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Abstract 

The causal impact of blood metabolites on OA has yet to be definitively established, further studies are 
needed to explore the specific roles of metabolites in OA. This is a genetic correlation and two-sample 
bidirectional mendelian randomization study. GWAS summary data of metabolites and OA were 
extracted from large-scale GWAS study based on Europeans and Asians. LDSC was conducted to 
estimate the genetic correlations between 233 circulating metabolites and 11 OA phenotypes, MR was 
then performed to explore the casual association. 41.20% of the metabolic traits showed genetic 
correlation with All OA, 15.88% with Knee/Hip OA, 51.50% with Knee OA, and 52.79% with Spine OA. 
No significant genetic correlations were detected between the metabolic traits and other OA 
phenotypes. Lactate levels was associated with increased odds of All OA (OR: 1.1558, P<0.001), Hip OA 
(OR: 1.1446, P=0.004), Knee/Hip OA (OR: 1.1820, P<0.001), Knee OA (OR: 1.1375, P=0.001), Spine OA 
(OR: 1.3179, P<0.001), THR (OR: 1.5290, P<0.001), and TJR (OR: 1.2827, P<0.001), except for Thumb 
OA (OR: 0.9429, P<0.001). Ratio of conjugated linoleic acid to total fatty acids was associated 6 OA 
phenotypes: Hip OA (OR: 0.9522, P=0.035), Knee/Hip OA (OR: 1.0890, P<0.001), Knee OA (OR: 
1.1429, P<0.001), THR (OR: 1.3800, P<0.001), TJR (OR: 1.3102, P<0.001), and TKR (OR: 1.2555, 
P<0.001). Glycerol levels exhibited significant MR associations with four OA phenotypes: Finger OA (OR: 
0.6669, P<0.001), Hand OA (OR: 0.8682, P=0.011), Hip OA (OR: 0.9395, P<0.001), and Knee OA (OR: 
1.1409, P=0.036). This study underscores genetic and causal connections between specific metabolites 
and OA. These findings could inform future therapeutic metabolic pathways involved in OA. 
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Introduction 
Osteoarthritis (OA) is a degenerative disease 

primarily characterized by joint pain and limited 
mobility, caused by various factors leading to the 
fibrosis, fissures, ulceration, and loss of joint cartilage 
[1]. The etiology of OA remains unclear, but its 

occurrence is associated with age, obesity, 
inflammation, trauma, and genetic factors [2]. The 
disease manifests pathologically through the 
degenerative destruction of joint cartilage, sclerosis or 
cystic changes in the subchondral bone, osteophyte 
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formation at joint edges, synovial changes, and joint 
capsule contraction [3-5]. OA commonly affects the 
knees, hips, hands, ankles, and spine (including 
cervical and lumbar regions). Globally, the knee is the 
most commonly affected site, followed by the hands, 
other sites, and hips, accounting for approximately 
60.6%, 23.7%, 10.2%, and 5.5% of all cases in 2019, 
respectively [6]. Recent data indicate that in 2020, 
approximately 595 million people worldwide suffered 
from OA, equivalent to 7.6% of the global population. 
For individuals over the age of 70, OA has become the 
seventh leading cause of years lived with disability 
(YLDs), up from sixth in 1990[7]. It is projected that by 
2050, there will be 642 million people with knee OA, 
279 million with hand OA, 62.6 million with hip OA, 
and 118 million with other types of OA [7]. Due to 
global population growth and increased life 
expectancy, OA, with its high prevalence and 
associated disability, has become a significant public 
health challenge. This condition is widespread 
worldwide and is expected to exert an increasingly 
profound impact as the population ages. 

Metabolism is essential for the functionality of 
cartilage and synovial joints, and prior research has 
highlighted a critical role for metabolic processes in 
inflammatory joint diseases, notably OA [8-10]. OA is 
increasingly recognized as a metabolic-associated 
disorder, not only because it frequently co-occurs 
with various metabolic dysfunctions but also due to 
ongoing discoveries in metabolomics that have 
identified specific metabolites and metabolic 
pathways associated with OA [11, 12]. Aberrant 
immune metabolism may represent a key 
characteristic across many OA phenotypes [13]. 
Recent studies in metabolomics have pinpointed a 
range of circulating biomarkers in both humans and 
animal models, including amino acids, carbohydrates, 
and lipids [14-16]. These insights provide new 
avenues for exploring complex biological metabolic 
networks and their links to disease states. However, 
the causal impact of blood metabolites on OA has yet 
to be definitively established, owing to limitations in 
sample sizes and potential confounding factors. 

Randomized Controlled Trials (RCTs) are 
considered the gold standard for causal inference in 
epidemiological studies. However, they are often 
difficult to conduct due to ethical constraints and high 
costs [17, 18]. Consequently, observational studies are 
frequently utilized for initial etiological investigations 
due to their simpler design and easier 
implementation. Nonetheless, these studies are 
limited in their capacity for causal inference due to 
potential confounders and issues of reverse causality 
[19]. Recent advancements in Mendelian 
randomization (MR) provide a robust method to 

overcome these limitations [20, 21]. MR, a type of 
instrumental variable analysis, is employed to test 
causal hypotheses in observational data [22]. This 
approach uses genetic variants as proxies for 
exposure factors, enabling random grouping and the 
collection of summary statistics on the associations 
between these variants and phenotypic outcomes in 
large populations. By estimating the strength of these 
associations through genetic epidemiological models, 
MR minimizes the influence of confounding factors 
[23]. Linkage Disequilibrium Score Regression (LDSC) 
is an efficient tool for analyzing genetic correlations 
[24]. LDSC differentiates the inflation in statistics due 
to polygenic effects from confounding due to 
population stratification or other factors, thereby 
facilitating the estimation of heritability and genetic 
correlations between traits based on single nucleotide 
polymorphisms (SNPs). Previous MR studies 
investigating the links between metabolites and OA 
did not include genetic correlation analysis and relied 
on small sample sizes, which constrained the 
applicability and statistical robustness of their 
findings [25]. Given this, we aim to conduct more 
stringent MR analyses using larger, more recent 
datasets to enhance the reliability and interpretive 
strength of our research findings. 

In this study, we utilized MR to explore the 
genetic correlations and causal relationships between 
OA and circulating metabolic biomarkers, drawing 
upon extensive genome-wide association study data. 
Our analysis encompassed 233 metabolites and 11 OA 
phenotypes. By integrating both single-trait and 
pairwise LDSC, along with bidirectional two-sample 
MR, this research not only identifies crucial 
metabolites associated with the risk of OA but also 
probes their potential mechanisms and interactions. 
This could provide a scientific foundation for the 
development of novel preventative and therapeutic 
strategies, thereby making a positive impact on public 
health. 

Methods 
Data source and phenotype definition 

Circulating metabolites exposures 

Circulating metabolites were applied as 
exposures of MR analysis in this study. GWAS 
summary of 233 circulating metabolic traits was 
extracted from a large-scale genome-wide association 
study contains 136,016 participants from 33 cohorts 
[26]. Most of the cohorts consisted of individuals of 
European ancestry (6 Finnish and 21 non-Finnish), 
and six cohorts had individuals of Asian ancestry. 
Circulating metabolic biomarkers was all quantified 
by nuclear magnetic resonance spectroscopy using 
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NMR metabolomics platform [27]. The NMR 
metabolomics platform provides data of lipoprotein 
subclasses and their lipid concentrations and 
compositions, including apoAI and apoB, cholesterol 
and triglyceride measures, albumin, various fatty 
acids and low-molecular-weight metabolites. 

OA outcomes  

11 OA phenotypes were selected as outcomes of 
MR analysis in this study. GWAS summary of 11 OA 
phenotypes was obtained from large sample 
genome-wide association study across 826,690 
individuals (177,517 with OA) [28]. Ethnicity 
including European (UK, Dutch, Icelandic, Estonian, 
Greece, European Americans) and Asian (Chinese 
and Japanese). OA was defined by either a) 
self-reported osteoarthritis, b) clinical diagnosed, c) 
ICD10 codes, d) radiographic as defined by the 
TREAT-OA consortium [29], depending on the data 
available in the cohort. 11 osteoarthritis phenotypes 
were descripted as follows: OA at any site (All OA), 
OA of the hip and/or knee (Knee/Hip OA), OA of the 
knee (Knee OA), OA of the hip (Hip OA), total joint 
replacement (TJR), total knee replacement (TKR), total 
hip replacement (THR), OA of the hand (Hand OA), 
OA of the finger (Finger OA), OA of the thumb 
(Thumb OA) and OA of the spine (Spine OA). 

Statistics 

Linkage disequilibrium score regression analysis 

Linkage disequilibrium score regression (LDSC) 
was performed to estimate genome-wide genetic 
correlations between exposure and outcomes traits 
[30]. Single-trait LDSC was first used to estimate 
SNP-based heritability, mean χ2, genome inflation 
factor (λGC), and the intercept for each GWAS 
summary statistic. Polygenicity and confounding due 
to population stratification or cryptic relatedness can 
be assessed with λGC and intercept. Pairwise LDSC 
was conducted to estimate the genomic genetic 
correlations among the circulating metabolic traits 
and OA using the pre-computed LD scores of 
European ancestries from the 1000 Genomes Project 
Phase 3 (https://alkesgroup.broadinstitute.org/ 
LDSCORE/). Benjamini-Hochberg procedure 
implemented in R 3.5.3 was used to obtain adjusted p 
values. P < 0.05 was considered as statistically 
significant in genetic correlation and MR analyses. 

Two-sample bidirectional MR analysis  

This is a 2-sample bidirectional Mendelian 
randomization using genetic variants to mimic the 
effect of circulating metabolic traits on OA traits. The 
analysis of bidirectional MR is divided into several 

parts including GWAS data extraction, selection of 
instrumental variables (threshold selection, clumping 
selection, pleiotropy selection, F-value selection), 
forward MR analysis, reverse MR analysis, etc. To 
ensure the validity of our Mendelian randomization 
(MR) analysis, we adhered to three core assumptions: 
Assumption 1: the instrumental variables must be 
strongly associated with the exposures; Assumption 
2: the instrumental variables must be independent of 
the potential confounders of the association between 
the exposure and outcome; Assumption 3: the 
instrumental variables should not be associated with 
the outcomes directly (Figure 1). For Assumption 1, 
SNPs with P < 5 × 10-8 and F statistic > 10 were 
selected as instrumental variables (IVs) for MR 
analysis. In addition, a clumping process (r2 > 0.001, 
clumping distance = 10,000 kb) was conducted to 
assess the LD between the included SNPs. For 
Assumption 2, PhenoScanner [31]and PhenoScanner 
V2[32] was used to exclude SNPs strongly (P < 5 × 
10-8) associated with confounding factors (Age, Sex, 
BMI, Smoking, Alcohol Consumption, Physical 
Activity, Diet, Thyroid Dysfunction, and Bone 
Mineral Density). For Assumption 3, IVs that are 
significantly associated with the outcome phenotype 
(P < 5 × 10-8) were excluded. 

To conduct MR estimates, the random-effects 
model inverse-variance weighted (IVW) method was 
applied as the primary statistical analysis approach 
[33]. Random-effect IVW were conducted to reduce 
bias when heterogeneity exists [34]. The weighted 
median method, MR Egger regression method, 
weighted mode method and simple mode method 
were also performed as sensitivity analyses. 
MR-Egger intercept test was performed as an 
indicator of directional pleiotropy (P < 0.05 was 
considered statistically significant). MR-PRESSO test 
was also used to evaluate overall horizontal 
pleiotropy and detect SNP outliers. Cochran’s Q 
statistic was used to check the heterogeneity among 
SNPs. The leave-one-out method was employed to 
evaluate whether single SNP could exert bias to the 
IVW estimate. The R packages “TwoSampleMR” 
(version 0.6.4) were used to conduct Mendelian 
randomization. Benjamini-Hochberg procedure 
implemented in R (version 4.3.2) was used to obtain 
adjusted p values, P < 0.05 was considered as 
statistically significant in genetic correlation and MR 
analyses. 

Results 
Single-trait and Pairwise LDSC result 

Single-trait LDSC analysis showed that the 
average heritability of 233 metabolic traits calculated 
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based on GWAS summary data was 0.0996, with a 
minimum value of 0.0147 and a maximum value of 
0.1644. The average genomic control inflation factor 
(λGC) was 1.1641, ranging from a minimum of 1.0405 
(Acetate levels) to a maximum of 1.2498 (Triglycerides 
to total lipids ratio in chylomicrons and extremely 
large VLDL) (Table S1). For 11 OA phenotypes, the 
average heritability was 0.0146, ranging from a 
minimum of 0.0035 to a maximum of 0.0245. The 

average λGC of 11 OA traits was 1.1808, ranging from a 
minimum of 1.0557 (Finger OA) to a maximum of 
1.4037 (Knee/Hip OA) (Table S2). Pairwise LDSC 
analysis revealed that 41.20% of the metabolic traits 
showed a genetic correlation with All OA, 15.88% 
with Knee/Hip OA, 51.50% with Knee OA, and 
52.79% with Spine OA (Figure 2). There were no 
significant genetic correlations observed between the 
metabolic traits and other OA phenotypes (Table S3). 

 

 
Figure 1: Workflow of genetic correlation and two-sample bidirectional mendelian randomization. Assumption 1: the instrumental variables must be strongly associated with 
the exposures; Assumption 2: the instrumental variables must be independent of the potential confounders of the association between the exposure and outcome; Assumption 
3: the instrumental variables should not be associated with the outcomes directly. 
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Figure 2: The genetic correlation between 233 circulating metabolic traits and 11 OA phenotypes. 

 
Association between Circulating Metabolites 
and OA in loading extremity joint 

8 circulating metabolites traits showed 
significant forward MR relationships with Knee/Hip 
OA. These traits were Ratio of conjugated linoleic acid 
to total fatty acids, Ratio of diacylglycerol to 
triglycerides, Isoleucine levels, Lactate levels, 
Phospholipids in large VLDL, Concentration of 
medium VLDL particles, Total cholesterol to total 
lipids ratio in very large HDL, and Phospholipids to 
total lipids ratio in very large HDL. Among them, 
Lactate levels had the highest absolute values of 
OR-1(OR: 1.1820, 95% CI: 1.0733 to 1.3017, P = 0.003) 
(Figure 3). 3 circulating metabolites traits showed 
significant associations with Knee OA, namely Ratio 
of conjugated linoleic acid to total fatty acids, Glycerol 
levels, and Lactate levels. Lactate levels exhibited the 
highest absolute values of OR-1 (OR: 1.1375, 95% CI: 
1.0523 to 1.2296, P = 0.004). 7 circulating metabolites 
traits showed significant associations with Hip OA, 
including Ratio of conjugated linoleic acid to total 
fatty acids, Glycerol levels, Total cholesterol levels in 
HDL, Lactate levels, Total cholesterol to total lipids 
ratio in small LDL, Cholesteryl esters to total lipids 

ratio in very large HDL, and Phospholipids in very 
large HDL, Lactate levels obtained the highest 
absolute values of OR-1 (OR: 1.1446, 95% CI: 1.0447 to 
1.2540, P = 0.012). In addition, 3 circulating 
metabolites traits were associated with THR, eight 
with TJR, and three with TKR (Table S4). Reverse MR 
analysis indicated a significant MR effect of Knee OA 
on Lactate levels (OR: 1.0646, P = 0.008). THR and TJR 
were both significantly associated with Ratio of 
conjugated linoleic acid to total fatty acids, with OR 
values of 1.0294 and 1.0485, respectively. 

Association between Circulating Metabolites 
and OA in non-loading extremity joint 

4 circulating metabolites traits showed 
significant forward MR relationships with Hand OA. 
These traits were Glycerol levels, Phospholipids to 
total lipids ratio in medium HDL, Cholesterol esters 
in very large HDL, and Triglycerides in very large 
HDL. Among them, Triglycerides in very large HDL 
had the highest OR-1 value (OR: 0.9730, 95% CI: 
0.9492 to 0.9974, P = 0.039). 5 circulating metabolites 
traits showed significant MR relationships with 
Finger OA. These traits were Acetate levels, Ratio of 
22:6 docosahexaenoic acid to total fatty acids, Glycerol 
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levels, Free cholesterol in large HDL, and Pyruvate 
levels. Among them, Acetate levels had the highest 
OR-1 value (OR: 0.8266, 95% CI: 0.6914 to 0.9882, P = 
0.040). 4 circulating metabolites showed significant 
associations with Thumb OA. These traits were Free 
cholesterol to total lipids ratio in IDL, Lactate levels, 
Total cholesterol to total lipids ratio in large HDL, and 
Phospholipids to total lipids ratio in medium HDL. 
Among them, Phospholipids to total lipids ratio in 
medium HDL had the highest absolute values of OR-1 
(OR: 0.9421, 95% CI: 0.8966 to 0.9898, P = 0.030) (Table 
S4). Reverse MR analysis did not detect statistically 
significant results (Table S5). 

Association between Circulating Metabolites 
and OA in spine 

6 circulating metabolites traits showed 
significant forward MR relationships with Spine OA. 
These traits were 3-Hydroxybutyrate levels, Lactate 
levels, Ratio of polyunsaturated fatty acids to total 
fatty acids, Pyruvate levels, Total cholesterol to total 
lipids ratio in very large HDL, and Phospholipids to 
total lipids ratio in very large HDL. Among them, 
Lactate levels had the highest absolute values of OR-1 
(OR: 1.3179, 95% CI: 1.2367 to 1.4044, P < 0.001). Both 
Pyruvate levels and Total cholesterol to total lipids 
ratio in very large HDL had OR effect values less than 
1 for Spine OA (Table S4). Reverse MR analysis did 
not detect statistically significant results. 

Circulating Metabolites exerting multi- 
dimensional effects on OA traits 

Lactate levels exhibited a significant forward MR 
relationship with eight OA phenotypes. Except for 
Thumb OA (OR: 0.9429, P < 0.001), the OR values for 
the other OA phenotypes were greater than 1. 
Specifically, they were All OA (OR: 1.1558, P < 0.001), 

Hip OA (OR: 1.1446, P = 0.004), Knee/Hip OA (OR: 
1.1820, P < 0.001), Knee OA (OR: 1.1375, P = 0.001), 
Spine OA (OR: 1.3179, P < 0.001), THR (OR: 1.5290, P 
< 0.001), and TJR (OR: 1.2827, P < 0.001). Ratio of 
conjugated linoleic acid to total fatty acids also 
showed significant MR relationships with 6 OA 
phenotypes: Hip OA (OR: 0.9522, P = 0.035), 
Knee/Hip OA (OR: 1.0890, P < 0.001), Knee OA (OR: 
1.1429, P < 0.001), THR (OR: 1.3800, P < 0.001), TJR 
(OR: 1.3102, P < 0.001), and TKR (OR: 1.2555, P < 
0.001). Moreover, Glycerol levels exhibited significant 
MR associations with four OA phenotypes: Finger OA 
(OR: 0.6669, P < 0.001), Hand OA (OR: 0.8682, P = 
0.011), Hip OA (OR: 0.9395, P < 0.001), and Knee OA 
(OR: 1.1409, P = 0.036) (Figure 4, Table S6). 

Sensitivity Analysis 
In 11 OA phenotypes, the metabolite with the 

largest absolute value of OR-1 is shown in Figure 3. 
The MR results of these phenotypes all exhibit 
statistical significance in the IVW method, but do not 
reach significance in other methods. Except for the 
effect of Phospholipids to total lipids ratio in medium 
HDL on ThumbOA, which also shows significance in 
Weighted median, Weighted mode, and Simple mode 
(Table S7). In the metabolites illustrated in Figure 4, 
most metabolites show statistical significance in the 
IVW method, but not in other MR methods. Except for 
Phospholipids to total lipids ratio in medium HDL, 
Pyruvate levels, Total cholesterol to total lipids ratio 
in very large HDL, Phospholipids to total lipids ratio 
in very large HDL, and Cholesteryl esters to total 
lipids ratio in very small VLDL, the significance of 
these metabolites is statistically significant in four or 
more MR methods. ALL sensitivity analysis result can 
be referenced in Table S8. 

 

 
Figure 3. Representation of the metabolites with the highest absolute value of OR-1 among 11 OA trait. 
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Figure 4: Forest plot of circulating metabolites exerting multi-dimensional effects on OA traits. 

 

Discussion 
This study employed MR to investigate the 

potential genetic correlations and causal relationships 
between circulating metabolic biomarkers and OA. 
OA is a prevalent degenerative joint disease that 
significantly impacts the quality of life for millions 
globally. Despite the incomplete understanding of its 
precise etiology, a growing body of epidemiological 
evidence indicates an association between metabolic 
disturbances and OA, particularly in younger 
demographics [35]. These disturbances include 
conditions such as obesity, hypertension, 
dyslipidemia, hyperglycemia, and insulin resistance, 
all of which can accelerate the onset and progression 
of OA across both weight-bearing and non- 
weight-bearing joints [36]. Our systematic analysis of 
233 metabolites and 11 OA phenotypes revealed 
notable genetic and causal connections between 
various metabolites and distinct OA phenotypes. 
Results from paired LDSC analysis indicated 
significant genetic correlations between numerous 
metabolites and specific OA manifestations, including 
knee and spinal OA. Furthermore, our comprehensive 
MR analysis assessed the relationships between 
circulating metabolites and various types of OA, 
encompassing weight-bearing joints (knees and hips), 
non-weight-bearing joints (hands and fingers), and 
spinal OA. Our findings demonstrate that certain 
metabolites, such as lactate levels, the ratio of 
conjugated linoleic acid to total fatty acids, and 

glycerol levels, exhibit significant positive MR 
associations with various OA phenotypes. These 
results suggest that these metabolites might influence 
the progression of OA through specific biological 
pathways, offering insights that could inform future 
preventative and therapeutic strategies for OA. 

This study identified a significant positive 
association between lactate levels and eight OA 
phenotypes through MR analysis. With the exception 
of Thumb OA (OR: 0.9429), lactate levels showed a 
consistent direction of effect for the remaining seven 
OA phenotypes, specifically indicating positive 
correlations with All OA, Hip OA, Knee/Hip OA, 
Knee OA, Spine OA, THR, and TJR. These findings 
suggest that elevated lactate levels are strongly linked 
to an increased risk of these OA phenotypes, 
underscoring the pathological significance of lactate 
as a metabolic factor in OA. Traditionally viewed as a 
metabolic waste product of glycolysis, recent studies 
have revealed that lactate serves not merely as an 
intermediary metabolite but also as a versatile 
immunomodulator that regulates inflammatory 
responses [37, 38]. In the synovium of chronic 
arthritis, lactate influences immune cell function 
through multiple mechanisms, including migration 
and cytokine production [39]. Lactate triggers a "stop 
migration" signal in T cells through the lactate 
transporters SLC5A12 in CD4+ T cells and SLC16A1 
in CD8+ T cells, promoting their accumulation at 
inflammation sites [40, 41]. This lactate-mediated 
suppression of T cell mobility in inflamed tissues 
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coincides with a reduction in glycolysis. Sodium 
lactate inhibits several glycolytic enzymes and 
decreases glucose flux expression in CD4+ T cells, 
leading to T cell accumulation at the site of 
inflammation. This process extends the duration of 
chronic inflammation by increasing the production of 
inflammatory cytokines and reducing cell lysis [42, 
43]. OA is a chronic inflammatory joint disease, and 
lactate is known to exacerbate its progression through 
previously described pathways. Recent research has 
underscored the significant role of lactate in the 
pathogenesis of OA, revealing elevated levels of 
lactate in patients and linking these levels to various 
metabolic indicators [44]. Studies have demonstrated 
that lactate activates the HCAR1/PI3K signaling 
pathway, which upregulates the expression of 
NADPH oxidase 4 (NOX4). This upregulation leads to 
an increased production of reactive oxygen species 
(ROS), resulting in chondrocyte dysfunction. 
Furthermore, lactate is shown to promote the 
expression of degradative enzymes, reduce the 
synthesis of type II collagen, and induce the secretion 
of inflammatory factors, as well as chondrocyte 
hypertrophy and senescence. The application of the 
NOX4 inhibitor GLX351322 or the ROS scavenger 
N-acetylcysteine (NAC) has been found to mitigate 
the damage to chondrocytes induced by lactate [44]. 
Additionally, intra-articular injections of oxamate (an 
LDHA inhibitor that reduces the conversion of 
pyruvate to lactate) effectively decrease the 
expression of glycolysis-related proteins in a rat 
model of OA induced by anterior cruciate ligament 
transection (ACLT). This treatment significantly 
reduces chondrocyte apoptosis and alleviates pain 
and inflammation, while also inhibiting cartilage 
degeneration [45]. Both past studies and our findings 
highlight the role of lactate as a metabolic factor in OA 
progression, providing a theoretical foundation and 
potential targets for future metabolic treatment 
strategies. 

Moreover, this study's findings reveal that the 
ratio of conjugated linoleic acid (CLA) to total fatty 
acids exhibits distinct association patterns across 
various OA phenotypes. Specifically, this ratio 
displays a protective effect in Hip OA (OR: 0.9522), 
suggesting that a higher proportion of CLA relative to 
total fatty acids may decrease the risk of Hip OA. 
Conversely, in Knee/Hip OA (OR: 1.0890), Knee OA 
(OR: 1.1429), THR (OR: 1.3800), TJR (OR: 1.3102), and 
TKR (OR: 1.2555), a higher ratio correlates with an 
increased disease risk, indicating that an elevated 
ratio of conjugated linoleic acid to total fatty acids 
may constitute a risk factor in these phenotypes. CLA, 
an unsaturated octadecadienoic acid containing 
conjugated double bonds, encompasses a mix of 

positional and geometric isomers of linoleic acid [46]. 
It is known for its physiological activities, which 
include anti-inflammatory, antihypertensive, 
anticancer, antioxidant, anti-atherosclerosis, and 
anti-obesity effects [47]. Theoretically, CLA includes 
56 isomers, with 20 naturally occurring isomers 
identified through NMR, each exhibiting significantly 
different physiological functions [48]. Among these, 
the cis-9, trans-11 and trans-10, cis-12 isomers are the 
most abundant and are noted for their beneficial 
physiological activities [49-51]. CLA is typically 
recognized for its anti-inflammatory and antioxidant 
properties [52, 53], which may elucidate its protective 
role in Hip OA. However, in other OA phenotypes, 
increased levels of CLA might worsen disease risk 
through mechanisms such as altered lipid metabolism 
and heightened inflammatory responses. Particularly 
in severe OA phenotypes requiring joint replacement, 
the risk increase associated with high CLA ratios 
could be linked to its pro-inflammatory or detrimental 
metabolic effects within the local environment. This 
dual effect implies that the influence of CLA may vary 
based on the type and pathological state of OA. 
Additionally, these varying impacts of CLA could 
also be attributed to its different isomers [48]. Various 
CLA isomers might have distinct roles in lipid 
metabolism, inflammation regulation, and immune 
function, thus affecting the development and 
progression of OA. Future research should explore in 
greater depth the specific biological mechanisms of 
different CLA isomers across various OA phenotypes 
and assess their potential as therapeutic targets to 
better comprehend and manipulate their role in OA 
progression. This molecular-level understanding 
could help in precisely regulating CLA-related 
pathways, providing more targeted strategies for OA 
treatment. In the realm of experimental research, a 
study conducted by Shen CL and colleagues provides 
preliminary evidence concerning the potential role of 
CLA in OA treatment [54]. Theirs in vitro experiments 
assessed the impact of CLA, both alone and in 
combination with other polyunsaturated fatty acids 
(PUFAs), on the production of inflammatory 
mediators in human OA chondrocytes. The study 
found that CLA significantly decreased the 
production of prostaglandin E2 and nitric oxide, with 
the combination of CLA and eicosapentaenoic acid 
(EPA) proving particularly effective in reducing PGE2 
levels. These findings indicate that CLA could play a 
role in OA treatment by modulating inflammatory 
mediators. However, given the relatively sparse 
research on CLA's effects on OA, further 
investigations are required to confirm these results 
and to explore the specific mechanisms through 
which CLA and its isomers act in various types and 
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pathological states of OA. A deeper molecular 
understanding will facilitate the precise modulation 
of CLA-related pathways, providing more targeted 
therapeutic strategies for OA treatment. 

This study also uncovered significant 
correlations between glycerol levels and various OA 
phenotypes: glycerol levels were inversely associated 
with both finger OA and hand OA, indicating a 
potential protective role for glycerol in these 
non-weight-bearing joints. Additionally, glycerol 
demonstrated a negative association with hip OA, 
suggesting it may protect joints subjected to lower 
mechanical stress. This protective effect may be due to 
glycerol's role in regulating lipid metabolism and 
anti-inflammatory pathways, which helps to maintain 
cell membrane stability and suppress the production 
of inflammatory mediators, thereby mitigating joint 
tissue damage and inflammation. Conversely, the 
positive correlation between glycerol levels and 
weight-bearing joints such as knee OA suggests a 
different mechanism might be at play. In such 
weight-bearing joints, increased levels of glycerol 
could be associated with disorders in lipid 
metabolism, leading to heightened local or systemic 
inflammatory states, thereby promoting the 
progression of OA. Furthermore, as an energy source, 
glycerol might cause imbalances in energy 
metabolism under conditions of excessive joint usage 
or increased mechanical stress, further aggravating 
degenerative changes in joint cartilage. These findings 
suggest potential therapeutic targets for different OA 
phenotypes. For example, modulating glycerol levels 
or its metabolic pathways could offer protective 
strategies for hand and finger joint OA, whereas 
strategies to decrease glycerol levels or adjust its 
related metabolic pathways may be beneficial for knee 
joint OA. Additionally, these results underscore the 
importance of personalized medicine, that is, 
developing treatment plans tailored to the specific OA 
phenotypes and metabolic characteristics of 
individual patients. These insights should be further 
explored in future research, particularly through 
clinical trials that assess the impact of modulating 
glycerol levels or its metabolic pathways on OA 
progression, as well as the safety and efficacy of such 
interventions. 

While this study offers new insights into the 
associations between circulating metabolic 
biomarkers and OA, it is subject to several limitations. 
Firstly, the study used data from multiple ethnicities, 
but genetic differences across populations can impact 
associations between genetic variants and metabolic 
traits, potentially introducing bias in MR analysis. 
Secondly, the MR analysis in this study uses genetic 
instrumental variables to represent exposure factors. 

Due to the constraints of the sample size and the 
additive regression models used, only a small 
proportion of the variance in exposure factors is 
explained, making it difficult to detect subtle causal 
effects among complex traits. Lastly, the effect sizes 
derived from genetic correlation analyses represent 
estimates based on the current dataset and model, and 
should not be considered equivalent to or substitutes 
for effect sizes obtained from observational clinical 
studies. A more comprehensive understanding 
beneficial for clinical practice can only be achieved by 
integrating genetic correlation analysis with 
traditional epidemiological studies, real-world 
research, bibliometric reviews, or meta-analyses. 

Conclusion 
This study utilized MR and LDSC methods to 

identify significant genetic and causal links between 
circulating metabolites and various OA phenotypes. 
Lactate levels were positively associated with 
multiple OA phenotypes, suggesting their role in the 
processes of OA pathogenesis. The ratio of conjugated 
linoleic acid to total fatty acids and glycerol levels 
showed variable effects across different OA types, 
suggesting their potential as therapeutic targets. 
These findings emphasize the importance of 
metabolic profiling in OA management, supporting 
personalized medicine approaches. Future research 
should further explore these metabolites' mechanisms 
and validate the findings across diverse populations 
and clinical settings. 
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