolutionary endpoint in CAF 
differentiation, associated with extracellular matrix remodeling pathways (COLLAGEN, FN1). Cell-cell 
communication analysis highlighted eCAFs-SPP1+ macrophage interactions via COL1A1-CD44 and 
COL1A2-CD44 ligand-receptor pairs, suggesting a mechanism for immune-excluded 
microenvironments. A prognostic model incorporating 28 eCAFs-related genes, validated through 
101-machine learning algorithms, effectively stratified patients into high- and low-risk groups across 
cohorts. This study underscores eCAFs as key drivers of LUAD progression and proposes their interplay 
with SPP1+ macrophages as a therapeutic target. The developed prognostic signature offers clinical utility 
for risk stratification, though further experimental validation is warranted. These findings advance 
understanding of stromal-immune crosstalk in LUAD and highlight ECM remodeling as a critical pathway 
in tumor evolution. 
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Introduction 
In recent years, cancer has emerged as a major 

global public health challenge, imposing disparate 
healthcare burdens across nations while remaining as 

a leading cause of mortality worldwide [1]. Lung 
cancer persistently maintains its status as one of the 
most lethal malignancies in both incidence and 
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mortality rates [1-3]. Non-small cell lung cancer 
(NSCLC) accounts for the predominant histological 
subtype, with adenocarcinoma representing its most 
frequent variant [4, 5]. Notwithstanding advances in 
therapeutic target identification for lung 
adenocarcinoma, persistent clinical challenges 
remain, stemming from intratumoral heterogeneity, 
interpatient variability, and the development of 
therapeutic resistance [6, 7]. Furthermore, lung cancer 
is frequently diagnosed at advanced stages, 
contributing to unfavorable patient prognosis [8]. 
Therefore, considering these established challenges, it 
is essential to identify new therapeutic targets that 
influence patient prognosis in lung adenocarcinoma 
and to evaluate novel prognostic approaches, thereby 
expanding clinical benefits for patients. 

Cancer-associated fibroblasts (CAFs) represent 
pivotal stromal constituents within the tumor 
microenvironment, demonstrating marked 
heterogeneity across cancer types and tissue niches. 
CAFs receive bidirectional signaling from tumor cells, 
immune populations, and other stromal elements in 
the tumor microenvironment, thereby regulating the 
growth, metastasis, and therapeutic resistance of the 
tumor [9]. Although previous studies have primarily 
focused on the signaling and interactions between 
CAFs and tumor cells, increasing evidence suggests 
that the reciprocal effects between CAFs and the 
tumor immune microenvironment also play a crucial 
role in tumor development [10]. Therefore, a deeper 
understanding of the mechanisms linking CAFs and 
immune cells may provide new strategies for 
subsequent targeted immunotherapy, offering fresh 
insights into precision treatment for cancer patients. 

CAFs are highly heterogeneous, composed of 
different subpopulations with complex cellular 
origins and diverse biological functions, playing 
distinct roles in tumors [11]. In various cancer types, 
CAFs can mainly be classified into antigen-presenting 
CAFs (apCAFs), myofibroblastic CAFs (myCAFs), 
and inflammatory CAFs (iCAFs) [9]. However, with 
the advancement of single-cell technologies, we are 
now able to identify different cellular subpopulations 
with greater resolution [12]. In gastric cancer, 
extracellular matrix CAFs (eCAFs) identified via the 
expression of POSTN demonstrate pro-invasive 
properties [13]. Furthermore, it has been reported that 
these extracellular matrix-related CAFs interact 
closely with immune cells, particularly macrophages 
[14]. Nevertheless, the biological significance of 
eCAFs in lung adenocarcinoma remains 
underexplored. Therefore, this study aims to 
rigorously identify eCAFs while ensuring data 
reliability and further investigate their detailed 

biological functions and their interactions with 
macrophages. 

We found that eCAFs account for a higher 
proportion of CAFs in advanced tumors and in 
pathological subtypes with higher malignancy, and 
the abundance level of eCAFs is closely associated 
with poor prognosis in lung adenocarcinoma patients. 
Lineage trajectory analysis demonstrated that eCAF 
development is evolutionarily linked to tumor 
progression cascades, positioning this subpopulation 
as a central mediator of malignant transformation. A 
similar pattern was also observed in SPP1+ 
macrophages. Mechanistically, we identified ligand- 
receptor axes (COL1A1-CD44 and COL1A2-CD44) 
mediating functional cross-talk between eCAFs and 
SPP1+ macrophages. Additionally, we observed high 
activity of eCAFs in the COLLAGEN signaling 
pathway and FN1 signaling pathway. Finally, we 
established a novel prognostic model for lung 
adenocarcinoma patients using 101-combination 
machine learning algorithms. In conclusion, the 
prognostic value of eCAFs and their potential as a key 
therapeutic strategy are critical for lung 
adenocarcinoma patients. 

Materials and Methods 

Data acquisition and pre-processing 

Derived from the Gene Expression Omnibus 
Series (GEO), the GSE131907 dataset comprises 58 
single-cell RNA sequencing samples obtained from 
different lung adenocarcinoma patients. These 
samples include primary tumors, lymph nodes, brain 
metastases, pleural effusion, as well as normal lung 
tissue and lymph nodes. Subsequently, we selected 15 
lung adenocarcinoma tumor samples from the dataset 
for further analysis. Bulk RNA transcriptome data 
and clinical data were collected from the LUAD 
cohort of The Cancer Genome Atlas (TCGA, 
https://portal.gdc.cancer.gov/) using the 
‘TCGAbiolinks’ package [15], as well as the GSE72094 
and the GSE31210 dataset from GEO database. 
Single-cell RNA sequencing data were processed and 
analyzed utilizing the Seurat package (v4.3.0) based 
on the R programming language (v4.3.3). In order to 
ensure the quality and reliability of single-cell 
transcriptomic data, the routine quality control was 
performed on each dataset with the following criteria 
applied: nFeature_RNA ≥ 200, nFeature_RNA ≤ 
10,000, nCount_RNA ≥ 100, nCount_RNA ≤ 150,000, 
and percent_mito ≤ 20. The potential doublets were 
removed using the R software package DoubletFinder 
(version 2.0.3) [16]. Harmony (version 1.2.0) [17] was 
implemented for the integration of heterogeneous 
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sample datasets and the elimination of batch effects. 
Sctransform (version 0.3.5) [18] was subsequently 
employed for data normalization and the removal of 
technical variation sources. 

Downstream analysis of sc-RNA 
transcriptome sequencing data 

The biological functional markers used to 
annotate different cell populations were derived from 
the CellMarker 2.0 online database [19] and published 
literature. The Dotplot and Vinplot functions from the 
Seurat (version 4.3.0) package were used to visualize 
the expression levels of different biological markers 
across various cell populations. The FeaturePlot 
function was used to visually depict the distribution 
of cell populations and ensure the reliability of 
annotations for different cell groups. The 
FindMarkers function was employed to identify 
characteristic differentially expressed genes of eCAFs 
and CAFs. Combined alluvial diagram and stacked 
bar chart were conducted with the R package 
ggalluvial (version 0.12.5). The R package ramcharts4 
(version 1.6.0) was used to create a pie chart 
visualizing the proportion of different cells. The 
ggplot2 package (version 3.5.1) was used to enhance 
the clarity and aesthetic appeal of the results. 

Identification of survival phenotype-associated 
cells 

We systematically identified cells associated 
with survival phenotypes by integrating TCGA bulk 
RNA-seq datasets with matched clinical survival data. 
Through the implementation of the Scissor R package 
(version 2.0.0) [20], we established quantitative 
associations between gene expression profiles and 
single-cell transcriptomic signatures, while 
integrating survival phenotypes into a 
network-constrained sparse regression framework. 
This computational strategy enabled the detection of 
putative survival-relevant cellular subsets. Notably, 
the Scissor+ cells subpopulation was considered to be 
correlated with poor clinical outcomes. 

Survival analysis 
To further evaluate the association between 

eCAF subsets and SPP1+ macrophage subsets with 
patient survival, we screened lung adenocarcinoma 
datasets containing both bulk transcriptomic profiles 
and survival information. Ultimately, three 
independent cohorts were included: 503 samples from 
the TCGA-LUAD cohort, 226 samples from the 
GSE31210 cohort, and 398 samples from the GSE72094 
cohort. The CIBERSORTx platform [21] was 
employed to integrate single-cell RNA sequencing 
data with bulk transcriptomic data. Using the 

CIBERSORTx deconvolution algorithm in absolute 
mode [22], we estimated the relative proportions of 
specific cellular subsets by leveraging reference gene 
expression signatures derived from single-cell RNA 
data. Patients were subsequently stratified into 
high-infiltration and low-infiltration groups based on 
the relative abundance of corresponding cellular 
subsets. Kaplan-Meier (KM) survival curves were 
generated for selected cell subpopulations, with a 
p-value < 0.05 indicating statistical significance. 

Cell pseudo-time trajectory analysis 
To further elucidate the potential developmental 

trajectories and evolutionary characteristics of cellular 
subpopulations, we employed the SCP package 
(https://github.com/zhanghao-njmu/SCP) to infer 
pseudo-time developmental trajectories using the 
Slingshot algorithm. Concurrently, we conducted 
comprehensive analyses of dynamic biological 
functional alterations within these cellular 
populations, encompassing both gene expression 
profiling and Gene Ontology (GO) enrichment 
analysis. Meanwhile, the GSVA package (version 
1.50.5) and the clusterProfiler package (version 4.12.2) 
were used to analyze hallmark pathway activity 
across different cell populations. 

Cell to cell communication 
Cell-to-cell communication analysis was 

performed utilizing CellChat (version 1.6.1) [23] with 
the CellChatDB.human database for analytical 
purposes. To further investigate potential cellular 
communication between eCAFs and SPP1+ 
macrophage in lung adenocarcinoma, we 
systematically identified ligand-receptor interactions 
by designating SPP1+ macrophage cells as the target 
population and CAFs as the source population. These 
interactions were subsequently visualized through 
bubble plot. Additionally, we performed heatmap 
analysis to delineate key biological signaling 
pathways associated with these cellular interactions. 

Machine-learning framework 
Machine learning workflows were implemented 

with the Mime1 package (version 0.0.0.9) [24], a 
comprehensive toolkit integrating 101-machine 
learning algorithms for model training, validation, 
and evaluation. The FindMarkers function was 
systematically applied to identify signature genes 
distinguishing CAFs from other cell types, followed 
by intra-CAFs differential analysis to delineate the 
eCAFs-specific signatures within the CAFs 
population. Intersection of these comparative gene 
sets revealed 289 consensus genes co-expressing both 
pan-CAFs and eCAFs signatures. Subsequently, 
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stringent thresholds (log2FC ≥ 1, adjusted p-value ≤ 
0.05) were implemented to screen 888 upregulated 
genes in the tumor tissues of TCGA-LUAD cohort 
using limma package (version 3.58.1). Ultimately, 28 
core molecular signatures were prioritized for 
integration into the machine learning workflow. The 
parameter configuration was established such that 
only genes demonstrating statistically significant 
associations in univariate Cox proportional hazards 
analysis were incorporated into subsequent analytical 
workflows. The TCGA-LUAD cohort served as the 
primary training dataset (dataset1), while the 
GSE31210 and GSE72094 cohorts were designated as 
independent validation datasets (dataset2 and 
dataset3, respectively). 

Statistics 
All statistical analyses were performed using R 

software (version 4.3.3). p < 0.05 was considered 
statistically significant. 

Results 

Detailed annotation of CAFs, macrophages in 
single-cell data 

As shown in the workflow diagram in Figure 1A, 
this tudy aims to elucidate the biological functions of 
cancer-associated fibroblasts (CAFs) in lung 
adenocarcinoma (LUAD) and investigate their 
interplay with macrophages in the tumor 
microenvironment. Rigorous cellular annotation was 
therefore necessarily performed. Following batch 
quality control, batch effect correction, and doublet 
removal, high-quality single-cell data were obtained. 
Optimal dimensionality reduction clustering 
resolution was determined using clustree analysis, 
with subsequent visualization through t-Distributed 
Stochastic Neighbor Embedding (t-SNE) and Uniform 
Manifold Approximation and Projection (UMAP) 
algorithms (Figure 1B-C). Primary cell classification 
was achieved using classic markers: EPCAM/KRT19 
for epithelial cells, PECAM1/ACTA2 for stromal cells 
and PTPRC for immune cells. Subpopulation 
identification revealed T helper cells (IL7R+), 
cytotoxic T lymphocytes (CD8A+), natural killer cells 
(GNLY+), plasma cells (MZB1+), and myeloid cells 
(CD14+) (Figure 1D). Given the functional 
heterogeneity of CAFs, we performed secondary 
clustering to define four distinct subtypes: 
antigen-presenting CAFs (apCAFs), myofibroblastic 
CAFs (myCAFs), extracellular matrix CAFs (eCAFs), 
and inflammatory CAFs (iCAFs) (Figure 2A). These 
subtypes exhibited characteristic expression profiles: 
apCAFs demonstrated up-regulated MHC class II 

molecules; myCAFs expressed myofibroblastic 
molecules markers (ACTA2, MYLK, TAGLN); eCAFs 
showed extracellular matrix remodeling signatures 
(MMP14, POSTN); while iCAFs were enriched in 
inflammatory factors (CCL2, CXCL12, CXCL14) 
(Figure 2B). Within the myeloid compartment, we 
identified four distinct macrophage subpopulations 
through the selection of top-ranked and functionally 
specific marker genes: SPP1+ macrophages, RPLP0+ 
macrophages, RETN+ macrophages, and 
FOLR2+APOC1+ macrophages (Figure 2F-G). 

ECAFs and SPP1+ macrophages 
demonstrated a significant association with 
poor prognostic outcomes 

To integrate bulk transcriptomic data with 
single-cell data, we employed the Scissor algorithm to 
further identify potential associations between cells of 
interest and patient prognosis [20]. After collecting 
bulk RNA sequencing data and survival data from 
TCGA, we identified Scissor+ cells associated with 
poor survival outcomes in both CAFs and 
macrophages (Figure 2C, H). Researchers found that 
eCAFs constitute a significant component of Scissors+ 
cells, accounting for 75.9% of the subpopulation 
proportion in Scissors+ cells, while iCAFs represent 
the majority of Scissors- cells (Figure 2D-E). Within 
the macrophage population, we found that SPP1+ 
macrophages constitute a significant component of 
Scissors+ cells, accounting for 62.4% of the cellular 
subpopulation proportion in Scissors+ cells (Figure 
2I-J). Therefore, we reasonably conclude that both 
eCAFs and SPP1+ macrophages are closely associated 
with the poor survival outcomes. To validate this 
association, we implemented the CIBERSORTx 
computational algorithm to quantify eCAF and SPP1+ 
macrophage infiltration levels across three 
independent cohorts (TCGA, GSE31210, GSE72094). 
Patients were then divided into high-infiltration and 
low-infiltration groups based on the median values of 
infiltration abundance level. It's worth noting that 
racial background did not substantially affect the 
infiltration levels of these cell subsets (Supplementary 
Tables 1 and 2). Subsequent Kaplan-Meier survival 
analysis revealed that in the TCGA cohort (p=0.0033, 
Figure 3A), GSE31210 cohort (p=0.034, Figure 3C), 
and GSE72094 cohort (p=0.012, Figure 3E), the 
high-infiltration group of eCAFs exhibited 
significantly worse survival outcomes compared to 
the low-infiltration group. Similarly, the 
high-infiltration group of SPP1+ macrophages 
demonstrated poorer survival in the TCGA cohort 
(p=0.0049, Figure 3B), GSE31210 cohort (p=0.0095, 
Figure 3D), and GSE72094 cohort (p=0.046, Figure 3F). 
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Figure 1. Workflow chart and the annotation of single-cell transcriptome data of lung adenocarcinoma. (A) Workflow chart of the study. (B) t-Distributed 
Stochastic Neighbor Embedding (t-SNE)-based (right) dimensionality reduction map. (C) Uniform Manifold Approximation and Projection (UMAP)based dimensionality 
reduction map. The cell cluster annotations are marked with different colors. (D) Schematic illustration of markers used for preliminary cell clustering in UMAP: EPCAM and 
KRT18 for epithelial cells; PECAM1 for endothelial cells; ACTA2 for fibroblasts; PTPRC for immune cells; IL7R for Th cells; CD8A for Tc cells; GNLY for NK cells; MZB1 for B 
cells; and CD14 for myeloid cells. 
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Figure 2. Detailed annotations, prognostic phenotypic associations and cellular proportion analysis of CAFs and macrophages. (A) UMAP-based 
dimensionality reduction map of fibroblast subtypes, including eCAFs, iCAFs, myCAFs, and apCAFs. Different cell clusters are represented by distinct colors. (B) Dotplot showing 
the expression of representative marker genes in fibroblast subtypes. The color represents the average expression level, and the dot size indicates the percentage of cells 
expressing the gene. (C) UMAP plot displaying the distribution of Scissor+ and Scissor− fibroblasts. (D) Contingency table showing the distribution of Scissor+ and Scissor− cells 
across fibroblast subtypes. (E) 3D pie chart showing the proportion of fibroblast subtypes among Scissor+ cells. (F) UMAP plot of myeloid cells. (G) Dotplot showing the 
expression of representative marker genes in myeloid cells. (H) UMAP plot displaying the distribution of Scissor+ and Scissor− macrophages. (I) Contingency table showing the 
distribution of Scissor+ and Scissor− cells across macrophage subtypes. (J) 3D pie chart showing the proportion of macrophage subtypes among Scissor+ cells. (K-N) Stacked bar 
plots showing the distribution of CAFs (K, L) and macrophage (M, N) subtypes across different disease stages and pathological conditions. 
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The proportion of eCAFs and SPP1+ 
Macrophages varies with the stage and 
pathological classification 

Tumor cells typically alter the surrounding 
microenvironment during progression, often 
accompanied by changes in the cellular composition. 
Building upon the established prognostic significance 
of eCAFs and SPP1+ macrophages, we performed 
systematic quantification of their temporal-spatial 
distribution patterns across tumor stages and 
histological differentiation grades. We observed that 
in advanced-stage LUAD, the proportions of both 
eCAFs and SPP1+ macrophages increased with the 
progression of tumor (Figure 2K, M). In pathological 
classification, eCAFs proportion increased with 
decreasing differentiation (Figure 2L). However, this 
pattern was absent in SPP1+ macrophages, which 
exhibited peak abundance in moderately- 
differentiated tumors and lowest levels in 
well-differentiated tumors (Figure 2N). 

The intrinsic developmental trajectories of 
CAFs and macrophages 

Considering the strong association between 
eCAFs and SPP1+ macrophages within their 
respective cellular subpopulations and their relevance 
to prognosis and tumor progression, researchers 
performed pseudotime analysis to further explore 
their intrinsic lineage evolution processes. We found 
that both CAFs and macrophages exhibit distinct 
trends in cellular development and evolution. Based 
on pseudotime progression, two lineage evolution 
processes were observed in CAFs. In Lineage1, CAFs 
demonstrated a differentiation trajectory from 
myCAFs toward iCAFs. In Lineage2, eCAFs served as 
the developmental endpoint, with CAFs exhibiting a 
differentiation trajectory from myCAFs to eCAFs 
(Figure 4B-C). Simultaneously, the heatmap revealed 
the biological functional evolution during the 
developmental process. In Lineage2, the expression 
changes of key genes demonstrated a functional 
transition of CAFs from muscle contraction-related 
activities to immune regulation, followed by Wnt 
signaling pathway modulation, and ultimately to 
extracellular matrix remodeling (Figure 4A). Within 
the macrophages, we also observed two distinct 
intrinsic lineage differentiation trajectories. In the 
Lineage1 of macrophages, RETN+ macrophages 
progressively differentiated into FOLR2+APOC1+ 
macrophages and ultimately evolved into SPP1+ 
macrophages. In the Lineage2, RETN+ macrophages 
exhibited a differentiation trajectory toward RPLP0+ 
macrophages (Figure 4E-F). Notably, in the functional 

evolution Lineage1, macrophages transitioned from 
cellular immunity and antigen presentation functions 
to lipoprotein-associated functions, subsequently 
shifted toward signaling regulation and immune cell 
recruitment (Figure 4D). 

Functional enrichment analysis 
To further characterize the biological features of 

eCAFs and SPP1+ macrophages, we performed Gene 
Set Variation Analysis (GSVA) functional enrichment 
analysis on the signature gene sets. Compared to 
other CAF subtypes, eCAFs exhibited significant 
enrichment in pathways including angiogenesis, 
epithelial-mesenchymal transition, protein secretion, 
Notch signaling, apical junction, and glycolysis 
(Figure 5A). In the macrophages population, SPP1+ 
macrophages exhibited significant enrichment in 
pathways including angiogenesis, epithelial- 
mesenchymal transition, inflammatory response, 
G2/M checkpoint, TNF-α signaling via NF-κB, 
Hedgehog signaling, and Notch signaling (Figure 5B). 

Intercellular communication among the 
various components of the tumor 
microenvironment 

Intercellular communication within the tumor 
microenvironment constitutes a fundamental driver 
of tumor initiation, progression, and therapy 
resistance. Investigating these interactions not only 
reveals the evolutionary logic of tumors but also 
provides deeper insights into their dynamic 
adaptability and heterogeneity. Given the close 
association between eCAFs, SPP1+ macrophages, and 
poor prognosis, researchers further conducted an 
intercellular communication analysis. Bubble plot 
analysis revealed close communication between 
eCAFs and SPP1+ macrophages, with significant 
enrichment in the COL1A1-CD44 and COL1A2-CD44 
pathways (Figure 5C). Subsequent analysis of selected 
functional pathways demonstrated that eCAFs 
exhibited strong communication activity across 
multiple receptor-ligand pairs within the 
COLLAGEN signaling network, indicating their 
pivotal role in this network. Furthermore, this 
pathway showed the most significant enrichment in 
the communication between eCAFs and epithelial 
cells (Figure 6A). In the FN1 signaling network, we 
observed high activity between four distinct types of 
CAFs and other cells. Notably, eCAFs showed the 
most pronounced activity, particularly in the 
communication between eCAFs and epithelial cells 
(Figure 6B). 
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Figure 3. High infiltration of eCAFs and SPP1+ macrophages suggests a poor prognosis. (A, C, E) Kaplan-Meier curves for eCAFs of high infiltration level and low 
infiltration level. (B, D, F) Corresponding survival analyses for SPP1+ macrophages. (A-B) TCGA cohort; (C-D) GSE31210 cohort; (E-F) GSE72094 cohort. Log-rank p-values are 
indicated for each comparison. Numbers for "High" and "Low" groups are shown below each survival plot. Statistical significance was defined as p < 0.05. 
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Figure 4. Integrated analysis of cellular heterogeneity, differentiation trajectories, and functional annotations. (A) Changes in gene expression of CAFs in 
Lineage 1 and Lineage 2, with functional enrichment results of GO_BP for different gene lists shown on the right. (B-C) Pseudo-time developmental trajectories of CAFs. Lineage1 
and Lineage2 denote distinct differentiation trajectories inferred from pseudotime analysis. (D) Changes in gene expression of macrophages in Lineage 1 and Lineage 2. (E-F) 
Pseudo-time developmental trajectories of macrophages. 
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Figure 5. Identification of potential receptor-ligands for eCAFs-SPP1+ macrophage communication and the functional enrichment analysis of CAFs and 
macrophages. The hallmark pathway enrichment score of different CAFs subpopulation cells (A) and macrophages subpopulation cells (B) were illustrated by heat map. (C) 
Dot plot illustrating the interactions of CAFs to SPP1+ macrophages. 
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Figure 6. Cell-cell communication networks mediated by COLLAGEN and FN1 signaling pathways. CellChat analysis depicting intercellular communication 
probabilities across diverse cell populations. Collagen Signaling Network (A) and FN1 Signaling Network (B) are illustrated by heatmaps. The sender cell types are indicated, and 
the strength of communication from sender to receiver is represented by the color intensity. 

 
Identification of the eCAFs signatures 

Given the unique biological function and 
proportion of eCAFs in the LUAD tumor 

microenvironment, we aimed to identify a clinically 
valuable prognostic model through machine learning. 
Initially, we established specific signatures for eCAFs. 
This involved three sequential steps: (1) identifying 



Int. J. Med. Sci. 2025, Vol. 22 

 
https://www.medsci.org 

2967 

characteristic signatures distinguishing CAFs from 
other cell types, (2) defining eCAFs-specific signatures 
within the CAFs population, and (3) screening 
tumor-upregulated differentially expressed genes in 
the TCGA dataset. Ultimately, the 28 specific 
signatures of eCAFs were incorporated into 
subsequent machine learning modeling. We 
visualized the top 5 and top 10 genes to assess their 
specific expression in eCAFs (Figure 7A-B). 

Construction of the machine learning model 
framework 

After analyzing 101 machine learning model 
combinations, we ranked them based on the mean 
C-index across all cohorts to identify the 
best-performing modeling method (Figure 7C). The 
StepCox[forward] + plsRcox model demonstrated the 
most favorable results. The C-index of this model was 
0.65 in the training set, 0.75 in the validation set 
GSE31210, and 0.63 in the validation set GSE72094 
(Figure 8A). After dividing the patients into two 
subgroups based on the median risk score, the 
univariate Cox regression meta-analysis showed that 
the model was positively correlated with the risk of 
patient mortality (HR > 1), and all datasets 
demonstrated significant p-values (Figure 8B). In the 
meta-analysis, the HR values for the Random Effect 
Model and the Fixed Effect Model were 2.66 (1.24 - 
5.71) and 2.05 (1.64 - 2.58), respectively. The combined 
results showed a significant increase in risk and the 
effect of risk scores remaining stable. Using the 
median score from the model, patients were 
categorized into high-risk and low-risk groups. In the 
training set (HR = 1.92, 95% CI: 1.43–2.58, p < 0.001), 
the GSE31210 validation set (HR = 7.41, 95% CI: 3.8–
14.42, p < 0.001), and the GSE72094 validation set (HR 
= 1.81, 95% CI: 1.25–2.62, p = 0.002), the high-risk 
group consistently demonstrated poorer prognosis 
(Figure 8C-E). The ROC curve analysis revealed the 
following AUCs: 1-year AUCs for TCGA-training set: 
0.673, GSE31210: 0.805, GSE72094: 0.663; 3-year AUCs 
for TCGA-training set: 0.686, GSE31210: 0.771, 
GSE72094: 0.623; and 5-year AUCs for TCGA-training 
set: 0.6, GSE31210: 0.78, GSE72094: 0.659 (Figure 
8F-H). 

Discussion 
To our knowledge, this study is the first to 

systematically characterize the significant role of 
eCAFs in prognosis and their potential interactions 
with immune cells within the tumor 
microenvironment in lung adenocarcinoma. We 
integrated high-quality single-cell data from multiple 
samples, multi-cohort transcriptomic data, and 
diverse machine learning frameworks, which 

logically emphasize the critical role of eCAFs in lung 
adenocarcinoma prognosis. We delineate the 
infiltration levels, intrinsic lineage trajectories, 
functional evolution, and crosstalk between eCAFs 
and SPP1⁺ macrophages in the lung adenocarcinoma 
microenvironment, as well as their prognostic value. 

While the presence of cancer-associated 
fibroblasts (CAFs) in tumor microenvironment is 
well-documented, their functional duality remains 
debated. Some reports have shown that CAFs directly 
influence many biological functions of cancer cells, 
such as proliferation, migration, and drug resistance, 
thereby being considered as pro-tumorigenic [25]. 
However, other studies suggest that CAF subtypes 
with different characteristics may also exert 
tumor-suppressive effects [26]. CAFs can either 
promote or suppress tumor growth, with their 
functional and phenotypic diversity linked to 
differential expression of tumor and stromal cell 
signals, markers, and genetic characteristics, which in 
turn is closely related to patient prognosis [9]. This 
heterogeneity of CAFs is also a critical issue in our 
study. Single-cell technological advancements now 
permit precise functional characterization of CAF 
subtypes. This study elucidates the close correlation 
between eCAFs and prognosis in lung 
adenocarcinoma patients using single-cell and 
transcriptomic data, investigates the interactions of 
eCAFs with other components of the tumor 
microenvironment, explores their functional 
evolution and innovatively establishes a scoring 
signature (eCAFsRS) to assess patient prognosis. 

The interplay between CAFs and immune cells 
has also garnered growing attention, particularly 
macrophages. In colorectal cancer, Qi et al. 
demonstrated that CAFs and SPP1⁺ macrophages 
collaborate to remodel the ECM, creating a fibrotic 
stroma that impedes lymphocyte infiltration into the 
tumor core [27]. Similarly, You et al. reported in 
gastric cancer that eCAFs-derived periostin (POSTN) 
mediates macrophage chemoattraction through 
cellular crosstalk, consequently modulating responses 
to immune checkpoint blockade (ICB) therapy [14]. 
These findings motivate our investigation into 
whether analogous mechanisms exist in lung 
adenocarcinoma. 

Our findings suggest that the infiltration 
abundance of eCAFs and SPP1+ macrophages act as 
prognostic markers of poor patient survival. Notably, 
within Scissors+ cells associated with adverse 
survival phenotypes, eCAFs constituted the 
predominant CAF subtype (75.9%), while SPP1+ 
macrophages represented the majority (62.4%) of 
Scissors+ macrophages, underscoring their clinical 
relevance. 
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Figure 7. Machine-learning framework. (A) The expression levels of the top 5 eCAFs-related signatures across different CAF cell populations are displayed using violin 
plots. (B) Dotplot demonstrates the specificity of the top 10 expressed eCAFs-related genes. (C) The C-index of 101-machine learning algorithms is presented across different 
cohorts. The algorithm ranked first is the best-performing model. Dataset1 = TCGA, Dataset2 = GSE31210, Dataset3 = GSE72094. 
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Figure 8. Prognostic performance and validation of the StepCox[forward] + plsRcox risk model across multiple cohorts. (A) Bar plot showing the C-index 
values for the risk model in three independent datasets. (B) Meta-analysis of the C-index using univariate Cox regression in random and fixed effect models, with percentage 
contributions from each dataset. Hazard ratios (HR) and 95% confidence intervals (95% CI) are on the right. (C-E) Kaplan-Meier survival curves stratified by low-risk and high-risk 
groups in dataset1, dataset2 and dataset3. p-values and HRs are annotated. (F-H) Time-dependent receiver operating characteristic (ROC) curves for 1-year, 3-year, and 5-year 
survival predictions in dataset1, dataset2 and dataset3. 

 
As tumors progress, the proportion of eCAFs 

within the CAF cell population increases, and the 
proportion of SPP1+ macrophages within the 
macrophage population also rises. Pathological 
stratification revealed a significant correlation 
between higher eCAFs abundance and malignant 
grades, whereas SPP1+ macrophage distribution 
showed no such association. Crucially, multi-cohort 
validation (TCGA, GSE31210, GSE72094) consistently 
demonstrated significantly shorter overall survival in 
high-infiltration groups for both cellular subtypes. 
These results collectively highlight the central role of 
eCAFs in driving aggressive tumor behavior and 
unfavorable clinical outcomes. While our study 
demonstrates that the infiltration levels of eCAFs and 

SPP1⁺ macrophages are significantly associated with 
patient survival across multiple LUAD cohorts, we 
acknowledge that these findings are derived from 
transcriptomic analyses and do not account for other 
important clinical variables such as treatment 
regimen, tumor stage, or comorbid conditions. 
Therefore, although the identified associations are 
biologically and prognostically relevant, future 
prospective studies incorporating comprehensive 
clinical metadata are warranted to validate and 
extend the clinical applicability of our findings. 

The classification of CAFs reflects not simple 
stratification but dynamic transformation [28]. To 
elucidate this complexity, researchers aim to further 
investigate whether there is an intrinsic lineage 
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evolution process within CAFs. Pseudotemporal 
trajectory analysis revealed two divergent 
differentiation paths, with Lineage2 terminating at 
eCAFs as the evolutionary endpoint. While 
esophageal CAFs reportedly promote tumor growth 
via epithelial-mesenchymal transition (EMT) [29], our 
pathway enrichment data position eCAFs as pivotal 
EMT drivers in lung adenocarcinoma. Furthermore, 
pseudotime analysis indicates the potential presence 
of a developmental trajectory within the CAF 
subpopulation that leads to the formation of 
malignant phenotype-associated eCAFs. As the 
endpoint of this trajectory, eCAFs could be a potential 
marker for disease progression and poor prognosis in 
lung adenocarcinoma patients. Notably, analogous 
differentiation dynamics were observed in SPP1+ 
macrophages. SPP1 (Secreted Phosphoprotein 1) 
encodes osteopontin which is involved in various 
functions such as cell signaling, immune modulation, 
cell adhesion, and migration. Liu et al. demonstrated 
that SPP1⁺ macrophages form a tumor immune 
barrier in hepatocellular carcinoma, contributing to 
immunotherapy resistance [30]. Other studies have 
also shown that SPP1+ macrophages are considered 
key fibrotic cells in certain chronic organ injuries [31]. 
In functional enrichment of SPP1+ macrophages, we 
also observed the enrichment of malignant pathways 
including angiogenesis. These phenomena underscore 
the malignant role of SPP1+ macrophages in tumors. 

Recent studies have revealed close intercellular 
interactions between CAFs and SPP1+ macrophages 
[27]. This prompted our investigation into the 
crosstalk between eCAFs and SPP1⁺ macrophages. 
We identified that eCAFs exert significant effects on 
SPP1+ macrophages through the COL1A1-CD44 and 
COL1A2-CD44 ligand-receptor pairs. The two α1 
chains encoded by COL1A1 and COL1A2, along with 
one α2 chain, constitute type I collagen, which serves 
as a major component of the extracellular matrix 
(ECM) [32]. CD44, a member of the transmembrane 
glycoprotein family, mediates cell-ECM 
communication and adhesion, and has been reported 
to mediate critical steps in bone metastasis [33]. For a 
long time, the extracellular matrix (ECM) was 
regarded as an inert framework and largely 
overlooked. However, it is now recognized as a highly 
dynamic partner of the immune system, providing 
not only dynamic tissue integrity but also acting as a 
signaling molecule that participates in and drives 
numerous biological responses, including interactions 
with immune cells [34]. The density, composition, and 
stiffness of the ECM influence the infiltration of 
immune cells into the core of the tumor, thus affecting 
the antitumor immune response [35]. It has been 
confirmed that dense collagen in the tumor 

microenvironment (TME) inhibits T cell infiltration 
[36]. In ovarian cancer, collagens produced by 
fibroblasts correlate with the expression of Treg and T 
helper 2 cell (TH2) differentiation markers, suggesting 
their immune-suppressive and tumor-promoting 
roles [37]. Fibronectin (FN1), an ECM protein, has 
been reported to be associated with tumorigenesis 
[38]. Notably, we observed pronounced eCAF activity 
in both COLLAGEN and FN1 signaling, suggesting 
that eCAFs may enhance ECM density in lung 
adenocarcinoma and foster an immune-suppressive 
niche. 

The application of machine learning algorithms 
is gaining increasing attention, as they offer powerful 
tools for extracting meaningful biological patterns 
from high-dimensional data. Compared to traditional 
approaches, these algorithms are often more effective 
in handling a wide range of complex biological tasks 
[39, 40]. Therefore, we innovatively selected 28 
eCAFs-related genes to construct a scoring signature 
and used 101-machine learning algorithms to 
establish and select the most effective prognostic 
model. The results showed that the signature 
constructed from these 28 genes has potential 
prognostic stratification value. Recent researches in 
investigating CAF-related signatures have 
highlighted their prognostic and therapeutic potential 
across cancer types. For instance, Zhang et al. 
previously developed a prognostic risk score model 
based on cancer-associated fibroblasts (CAFs) 
signatures in cervical cancer [41]. Although our study 
shares methodological similarities with theirs study, 
we have employed machine learning algorithms to 
identify the model with optimal performance during 
the construction of the scoring system, as opposed to 
the conventional LASSO model. Similarly, analogous 
studies have been reported in ovarian cancer, further 
corroborating the applicability of this methodological 
framework [42]. In contrast, our study has achieved a 
precise characterization of the microenvironment of 
eCAFs and SPP1+ macrophages in LUAD by 
integrating multi-omics data and combining the 
crosstalk between specific CAF subpopulations and 
SPP1+ macrophages. This advancement is crucial for 
understanding the local stromal-immune interaction. 

To further illustrate the superiority of the model, 
the researchers selected several clinically recognized 
immune checkpoints, prognostic biomarkers as well 
as markers previously reported to be associated with 
LUAD prognosis to draw time-dependent ROC 
curves [43, 44]. We discovered that this model has a 
more remarkable performance at 1-, 3-, and 5-year 
survival time points (Supplementary Figure 4). 

In summary, this study identified eCAFs closely 
associated with poor prognosis in lung 
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adenocarcinoma, characterized eCAFs' role in ECM 
remodeling via extracellular matrix proteins, and 
explored the interactions between eCAFs and SPP1+ 
macrophages, including potential ligand-receptor 
pairs which provided potential targets for targeting 
eCAFs therapy. Furthermore, we derived 
eCAFs-related signatures, offering novel tools and 
strategies for clinical prognostic stratification. 
However, our study has certain limitations. First, the 
samples are still insufficient and need to be expanded. 
Second, our study lacks in vivo and in vitro 
experimental validation, and we plan to supplement 
experiments in the future to make our conclusions 
more reliable. Third, the prognostic stratification 
model we built requires validation with more datasets 
and real clinical cohorts. Meanwhile, although the 
model demonstrates acceptable generalizability 
across independent LUAD datasets, its performance 
remains at a moderate level. Fourth, while the 
CIBERSORTx deconvolution algorithm may not be 
entirely precise, it remains the mainstream method for 
data processing. At the same time, as a highly 
interactive system, the tumor microenvironment 
involves intricate interactions among its components. 
While our study highlights eCAFs and SPP1+ 
macrophages as key drivers, their roles are likely 
intertwined with other TME constituents. This 
complexity is acknowledged as another limitation and 
we propose that our findings serve as a foundational 
framework for future research to dissect intercellular 
interactions in greater detail of the TME.  

While our study establishes a robust association 
between eCAF-SPP1+ macrophages interactions and 
LUAD progression through multi-omics integration, 
we acknowledge that the correlative nature of bulk 
transcriptomic analyses inherently limits causal 
inference. Nonetheless, these limitations mentioned 
above do not undermine the overall reliability of our 
findings. Based on the findings of multi-omics 
studies, verifying the interactions between the matrix 
and the immune system through experimental 
systems will be the focus of subsequent research. This 
includes but is not limited to constructing orthotopic 
LUAD animal models, analyzing the 
microenvironment remodeling induced by treatment 
through longitudinal spatial transcriptomics, 
screening with high-throughput organoids to 
determine combined targeting strategies, and 
validating signaling pathways in vitro, among other 
experiments. We have preliminarily established the 
prognostic significance of the interaction between 
eCAFs and SPP1+ macrophages. We believe that our 
study can provide new insights for the further 
exploration of the crosstalk between fibroblasts and 
macrophages. 

Supplementary Material 
Supplementary figures and tables.  
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