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Abstract 

This study addresses the challenge of cardiorespiratory fitness (CRF) assessment by proposing predictive 
models for maximal oxygen uptake (VO₂max) based on step test parameters. Recognizing VO₂max as a 
gold standard for CRF evaluation, this study aims to develop a VO₂max prediction model based on a step 
test, providing a simple and practical alternative for primary healthcare and health monitoring. This model 
enables clinicians and health management professionals to efficiently assess patients' cardiorespiratory 
fitness. Through the recruitment of 200 healthy Taiwanese adults, the research combined direct VO₂max 
measurements with step test heart rate (HR) data and variables like age, sex, percentage body fat (PBF), 
body mass index (BMI), and resting heart rate (RHR) to develop six predictive models. This method is 
applicable for clinical health monitoring, cardiorespiratory fitness assessment in patients with chronic 
diseases, and exercise capacity monitoring in cardiac rehabilitation programs. The study identified that 
PBF-based models consistently outperformed BMI-based ones, with ModelPBF3, which incorporates HR 
responses during exercise, achieving the highest accuracy (R² = 0.689; SEE = 4.6971 ml·kg⁻¹·min⁻¹). These 
results indicate that the model can effectively estimate VO₂max and be applied in primary healthcare, 
remote health monitoring, and cardiac rehabilitation settings, providing a simple and practical tool for 
cardiorespiratory fitness assessment in clinical practice. Validation via PRESS cross-validation and 
Bland-Altman plots confirmed the stability and reliability of the models across diverse subgroups. By 
bridging the gap between laboratory-grade precision and everyday practicality, the study introduces a 
robust, low-cost, and user-friendly tool for CRF assessment, adaptable for non-athletes and those unable 
to perform high-intensity exercises. This research advances the feasibility of CRF self-management in 
varied settings, while future iterations could extend its applicability to broader demographics and 
integrate additional physiological variables for universal adoption. 
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Introduction 
Cardiorespiratory fitness (CRF) is closely 

associated with cardiovascular health, metabolic 
syndrome, and all-cause mortality, making it a crucial 
indicator for health assessment [1,2,3]. Among CRF 
indicators, maximal oxygen uptake (VO₂max) is 
considered the gold standard, as it reflects an 
individual's oxygen consumption capacity at maximal 
exercise intensity [4]. However, direct VO₂max 
measurement requires high-intensity exercise and 
specialized equipment, making it costly and less 
accessible for routine assessments [5,6]. To overcome 

these limitations, researchers have developed various 
submaximal exercise tests, such as the 6-minute walk 
test, 12-minute run test, and step test [7,8,9]. These 
methods have lower equipment requirements and are 
suitable for individuals across different age groups 
and health conditions, leading to their widespread 
use in CRF assessment [10,11,12]. Since the mid-20th 
century, numerous step test protocols have been 
developed to accommodate diverse populations. 
Among them, the YMCA 3-minute step test and 
Harvard step test have been extensively applied in 
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fitness evaluations and cardiac rehabilitation 
[7,8,9,10]. These tests incorporate factors such as heart 
rate (HR), age, sex, and body composition to establish 
VO₂max prediction models [11,12]. 

The step test has been developed since the 
mid-20th century, with various protocols designed to 
accommodate different step rates, heights, and 
durations, catering to diverse age groups, health 
conditions, and fitness levels. Classic tests such as the 
“Young Men’s Christian Association (YMCA) 
Three-Minute Step Test” and the “Harvard Step Test” 
have been widely utilized for fitness assessment and 
cardiac rehabilitation evaluation [7,8,9,10]. The 
outcomes of these tests are closely associated with 
factors such as heart rate, age, sex, and body 
composition. Studies have demonstrated that 
post-exercise heart rate recovery effectively evaluates 
individual CRF and serves as a basis for predicting 
VO₂max through heart rate-based models [11,12]. As 
understanding of various physiological indicators has 
advanced, researchers have incorporated additional 
variables, such as percentage body fat (PBF) and body 
mass index (BMI), into prediction models to improve 
accuracy [13,14,15]. Typically, individuals with better 
CRF exhibit faster post-exercise HR recovery 
[16,17,18]. Research indicates a significant linear 
relationship between VO₂max and HR changes 
during and after exercise [19,20]. Faster HR recovery 
in individuals with higher CRF is attributed to 
superior cardiovascular adaptability and enhanced 
muscular metabolic efficiency [21,22]. Consequently, 
HR recovery has become a non-invasive method for 
evaluating CRF, particularly well-suited for simple 
step tests [23]. Studies suggest that HR indices and the 
difference in HR between specific time points (e.g., the 
difference between the 3rd minute of exercise and 1 
minute post-exercise) can serve as effective responses 
in prediction models. These responses enhance the 
reliability of step test predictions under various 
scenarios [24,25]. 

Despite the use of various HR response 
indicators for CRF evaluation, there remains room for 
improvement in the accuracy and generalizability of 
step test models. Previous studies have identified age, 
sex, BMI, and PBF as critical factors influencing 
VO₂max [26,27]. Consequently, recent research has 
increasingly incorporated additional variables to 
enhance model precision. Studies have shown that 
integrating multiple HR parameters can not only 
improve the explanatory power of CRF variability but 
also reduce the standard error of prediction in models 
[28,29,30]. To address this, the current study employs 
a multiple linear regression analysis approach, 
combining physiological variables and exercise HR 
parameters to develop a VO₂max prediction model 

for the step test. Cross-validation methods are widely 
utilized in model validation to assess stability. In this 
study, the effectiveness of the model was evaluated 
using predicted residual error sum of squares (PRESS) 
cross-validation, comparing its applicability and 
stability across groups of different sex, age, and CRF 
levels [16,31,32]. Additionally, Bland-Altman analysis 
was employed to assess the agreement between 
measured and estimated values, ensuring the 
reliability of the predictions [33]. 

In modern society, influenced by environmental 
factors, the demand for family health management is 
steadily increasing, and simple yet accurate tools for 
CRF self-assessment have become a pressing need 
[26,34]. The step test, characterized by its simplicity, 
low cost, and high safety, is suitable for people of 
various age groups and health conditions. Designing 
a VO₂max prediction model for the step test that is 
applicable in-home settings not only facilitates 
autonomous health management but also provides a 
more practical assessment tool for clinical use. 
Currently, few studies differentiate VO₂max 
prediction formulas based on economic feasibility, 
convenience, and accuracy. Such distinctions are 
crucial to enabling individuals to select prediction 
methods that best suit their conditions. Against this 
backdrop, this study develops VO₂max prediction 
formulas based on physical characteristics, RHR, and 
exercise test parameters. The study also validates and 
compares the effectiveness of different models in 
predicting VO₂max. We hypothesize that 
exercise-induced HR recovery during the step test is a 
potential predictor of VO₂max. By incorporating HR 
parameters alongside age, sex, and physical 
characteristics (PBF/BMI) into the VO₂max prediction 
formula, we aim to enhance the accuracy of VO₂max 
prediction. 

Methods 
Study design 

In this study, all participants were required to 
complete two exercise tests: direct VO₂max 
measurement and the step test. VO₂max for both the 
training and testing groups was measured using an 
electromagnetically braked bicycle ergometer 
(Excalibur Sport Ergometer, Lode BV, the 
Netherlands) in conjunction with a Cardiopulmonary 
Exercise Testing System (Vmax Encore 29 System, 
VIASYS Healthcare Inc., Yorba Linda, CA). A Polar 
H10 Heart Rate Monitor (Polar Electro Oy, Finland) 
was used to measure participants' exercise HR during 
the step test. Since heart rate (HR) changes during 
exercise are significantly correlated with measured 
VO₂max [35,36], this study incorporates HR Recovery 
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(post-exercise heart rate recovery rate) as one of the 
VO2max prediction factors. HR Recovery can be 
further divided into (1) parasympathetic reactivation 
during the first 2 minutes and (2) metabolic recovery 
during the last 2 minutes. Using these measurements, 
the study developed multiple linear regression 
equations for predicting VO₂max based on age, sex, 
body composition, and with or without HR 
parameters. PRESS cross-validation procedures were 
employed to validate the prediction models. The 
study procedures were approved by the Institutional 
Review Board of National Taiwan Sport University 
(Taoyuan City, Taiwan) and informed consent was 
provided by all participants before the experiment. 
This study was conducted in full conformance with 
the relevant guidelines and regulations, i.e., the 
principles of the Declaration of Helsinki guidelines. 
The study was registered at http://rad.ntsu.edu.tw/ 
(reference number: NTSUIRB-112-029). We recruited 
volunteers with four kinds of physical fitness 
characteristics using an open, independent, and 
random method. 

Participants 
All participants (Taiwanese adults) were openly, 

independently, and randomly recruited through 
advertisements posted in public spaces. Individuals 
with cardiovascular, pulmonary, or metabolic 
diseases, or those with neurological, muscular, or 
skeletal conditions that could affect their ability to 
complete the exercise tests, were excluded. The 
selection criteria for participants in this study 
included the absence of known cardiovascular, 
respiratory, metabolic, neuromuscular, or 
musculoskeletal diseases, as well as no recent 
exercise-related injuries, ensuring their ability to 
complete the test. No restrictions were placed on 
participants' exercise habits or baseline fitness levels, 
as the primary objective was to enhance the model’s 
applicability across individuals with varying fitness 
conditions. Ultimately, 200 healthy adults (age: 20–64 
years; women: 50%, men: 50%, We employed a 
random allocation method during sample distribution 
to ensure representativeness and randomness in both 
model development and validation processes. 
However, stratification by sex was not applied, which 
may have contributed to slight gender imbalances 
between the training and testing groups.) completed 
the study. Only participants who completed the step 
test without interruption were included in the 
analysis. Ten participants were excluded based on this 
criterion. While minimal, this exclusion may 
introduce a slight selection bias and limit 
generalizability to populations with lower exercise 
tolerance. Anthropometric and body composition 

parameters measured for each participant included 
height, weight, BMI, and PBF (Table 1). Body weight 
and PBF were assessed using a body composition 
analyzer (InBody ® 770, Biospace, Inc., Seoul, Korea) 
[37]. BMI was calculated as weight in kilograms 
divided by the square of height in meters. 

Maximal graded exercise test 
VO₂max was measured using an 

electromagnetically braked bicycle ergometer in 
conjunction with a cardiopulmonary exercise testing 
system. During the test, participants wore a Polar H10 
Heart Rate Monitor chest strap to monitor their HR 
and a Hans-Rudolph gas collection mask connected to 
sampling tubes and a digital flow sensor. This setup 
allowed for breath-by-breath measurement of air 
volume and analysis of O₂ and CO₂ composition. The 
test began with an initial workload of 25 W, increasing 
by 15 W every 2 minutes until participants could no 
longer maintain a pedaling frequency of 70 rpm. 
Fatigue levels during the test were assessed using the 
Borg Rating of Perceived Exertion (RPE, 6–20 scale). 
In this study, VO₂max was defined as the highest 
30-second average relative oxygen uptake. 
Participants were considered to have achieved 
VO₂max if at least three of the following criteria were 
met: (1) VO₂ plateaued despite an increase in 
workload, (2) Respiratory exchange ratio (RER) ≥ 1.10, 
(3) Maximum HR reached at least 90% of 
age-predicted HRmax (i.e., 220 - age), (4) RPE ≥ 18 [5]. 

Step test 
Before the step test, participants were equipped 

with a Polar H10 Heart Rate Monitor chest strap to 
measure HR during the exercise. The step height was 
set at 35 cm. During the test, participants were 
required to follow a stepping rhythm and ensure each 
step was completed in time with the cadence, 
stepping fully onto the platform. The step test began 
at a cadence of 96 SPM, with participants stepping up 
and down once every four beats. The stepping 
sequence follows "right foot up, left foot up, right foot 
down, left foot down", with a metronome used to 
maintain a consistent rhythm. During the test, 
participants must not lean on handrails or walls and 
are required to wear standard athletic attire and 
sports shoes. The exercise lasted for 3 minutes, and 
HR was measured at the end of the test. For safety 
reasons, if participants were unable to maintain the 
stepping cadence during the test, it was terminated, 
and their data were excluded from the analysis. HR 
was recorded at the start of the exercise, at the 1st, 
2nd, and 3rd minutes during exercise, and at the 1st, 
2nd, 3rd, and 4th minutes post-exercise. In this study, 
resting heart rate (RHR) refers to the heart rate 



Int. J. Med. Sci. 2025, Vol. 22 

 
https://www.medsci.org 

2679 

measured while the participant is in a completely 
relaxed and stationary state, whereas exercise start 
heart rate (HR0) is recorded when the participant is 
standing and preparing to begin exercise. Due to 
postural changes and psychological factors, HR0 may 
be higher than RHR. After completing the test, all 
participants remained seated during heart rate 
recovery measurements to minimize the influence of 
postural changes on HR Recovery results. 

Statistical Analysis 
All values were expressed as mean ± standard 

deviation (SD). One-way ANOVA test analysis was 
used to compare the difference in physical 
characteristics between the training and testing 
groups. Pearson's correlation coefficients were 
calculated to analyze the relationships between the 
independent variables of the training group (i.e., age, 
sex, PBF, BMI, HR parameters) and measured 
VO₂max, validating the effectiveness of the VO₂max 
prediction model. The absolute values of the 
correlation coefficients (r) were interpreted as follows: 
0.00–0.10 as negligible correlation, 0.10–0.39 as weak 
correlation, 0.40–0.69 as moderate correlation, 0.70–
0.89 as strong correlation, and 0.90–1.00 as very strong 
correlation [38]. Multiple linear regression analysis 
with cross-validation (70% of the sample for model 
development and 30% for validation) was employed 
to construct the VO₂max prediction model. Variables 
included age, sex, PBF, and HR parameters. The 

accuracy of the VO₂max prediction equations was 
assessed using the coefficient of determination (R²), 
absolute standard error of estimate (SEE), and relative 
SEE (%SEE). The PRESS method was applied to 
validate the VO₂max prediction models [16]. Bland–
Altman plots were used to evaluate the agreement 
between predicted VO₂max values and directly 
measured VO₂max values [39]. Statistical analyses 
were performed using SPSS software (version 22, IBM 
Corp., Armonk, NY, USA), with a significance level 
set at p < 0.05.  

Results 
Table 1 presents the study population and 

physical characteristics of the training and testing 
groups, including age, height, body weight, BMI, PBF, 
VO₂max and resting heart rate (RHR), there is no 
significant difference between the training and testing 
groups in the total values.  

Table 2 presents the Pearson correlations 
between measured VO₂max and the independent 
variables in the training group. The results indicate 
significant negative correlations between VO₂max 
and age (r = -0.409, p < 0.001), PBF (r = -0.738, p < 
0.001), RHR (r = -0.241, p < 0.001), HR2 (r = -0.188, p < 
0.05), HR3 (r = -0.245, p < 0.001), and HR4 (r = -0.175, p 
< 0.05). A significant positive correlation was 
observed between sex (women = 0, men = 1) and 
VO₂max (r = 0.603, p < 0.001). 

 

Table 1. Physical characteristics of the participants. Values are presented as mean ± standard deviation (SD). BMI, body mass index; PBF, 
percent body fat; RHR, resting heart rate. * p-value was calculated from one-way ANOVA test between training group and testing group. 

 Training group Testing group P* 
Female (n = 72) Male (n = 68) Total (n = 140) Female (n = 28) Male (n = 32) Total (n = 60) 

Age (years) 41.49 ± 12.66 38.91 ± 10.29 40.24 ± 11.60 39.46 ± 12.52 39.41 ± 12.42 39.43 ± 12.36 0.661 
Height (cm) 159.97 ± 5.54 173.27 ± 6.19 166.43 ± 8.87 159.50 ± 4.76 174.20 ± 6.64 167.34 ± 9.39 0.513 
Body weight (kg) 58.08 ± 9.57 74.45 ± 11.16 66.03 ± 13.20 57.71 ± 8.93 76.02 ± 11.52 67.48 ± 13.82 0.486 
BMI (kg/m2) 22.63 ± 2.96 24.76 ± 3.21 23.66 ± 3.25 22.70 ± 3.53 25.00 ± 3.10 23.93 ± 3.48 0.608 
PBF (%) 30.00 ± 6.62 21.17 ± 6.13 25.71 ± 7.75 29.53 ± 7.41 21.68 ± 6.36 25.34 ± 7.87 0.759 
VO2max (ml·kg-1·min-1) 27.09 ± 5.51 37.04 ± 7.62 31.92 ± 8.27 26.06 ± 6.21 36.09 ± 6.85 31.41 ± 8.23 0.689 
RHR (bpm) 76.67 ± 10.32 75.01 ± 10.40 75.86 ± 10.36 77.07 ± 10.87 73.38 ± 12.49 75.10 ± 11.81 0.647 

 

Table 2. Pearson correlations between measured VO2max and independent variables for the training group in the step test. (n = 140) 
 

VO2max Age Sex BMI PBF RHR HR0 HR1 HR2 HR3 HR4 
Age -0.409** 1          
Sex 0.603** -0.111 1         
BMI -0.104 -0.045 0.328** 1        
PBF -0.738** 0.242** -0.571** 0.397** 1       
RHR -0.241** 0.026 -0.080 -0.033 0.141 1      
HR0 -0.063 0.163 0.095 0.155 0.044 0.072 1     
HR1 -0.110 0.289** 0.093 0.089 0.062 0.106 0.599** 1    
HR2 -0.188* 0.377** 0.102 0.078 0.055 0.057 0.539** 0.898** 1   
HR3 -0.245** 0.406** 0.050 0.068 0.094 0.059 0.514** 0.840** 0.947** 1  
HR4 -0.175* 0.281** 0.101 0.120 0.031 -0.009 0.438** 0.516** 0.697** 0.787** 1 
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HR3-4 -0.090 0.166 -0.083 -0.086 0.092 0.102 0.080 0.444** 0.319** 0.257** -0.394** 

Notes. BMI, body mass index; PBF, percent body fat; RHR, resting heart rate; HR0, HR at the beginning of exercise; HR1, HR at the 1st minute of exercise; HR2, HR at the 2nd 
minute of exercise; HR3, HR at the 3rd minute of exercise; HR4, HR at the 4th minute of post-exercise; HR3-4, difference between heart rate at the third minute during the 
exercise and the first minute post exercise during the Step test; *p < 0.05; ** p < 0.01. 

 
 
 

Table 3. Multiple regression model (BMI-based) to predict 
VO2max (ml·kg-1·min-1). 

VO2max (ml·kg-1·min-1) B Standard Error β p value 
ModelBMI1     
 Constant 57.054 3.802  < 0.001 
 BMI (kg·m-2) -0.868 0.148 -0.341 < 0.001 
 Age (years) -0.249 0.040 -0.349 < 0.001 
 Sex (men = 1, women = 0) 11.150 0.967 0.676 < 0.001 
 R² 0.587    
 Adjusted R2 0.577    
 SEE (ml·kg-1·min-1) 5.3750    
 SEE% 16.221    
 R²p 0.611    
 SEEp 5.0949    
ModelBMI2     
 Constant 68.668 4.879  < 0.001 
 BMI (kg·m-2) -0.871 0.142 -0.343 < 0.001 
 Age (years) -0.247 0.038 -0.346 < 0.001 
 Sex (men = 1, women = 0) 10.912 0.930 0.662 < 0.001 
 RHR -0.152 0.042 -0.190 < 0.001 
 R² 0.622    
 Adjusted R2 0.611    
 SEE (ml·kg-1·min-1) 5.1554    
 SEE% 16.156    
 R²p 0.614    
 SEEp 5.0746    
ModelBMI3     
 Constant 75.247 5.574  < 0.001 
 BMI (kg·m-2) -0.860 0.138 -0.338 < 0.001 
 Age (years) -0.200 0.041 -0.281 < 0.001 
 Sex (men = 1, women = 0) 10.910 0.907 0.662 < 0.001 
 RHR -0.158 0.041 -0.197 < 0.001 
 Step test HR1 0.121 0.050 0.232 0.017 
 Step test HR3 -0.157 0.048 -0.324 0.001 
 R² 0.651    
 Adjusted R2 0.635    
 SEE (ml·kg-1·min-1) 4.9958    
 SEE% 16.610    
 R²p 0.592    
 SEEp 5.2172    

Notes. B, unstandardized regression weights; β, standardized regression weights; 
BMI, body mass index; RHR, resting heart rate; HR1, HR at the 1st minute of 
exercise; HR3, HR at the 3rd minute of exercise; SEE, standard error of estimate; 
SEE%, SEE/mean of measured VO2max × 100; R2p, PRESS squared multiple 
correlation coefficient; SEEp, PRESS standard error of estimate. 

 
 
Tables 3 and 4 present the multiple regression 

models predicting VO2max and the results of 
cross-validation. Among the PBF and BMI models, 
ModelPBF3 demonstrated the highest multiple 
correlation coefficient and the lowest standard error 
of estimate (SEE) (R2 = 0.689, SEE = 4.6971). When 
predicting VO2max using age, sex, and body 
composition, the inclusion of RHR increased R2 from 

0.654 to 0.673 and reduced SEE from 4.9190 to 4.7945 
ml·kg⁻¹·min⁻¹ for ModelPBF2, and increased R2 from 
0.587 to 0.622 and reduced SEE from 5.3750 to 5.1554 
ml·kg⁻¹·min⁻¹ for ModelBMI2. This indicates that the 
explained variance of VO2max increased by 3.06% and 
5.96% for ModelPBF2 and ModelBMI2, respectively, 
while SEE decreased by 2.53% and 4.09%, 
respectively. The addition of RHR and exercise HR 
parameters further increased the explained variance 
of VO2max by 2.38% in ModelPBF3 and 4.66% in 
ModelBMI3, with a reduction in SEE by 2.03% for 
ModelPBF3 and 3.10% for ModelBMI3. When substituting 
BMI with PBF for body composition parameters, R2 
increased from 0.587 to 0.654 and SEE decreased from 
5.3750 to 4.9190 ml·kg⁻¹·min⁻¹ for ModelPBF1; R2 
Increased from 0.622 to 0.673 and SEE decreased from 
5.1554 to 4.7945 ml·kg⁻¹·min⁻¹ for ModelPBF2; and R2 
increased from 0.651 to 0.689 and SEE decreased from 
4.9958 to 4.6971 ml·kg⁻¹·min⁻¹ for ModelPBF3. 

These results represent increases in explained 
variance of VO2max by 11.41%, 8.20%, and 5.84%, and 
decreases in SEE by 8.48%, 7.00%, and 5.98% for 
ModelPBF1, ModelPBF2, and ModelPBF3, respectively 
(Figure 1B). The PRESS cross-validation results 
indicate that changes in R2 and SEE for all VO2max 
prediction models were minimal (ΔR2 < 0.06, ΔSEE < 
0.2802 ml·kg⁻¹·min⁻¹). 

Figure 2 illustrates the validity analysis (r) and 
reliability analysis (ICC) for the six models predicting 
VO₂max. As shown in Figure 2B, the models using 
PBF as the body composition parameter—ModelPBF1 (r 
= 0.808, ICC = 0.789, both p < 0.001), ModelPBF2 (r = 
0.818, ICC = 0.801, both p < 0.001), and ModelPBF3 (r = 
0.823, ICC = 0.807, both p < 0.001)—demonstrated 
good validity and reliability in predicting VO₂max 
[38,40]. In comparison, models using BMI as the body 
composition parameter—ModelBMI1 (r = 0.772, ICC = 
0.743), ModelBMI2 (r = 0.788, ICC = 0.765), and 
ModelBMI3 (r = 0.797, ICC = 0.776)—showed slightly 
lower validity and reliability (all p < 0.001; Figure 2A). 
The predictive validity of ModelPBF1, ModelPBF2, and 
ModelPBF3 improved by 4.663%, 3.807%, and 3.262%, 
respectively, compared to their BMI-based 
counterparts. Similarly, the reliability of these models 
increased by 6.191%, 4.706%, and 3.995%, respectively 
(Figure 2C). These findings suggest that incorporating 
PBF as a body composition parameter enhances both 
the predictive validity and reliability of VO₂max 
estimation models.  
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Table 4. Multiple regression model (PBF-based) to predict 
VO2max (ml·kg-1·min-1). 

VO2max (ml·kg-1·min-1) B Standard Error β p value 
ModelPBF1     
 Constant 51.111 2.326  < 0.001 
 PBF (%) -0.551 0.067 -0.517 < 0.001 
 Age (years) -0.181 0.037 -0.253 < 0.001 
 Sex (men = 1, women = 0) 4.614 1.014 0.280 < 0.001 
 R² 0.654    
 Adjusted R2 0.646    
 SEE (ml·kg-1·min-1) 4.9190    
 SEE% 15.495    
 R²p 0.645    
 SEEp 4.8668    
ModelPBF2     
 Constant 59.178 3.622  < 0.001 
 PBF (%) -0.529 0.066 -0.496 < 0.001 
 Age (years) -0.181 0.036 -0.255 < 0.001 
 Sex (men = 1, women = 0) 4.617 0.988 0.280 < 0.001 
 RHR -0.113 0.040 -0.142 0.005 
 R² 0.673    
 Adjusted R2 0.664    
 SEE (ml·kg-1·min-1) 4.7945    
 SEE% 15.336    
 R²p 0.652    
 SEEp 4.8171    
ModelPBF3     
 Constant 65.059 4.218  < 0.001 
 PBF (%) -0.521 0.065 -0.489 < 0.001 
 Age (years) -0.155 0.037 -0.217 < 0.001 
 Sex (men = 1, women = 0) 4.972 0.978 0.302 < 0.001 
 RHR -0.114 0.039 -0.143 0.004 
 Step test HR4 -0.060 0.023 -0.131 0.011 
 R² 0.689    
 Adjusted R2 0.677    
 SEE (ml·kg-1·min-1) 4.6971    
 SEE% 15.533    
 R²p 0.643    
 SEEp 4.8788    
Notes. B, unstandardized regression weights; β, standardized regression weights; 
PBF, percent body fat; RHR, resting heart rate; HR4, HR at the 4th minute of 
post-exercise; SEE, standard error of estimate; SEE%, SEE/mean of measured 
VO2max × 100; R2p, PRESS squared multiple correlation coefficient; SEEp, PRESS 

standard error of estimate. 
 
 
Figure 3 illustrates the Bland-Altman plots 

showing the differences between measured and 
predicted VO₂max values for the six models, 
including both BMI-based (ModelBMI1, ModelBMI2, and 
ModelBMI3) and PBF-based models (ModelPBF1, 
ModelPBF2, and ModelPBF3), along with their 95% limits 
of agreement (LoAs). For the BMI-based models, 
ModelBMI1 had a mean bias of -0.30 ± 5.24 
ml·kg⁻¹·min⁻¹ with LoAs ranging from -10.57 to 9.98 
ml·kg⁻¹·min⁻¹ (Figure 3A), ModelBMI2 demonstrated a 
mean bias of -0.30 ± 5.07 ml·kg⁻¹·min⁻¹ with LoAs 
between -10.24 and 9.64 ml·kg⁻¹·min⁻¹ (Figure 3B), 
and ModelBMI3 showed a mean bias of -0.34 ± 4.98 
ml·kg⁻¹·min⁻¹, with LoAs from -10.09 to 9.42 
ml·kg⁻¹·min⁻¹ (Figure 3C). For the PBF-based models, 
ModelPBF1 exhibited a mean bias of -0.31 ± 4.86 
ml·kg⁻¹·min⁻¹ and LoAs between -9.82 and 9.21 
ml·kg⁻¹·min⁻¹ (Figure 3D). ModelPBF2 showed a mean 
bias of -0.39 ± 4.74 ml·kg⁻¹·min⁻¹, with LoAs ranging 
from -9.67 to 8.89 ml·kg⁻¹·min⁻¹ (Figure 3E). Similarly, 
ModelPBF3 demonstrated a mean bias of -0.35 ± 4.68 
ml·kg⁻¹·min⁻¹, with LoAs between -9.53 and 8.82 
ml·kg⁻¹·min⁻¹ (Figure 3F). The results indicate that all 
models produced mean biases within the acceptable 
range, confirming the reliability of their predictions 
[41]. 

However, the PBF-based models consistently 
exhibited smaller mean biases and narrower limits of 
agreement compared to the BMI-based models, 
suggesting that incorporating PBF as a body 
composition parameter enhances the accuracy and 
consistency of VO₂max predictions. 

 
 

 
Figure 1. (A) Compared to ModelBMI1, ModelBMI2, ModelBMI3, ModelPBF1, ModelPBF2, and ModelPBF3 showed improved accuracy in predicting VO₂max. (B) The improvements in 
VO₂max prediction accuracy were for ModelPBF1 compared to ModelBMI1, ModelPBF2 compared to ModelBMI2, and ModelPBF3 compared to ModelBMI3. 
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Figure 2. (A) Predictive validity (r) and reliability (ICC) of ModelBMI1, ModelBMI2, and ModelBMI3 for VO2max. (B) Predictive validity (r) and reliability (ICC) of ModelPBF1, 
ModelPBF2, and ModelPBF3 for VO2max. (C) Percentage changes in predictive validity (r) and reliability (ICC) comparing ModelPBF1 vs. ModelBMI1, ModelPBF2 vs. ModelBMI2, 
and ModelPBF3 vs. ModelBMI3 for VO2max. ICC, intraclass correlation coefficient. 

 

 
Figure 3. Bland–Altman Plots comparing the differences between measured and estimated VO2max obtained from ModelBMI1 (A), ModelBMI2 (B), ModelBMI3 (C), ModelPBF1 (D), 
ModelPBF2 (E), ModelPBF3 (F) in the entire sample (n = 200). The mean differences and 95% limits of agreement are shown as dashed lines, respectively. 

 

Discussion 
Previous studies have shown that CRF is closely 

associated with coronary heart disease and all-cause 
mortality [1,42]. Low CRF is linked to an increased 
risk of cardiovascular diseases and mortality [43]. 
VO₂max is commonly used as a key indicator to 
evaluate CRF and serves as a clinically relevant tool 
for classification [44]. Therefore, developing simple 
and reliable methods for home-based CRF 
assessments is essential. Several researchers have 
proposed VO₂max prediction formulas. For instance, 
Lee et al. developed a formula based on age, sex, 
height, weight, and recovery HR, achieving R² values 
of 0.56–0.61 and SEE values of 4.74–5.01 ml·kg⁻¹·min⁻¹ 
[10]. Similarly, Hong et al. created two formulas using 
age, sex, weight, and HR recovery, explaining 73.4% 
and 72.2% of VO₂max variability, with SEE values of 
4.7 ml·kg⁻¹·min⁻¹ [7]. Compared to previous step 
test-based VO₂max prediction models, this study 
introduces several key improvements. Prior studies 
primarily used age, sex, and post-exercise heart rate 
recovery as the main variables, with a regression 
explanatory power ranging from 0.56 to 0.74. In 
contrast, our model incorporates additional heart rate 

variables during exercise (HR1, HR3, HR4) and PBF, 
enhancing predictive accuracy. The PBF model 
(ModelPBF3) achieved an R² of 0.689 and a SEE of 
4.6971 ml·kg⁻¹·min⁻¹. However, there is a lack of finer 
distinctions among these formulas in terms of cost, 
convenience, and accuracy. Such distinctions are 
critical for enabling individuals to choose the most 
suitable prediction method based on their needs. 
Against this backdrop, this study developed six 
VO₂max prediction formulas based on physical 
characteristics, resting HR, and exercise test 
parameters. These formulas were validated and 
compared for their predictive accuracy. As 
hypothesized, the results revealed significant 
correlations between exercise HR parameters and 
VO₂max (Table 2). Simple models based on age, sex, 
and body composition (ModelBMI1 and ModelPBF1) 
showed relatively low accuracy (R² = 0.587; R² = 
0.654). Adding RHR improved the predictive 
accuracy (ModelBMI2: R² = 0.622; ModelPBF2: R² = 0.673). 
The highest accuracy was achieved by incorporating 
exercise test parameters (ModelBMI3: R² = 0.651; 
ModelPBF3: R² = 0.689). The data demonstrate that PBF 
is a better predictor than BMI. Compared to 
BMI-based models, the three PBF-based models 
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exhibited higher coefficients of determination (R²) and 
lower SEE values (Figure 1B). This difference may be 
attributed to the fact that PBF provides a more specific 
measure of body fatness, whereas BMI does not 
differentiate between fat and lean mass, potentially 
leading to misclassification in individuals with 
atypical body composition. Among them, ModelPBF3 
was the most accurate model for predicting VO₂max 
in healthy adults. However, this model requires both 
body fat percentage and multiple heart rate 
measurements, which may limit its feasibility in 
resource-limited settings. In contrast, simpler models 
like ModelBMI1 or ModelPBF1—although slightly less 
accurate—are easier to implement and may be 
preferable for large-scale screenings or field-based 
applications. However, BMI-based models are more 
economical and practical, providing an accessible 
option for individuals to assess their CRF. Depending 
on personal circumstances, individuals can select an 
appropriate VO₂max prediction formula to better 
understand their CRF status. The results of this study 
indicate that the PBF prediction model (ModelPBF3) 
demonstrates greater accuracy in VO₂max prediction 
compared to the BMI model (ModelBMI3), aligning 
with previous research findings [1]. However, due to 
the ease of obtaining BMI, it can still serve as a 
practical alternative indicator, particularly in 
large-scale health screenings and primary healthcare 
settings. 

In standard CRF tests, the HR of non-athletes 
often approaches their age-predicted HRmax [45]. 
Generally, HR reflects individual physical fitness and 
exercise intensity, with higher CRF levels associated 
with lower baseline HR values and shorter HR 
recovery times following cardiopulmonary exercise 
tests [46]. Linear relationships have been observed 
between VO₂max and HR changes before, during, and 
after exercise [10,35,36,47]. Thus, monitoring exercise 
HR can significantly enhance the predictive capacity 
of VO₂max models, making it a crucial factor for 
VO₂max estimation. Matsuo et al. reported negative 
correlations between HR during and after exercise 
and VO₂max, with the combined HR index showing a 
stronger correlation with VO₂max [36]. Similarly, 
Chung et al. found a positive correlation between the 
difference in HR at the third minute of a 3-min step 
test and recovery HR with VO₂max. In line with 
previous findings, this study demonstrated significant 
negative correlations between VO₂max and HR2 (r = 
-0.188, p < 0.05), HR3 (r = -0.245, p < 0.001), and HR4 (r 
= -0.175, p < 0.05) during the step test (Table 2) [35]. 
These results suggest that HR recovery during 
exercise testing can be considered a key factor for 
assessing CRF in adults. By monitoring HR responses 
during the step test, it is possible to objectively 

evaluate participants' physiological load during 
exercise and further develop VO₂max prediction 
formulas. 

Previous studies have demonstrated that age, 
sex, and body characteristics (BMI or PBF) are 
significant predictors of VO₂max [10,36], which aligns 
with the findings of this study. In the simplest 
VO₂max prediction formulas developed here, based 
on age, sex, and BMI/PBF, the explained variance of 
VO₂max was 58.7% for ModelBMI1 and 65.4% for 
ModelPBF1 (Tables 3 and 4). To enhance prediction 
accuracy, this study incorporated HR recovery during 
the step test as a predictive parameter. Including HR0 
and exercise HR parameters increased the explained 
variance in VO₂max by 10.90% for ModelBMI3 and 
5.35% for ModelPBF3, with SEE reductions of 7.06% 
and 4.51%, respectively. Compared to the most 
economical ModelBMI1, ModelPBF3 increased the 
explained variance in VO₂max by 17.38%, with a SEE 
reduction of 12.61%. These results indicate that 
incorporating exercise HR parameters significantly 
improves the accuracy of VO₂max prediction models 
based on biometric data. Moreover, PBF-based 
models consistently demonstrated higher accuracy 
than BMI-based models. Specifically, compared to 
ModelBMI1, ModelPBF1 increased the explained variance 
in VO₂max by 11.41% and reduced SEE by 8.48%; 
compared to ModelBMI2, ModelPBF2 increased the 
explained variance by 8.20% and reduced SEE by 
7.00%; and compared to ModelBMI3, ModelPBF3 
increased the explained variance by 5.84% and 
reduced SEE by 5.98% (Figure 1B). These findings 
align with previous studies indicating that PBF is a 
superior predictor of VO₂max compared to BMI 
[35,36,48]. Therefore, when economic conditions 
permit, the public should consider using PBF-based 
models to estimate their VO₂max for greater accuracy. 
For individuals with limited resources, BMI-based 
models offer a more economical and practical 
alternative. 

This study evaluated the agreement between the 
model and measured VO₂max using Bland-Altman 
analysis. The results showed that the PBF model had a 
bias of -0.35 ml·kg⁻¹·min⁻¹, indicating no significant 
systematic error. Additionally, the limits of agreement 
ranged from -9.53 to 8.82 ml·kg⁻¹·min⁻¹, 
demonstrating that most prediction errors fell within 
this range, reflecting greater stability compared to the 
BMI model. These findings support the PBF model as 
a more accurate VO₂max prediction tool, suitable for 
general health assessments and sports medicine 
applications. To validate the VO₂max prediction 
formulas developed in this study, cross-validation 
was performed. PRESS cross-validation analysis 
revealed minimal differences in R² (0.008–0.059) and 
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SEE (0.023–0.280 ml·kg⁻¹·min⁻¹) between the training 
and testing groups across the six prediction models 
(Tables 3 & 4). These results confirm the validity of the 
VO₂max prediction models developed in this study. 
To further assess the validity and reliability of 
VO₂max prediction models categorized by BMI, 
Pearson correlation coefficients and ICCs were used. 
The results indicated that the predictive validity of 
ModelBMI1, ModelBMI2, and ModelBMI3 was 0.772, 0.788, 
and 0.797, respectively, with corresponding reliability 
values of 0.743, 0.765, and 0.776 (Figure 2A). In 
contrast, for the PBF-based models, ModelPBF1, 
ModelPBF2, and ModelPBF3 demonstrated predictive 
validity of 0.808, 0.818, and 0.823, and reliability 
values of 0.789, 0.801, and 0.807, respectively (Figure 
2B). Compared to the BMI-based models, the 
PBF-based models showed improvements in 
predictive validity of 4.66%, 3.81%, and 3.26% and in 
reliability of 6.19%, 4.71%, and 4.00% for ModelPBF1, 
ModelPBF2, and ModelPBF3, respectively (Figure 2C). In 
summary, the VO₂max prediction formulas 
developed in this study are feasible and reasonable 
based on the experimental results. However, this 
research has certain limitations and contributions. 
Specifically, the models were developed based on 
data from healthy adults aged 20–64 years, and thus 
their applicability to adolescents, elderly individuals, 
or patients with chronic conditions remains uncertain 
and should be interpreted with caution. Regarding 
limitations, the prediction formulas were developed 
based on healthy Taiwanese adults aged 20–64 years. 
Therefore, their applicability may be restricted for 
children, adolescents, older adults, or individuals 
with lower-limb impairments or limited mobility. On 
the other hand, the contributions of this study are 
noteworthy. The step test provides a simple, effective, 
space-efficient, and accessible method for assessing 
CRF in adults. Following cross-validation and tests of 
validity and reliability, the six prediction models were 
validated and can be utilized by the public to select a 
model suited to their individual circumstances, 
removing barriers to CRF assessment. The step 
test-based VO₂max prediction model proposed in this 
study provides a cost-effective and convenient 
method for cardiorespiratory fitness assessment, 
applicable to various clinical settings, including 
primary healthcare, cardiac rehabilitation, and 
chronic disease monitoring. This model can serve as 
an initial screening tool for cardiorespiratory fitness, 
particularly for populations with hypertension, 
diabetes, and chronic obstructive pulmonary disease 
(COPD), and can be utilized for personalized health 
monitoring through telemedicine technologies. 
Furthermore, compared to the 6-minute walk test 
(6MWT) and cardiopulmonary exercise testing 

(CPET), this model offers a shorter testing duration 
and simpler implementation, making it well-suited 
for resource-limited healthcare environments. 
Additionally, these formulas are not only practical for 
the Taiwanese population but also offer a viable CRF 
assessment option for individuals and researchers 
worldwide. The models established in this study can 
be adapted to various testing protocols, such as 
different step heights or frequencies, making them 
valuable for further research and development. 
Compared with other predictive methods for VO₂max 
estimation, such as the 3-minute progressive knee-ups 
and step test proposed by Chung et al [35], our 
method demonstrates several advantages. The current 
step test protocol requires less physical effort and is 
easier to implement without equipment for intensity 
progression. In contrast, protocols involving 
progressive movement or graded load may yield 
better predictive accuracy but require stricter 
standardization and more coaching. However, the 
performance-predictor relationships in such tests may 
be influenced by factors unrelated to CRF, such as 
coordination or muscular endurance. Our model, 
emphasizing heart rate recovery, offers a safe and 
efficient solution particularly suitable for large-scale 
screening or populations with limited mobility. 
Nevertheless, future studies may consider hybrid 
approaches to further enhance VO₂max prediction 
accuracy. This approach has the potential to improve 
global accessibility to CRF evaluation, enabling 
people worldwide to better understand their CRF and 
achieve effective data translation. 
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