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Abstract 

Background: Endometrial cancer is a highly heterogeneous malignancy in women with high mortality, 
and patients diagnosed with advanced endometrial cancer have a poor prognosis. Anoikis is a form of 
programmed cell death that is important for cancer development and metastasis. Long non-coding RNAs 
(lncRNAs) are considered critical regulators of gene expression and key players in cancer biology; 
however, the effects of anoikis-associated lncRNAs on the prognosis and treatment of patients with 
endometrial cancer remain unclear. Methods: Using transcriptome sequencing data and clinical 
information from The Cancer Genome Atlas database, we developed a novel prognostic signature for 
endometrial cancer based on anoikis-related lncRNAs by combining multivariate regression analysis and 
least absolute shrinkage and selection operator regression. The signature was validated by receiver 
operating characteristic (ROC) curve and Kaplan–Meier analyses. After analyzing the relationships 
between the seven lncRNAs in the signature and tumor progression through gene set enrichment analysis 
(GSEA), we further explored the differences in immune function and drug sensitivity. Additionally, to 
investigate the functions of these lncRNAs in the occurrence and development of endometrial cancer, we 
selected CFAP58-DT to conduct a series of in vitro and in vivo experiments to verify its partial functions. 
Results: Seven anoikis-associated lncRNAs (CFAP58-DT, AC004585.1, AC103563.9, AL121895.2, 
AC004596.1, AC010761.4, and AC087564.1) with prognostic value were identified for signature 
construction. The analysis showed excellent predictive accuracy of the signature (the largest area under 
the ROC curve = 0.757). GSEA indicated that these lncRNAs may regulate diverse cellular processes, 
including intercellular interactions, cell proliferation, differentiation, apoptosis, angiogenesis, glucose and 
fatty acid metabolism, immune responses, and inflammatory regulation. Furthermore, immune analysis 
revealed a high likelihood of immune evasion and poor immunotherapy efficacy in high-risk patients. 
However, there were distinct differences in the immune checkpoints and anticancer drug sensitivity 
between the two patient groups, which may aid in guiding treatment. Finally, our experiments showed 
that silencing CFAP58-DT significantly affected cell proliferation, promoted apoptosis, and reduced tumor 
malignancy. Conclusion: Our study highlights the significance of anoikis-associated lncRNAs in 
endometrial cancer progression and their potential as prognostic markers and therapeutic targets. The 
signature constructed using these lncRNAs may offer new avenues for endometrial cancer treatment and 
immunotherapy. The function of CFAP58-DT has been validated in vitro and in vivo, consistent with our 
previous analysis; however, further research into its upstream and downstream mechanisms is 
warranted. 
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Introduction 
Endometrial cancer (EC) is a prevalent 

malignancy of the female reproductive system that 
ranks sixth among the causes of cancer-related 
mortality in women [1]. It is concerning that the 
annual incidence of EC is increasing [2]. Although 
most women present with localized disease at 
diagnosis with a good prognosis after surgery alone, 
patients with distant metastasis have a poor 
prognosis, with a 5-year overall survival (OS) rate of 
17.3% [3, 4]. Currently, there are limitations to 
assessing the risk of metastasis and planning 
treatments based solely on pathology, leading to 
inappropriate treatment. Therefore, further 
exploration of EC prognosis-related markers in 
women is crucial for improving patient outcomes. 

Cancer metastasis is a complex multistep 
biological process in which cancer cells invade tissues, 
survive in transit, and colonize organs; this process is 
collectively referred to as the metastatic cascade [5]. 
As a defense mechanism against metastasis, cells 
typically undergo apoptosis when they lose contact 
with neighboring cells or the extracellular matrix 
(ECM). This process of cell death is referred to as 
“anoikis” [6]. Cancer cells develop a means to evade 
anoikis (termed anoikis resistance), allowing them to 
leave the primary tumor site and survive in the 
absence of adhesion. This ability represents a critical 
step for metastasis, ensuring that circulating tumor 
cells can survive and eventually resume proliferation 
at distant sites to colonize these organs [7, 8]. 
Therefore, a thorough analysis to identify the roles of 
key drivers in the occurrence of anoikis may have 
considerable practical implications. 

Long non-coding RNAs (lncRNAs) are 
autonomously transcribed non-coding RNAs > 200 
nucleotides in length that do not overlap with 
annotated coding genes [9]. Recently, researchers 
have identified the crucial role of lncRNAs in many 
biological activities and the occurrence and 
development of cancer [10]. For example, 
lncRNA-Gas5 has been demonstrated to significantly 
enhance PTEN expression by inhibiting miR-103 
expression, thereby promoting cancer cell apoptosis 
[11]. LncRNA-Meg3 has been shown to downregulate 
and exhibit an anti-proliferative effect in EC by 
inhibiting Notch signaling [12]. LncRNA-PCGEM1 
has been shown to upregulate the expression of 
STAT3 by acting as a competing endogenous RNA for 
miR-129-5p [13]. However, further research is required 
to determine the involvement of lncRNAs in EC. 

To date, no studies have explored the 
mechanisms of anoikis-related lncRNAs in EC. In this 
study, we explored the role of anoikis-related 

lncRNAs and established a prognostic signature to 
predict the prognosis of patients with EC. 
Furthermore, we investigated its relationship with 
immunity and drug sensitivity, providing a basis for 
the personalized clinical diagnosis and treatment of 
EC. In addition, the role of CFAP58-DT in EC was 
partially validated. 

Methods 
Data collection 

Transcriptome data were sourced from The 
Cancer Genome Atlas (TCGA) database 
(http://cancergenome.nih.gov/), which included 23 
normal samples and 554 tumor samples. Furthermore, 
we obtained complete clinical follow-up information 
from the TCGA for 543 patients. We extracted and 
screened 638 genes related to anoikis from the 
GeneCards (https://www.genecards.org/) and 
Harmonizome (https://maayanlab.cloud/ 
Harmonizome/) databases. 

Identification of differentially expressed (DE) 
anoikis-related genes (ARGs) and anoikis- 
related lncRNAs (ARLNCRs)  

The first step was to filter the DE-ARGs using the 
“limma” R package with the cut-off standard as |log 
fold change (FC)| > 1 and a P value < 0.05. 
Subsequently, 4,044 ARLNCRs were identified using 
Pearson’s correlation analysis (R > 0.4, P < 0.001). The 
expression levels of these lncRNAs were extracted, 
and 913 DE-ARLNCRs were identified (|log FC| > 1 
and P < 0.05). 

Construction and validation of the prognostic 
signature 

Samples with clinical information were 
randomly allocated into training and testing cohorts 
at a 1:1 ratio using the “caret” package. The training 
cohort was utilized to establish the prognostic 
signature, while both the testing cohort and the entire 
cohort were reserved for validation purposes [14, 15]. 
Initially, we conducted a univariate Cox regression 
analysis to identify 68 prognosis-associated 
DE-ARLNCRs. Further analyses were conducted 
using least absolute shrinkage and selection operator 
(LASSO) regression and multivariate Cox regression. 
Ultimately, seven DE-ARLNCRs (CFAP58-DT, 
AC004585.1, AC103563.9, AL121895.2, AC004596.1, 
AC010761.4, and AC087564.1) were identified as a 
prognostic signature. We divided patients with EC 
into high- and low-risk groups based on the risk score, 
which was calculated as follows: risk score = Σn i=1 
coef (i) × x (i), where coef (i) and x (i) represent the 
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estimated regression coefficient and the expression 
value of the DE-ARLNCRs, respectively. 

Risk curves, scatter plots, and heatmaps were 
generated using the “pheatmap” and “survival” 
packages to depict the risk score distribution, survival 
status, and expression profiles of the seven 
DE-ARLNCRs. Additionally, to evaluate the 
prognostic characteristics, Kaplan–Meier (K–M) and 
receiver operating characteristic (ROC) curves were 
plotted. Principal component analysis (PCA) was 
conducted using “Scatterplot3D” and the “limma” 
package to investigate the distribution of patients. 

Clinical evaluation of the signature 
We investigated whether clinical characteristics 

(age, stage, and grade) and the risk score could serve 
as independent prognostic predictors through 
univariate and multivariate Cox regression analyses. 
Utilizing the R packages “timeROC” and 
“survminer,” we constructed ROC curves and 
calculated the area under the curve (AUC) to compare 
the predictive ability of different factors and to assess 
survival. 

Nomogram and calibration analysis 
The prognostic nomogram to predict the 1, 3, 

and 5-year OS of patients with EC was constructed by 
integrating age, stage, grade, and the risk score using 
the “rms” R package. Calibration curves were used to 
visualize the results and evaluate the consistency 
between the predicted and actual survival. A diagonal 
line (45°) was recognized based on the best prediction 
value. 

Gene set enrichment analysis (GSEA)  
GSEA was conducted using the R package 

“enrichplot” and “clusterProfiler” with Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
(c2.cp.kegg.v7.4. symbols.gmt) and Gene Ontology 
(GO) (c5.go.v7.4. symbols.gmt) analyses to explore the 
potential molecular mechanisms that promote EC 
development. 

Immune analysis and drug sensitivity 
calculation 

The association between risk scores and immune 
cell populations was analyzed using CIBERSORT, 
TIMER, XCELL, QUANTISEQ, MCP counter, EPIC, 
and CIBERSORT tools. Next, the immune cells and 
the immune pathway infiltrating scores were 
explored using the “limma” and “GSVA” packages. 
The immune checkpoint activation between the two 
groups was compared using the “ggpubr” package. 
The “oncoPredict” and “ggplot2” R packages were 
used for drug sensitivity prediction. 

Cell culture 
EC cell lines, including HEC-1B, HEC-1A, KLE, 

RL95-2, and Ishikawa, were purchased from Zhong 
Qiao Xin Zhou Biotechnology (Shanghai, China). 
Ishikawa, HEC-1B, RL-952, and KLE cells were 
cultured in DMEM/F12 (Gibco) supplemented with 
10% fetal bovine serum (FBS) (Gibco). HEC-1A cells 
were cultured in McCoy’s 5 A supplemented with 
10% FBS. Cells were maintained at 37 °C in an 
incubator containing 5% CO2 and were negative for 
mycoplasma at the beginning and end of the 
experiment. The mutation status of the six driver 
genes in each of the cell lines used, including PTEN, 
TP53, PIK3CA and other genes commonly mutated in 
EC, are shown in Table S1.  

Quantitative real-time polymerase chain 
reaction (qRT-PCR) 

RNA was extracted with Trizol kit and reverse 
transcribed to cDNA with reverse transcription kit. 
The qRT-PCR reaction was conducted using the 
real-time PCR detection system produced by Bio-Rad. 
The RNA expression levels were calculated by the 
2-ΔΔCT method using the expression of β-actin as an 
internal reference. The primers used in the reaction 
were synthesized by Sangon Biotech, and the 
sequences were as follows: CFAP58-DT-Forward 
primer 5’-GGGGTACCGGGCAGATGGAGACAC 
CCA-3’, CFAP58-DT-Reverse primer 5’-CGGGAT 
CCTGGGTTGTTGGAAAATTTGCTCAC- 3’, β-actin- 
Forward primer 5’-GAGAAAATCTGGCACCAC 
ACC-3’, and β-actin-Reverse primer 5’-GATAGC 
ACAGCCTGGATAGCA- 3’. 

Transfection 
The shCFAP58-DT plasmid was purchased from 

Genomeditech (Shanghai, China). Transfection was 
performed using Lipo3000 (Invitrogen, USA) 
following the manufacturer’s instructions. shCFAP58- 
DT: GGTACAAATAGTTGAAATA.shCFAP58-DT- 
negative control TTCTCCGAACGTGTCACGT. 

Cell counting kit-8 (CCK8) assay 
Cells (1 × 104 cells/well) were cultured in 96-well 

plates, and 100 µL of cell culture medium was added 
to each well. After incubation for 24 h, the medium in 
each well was replaced with fresh medium containing 
10% CCK8 (ABclonal, China) and incubated for 1–2 h 
in the dark at a constant temperature. The optical 
density (OD) at 450 nm was measured. 

EdU assay 
Cells (1 × 104 cells/well) were plated in 96-well 

plates and incubated overnight. The EdU solution 
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(Beyotime, China) was prepared at a 1:1000 
concentration oof 1:1000 in the medium and added at 
100 µL per well. After incubation at 37 °C for 2 h and 
being fixation in 4% paraformaldehyde for 15 min, the 
cells were incubated with 50 µL of reaction solution 
for 30 min in the dark. The nuclei were stained for 
10 min using Hoechst. Cells were imaged using a 
fluorescence microscope (Olympus IX71, Tokyo, 
Japan). 

Calcein/propidium iodide (PI) staining 
Cells (8 × 105 cells/well) were plated in 6-well 

plates and incubated overnight. After incubating with 
Calcein and PI (Beyotime, China) for 30 min at 37°C in 
the dark, cells were observed by a fluorescence 
microscope. 

Apoptosis analysis 
Cells (8 × 105 cells/well) were plated in 6-well 

plates and incubated overnight. Both adherent and 
suspended cells were collected, followed by 
incubation with Annexin V-FITC and PI (Beyotime, 
China) for 20 min at 15-20°C in the dark. A flow 
cytometer (BD Biosciences, USA) was used for 
detection and FlowJo software was used for data 
analysis. 

Cell cycle analysis 
Cells (8 × 105 cells/well) were plated in 6-well 

plates and incubated overnight. After digestion, cells 
were washed twice with PBS, fixed in 70% ethanol at 
4 ºC for 24 h. Fixed cells were resuspended in 
PI/RNase Staining Buffer (Beyotime, China) and 
incubated for 15 min at room temperature in the dark. 
A flow cytometer (BD Biosciences, USA) was used for 
detection and FlowJo software was used for data 
analysis. 

Colony formation assay  
Cells (500 cells/well) were seeded in 6-well 

plates and then allowed to grow in an incubator at 
37 °C for 2 weeks. Then, the cells were treated with 4% 
paraformaldehyde for fixation and stained with 0.1% 
crystal violet. 

Western blot (WB) analysis 
Protein was extracted using RIPA lysis buffer. 

Subsequently, the bicinchoninic acid (BCA) method 
was employed to quantify the protein content. A 
polyacrylamide gel electrophoresis (PAGE) gel with a 
concentration of 12.5% was used for electrophoresis, 
and the separated proteins were then transferred onto 
a 0.2 µm polyvinylidene fluoride (PVDF) membrane. 
After incubation with skim milk for 1–2 h at room 
temperature and incubation with the primary 

antibodies overnight at 4 °C, the membranes were 
then incubated with the secondary antibodies for 1–2 
h at room temperature. Enhanced chemiluminescence 
(ECL) detection reagents and a ChemiDoc imaging 
system were used for protein visualization. 

Tumor xenotransplantation experiments 
Five-week-old female BALB/c-nu mice 

(Shulaibao Biotechnology, China) were maintained in 
a standard specific pathogen-free (SPF) environment 
and randomly divided into the normal control (NC) 
and shCFAP58-DT groups. Cells (1 × 106) were 
suspended in 100 µL PBS and then injected 
subcutaneously into the left scapula of the mice. After 
28 days, the mice were euthanized, and the tumors 
were excised for subsequent analysis. The 
morphological and structural characteristics of the 
tumor cells were observed by hematoxylin and eosin 
(H&E) staining. Differential expression of Ki67 and 
PCNA in tumor xenografts between the NC and 
shCFAP58-DT groups was assessed by 
immunohistochemistry (IHC). 

Statistical analysis 
Statistical analysis was performed using 

Student’s t-test and ANOVA with R version 4.2.3 or 
GraphPad Prism 9 software. Unless specified 
otherwise, statistical significance was established at P 
< 0.05.  

Results 
Identification and functional enrichment 
analysis of DE-ARGs 

Figure 1 presents a flowchart of this study. By 
processing and analyzing the mRNA sequencing data 
downloaded from TCGA database, which 
encompassed 23 normal samples and 554 tumor 
samples, we identified 174 DE-ARGs, including 97 
upregulated and 77 downregulated genes (Figure 2A, 
B). Subsequently, KEGG pathway analysis revealed 
that the DE-ARGs were enriched in pathways such as 
microRNAs in cancer, focal adhesion, proteoglycans 
in cancer, PI3K-AKT signaling pathway, prostate 
cancer, cell cycle, RAP1 signaling pathway, adherens 
junction, EGFR tyrosine kinase inhibitor resistance, 
and HIF-1 signaling pathway (Figure 2C). The GO 
analysis demonstrated that within biological 
processes (BP), DE-ARGs were primarily enriched in 
terms of epithelial cell proliferation, response to 
reactive oxygen species, regulation of epithelial cell 
proliferation, intrinsic apoptotic signaling pathway, 
and intrinsic apoptotic signaling pathway in response 
to DNA damage. In terms of cellular components 
(CC), DE-ARGs were mainly enriched in the 
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collagen-containing extracellular matrix, cell leading 
edge, apical part of the cell, apical plasma membrane, 
and focal adhesion. For the molecular function (MF), 
DE-ARGs were predominantly enriched in DNA- 
binding transcription factor binding, integrin binding, 
protein tyrosine kinase activity, protein serine kinase 
activity, and protein serine/threonine kinase activity 
(Figure 2D). 

Construction of the DE-ARLNCR prognostic 
signature 

Pearson’s correlation analysis (R > 0.4, P < 0.001) 
was conducted on 174 DE-ARGs and lncRNA 
expression data to identify 4,044 ARLNCRs, of which 
913 were defined as DE-ARLNCRs (|log FC| > 1, P < 
0.05). A total of 543 patients were randomly allocated 
into two groups: the training cohort (n = 272) and the 
testing cohort (n = 271). The validation of clinical 
characteristics confirmed the rationality of the cohort 
allocation, revealing no significant differences in 
various clinical factors between the two groups (Table 
1). Subsequently, the training cohort was utilized to 
develop an optimal signature for predicting prognosis 
based on the identified DE-ARLNCRs. Both the 
testing cohort and the entire patient cohort were then 
employed to rigorously assess the predictive accuracy 
and generalizability of the signature. Univariate Cox 
regression analysis was employed to identify 68 
DE-ARLNCRs that were prognostic for patients with 
EC (Figure S1). To prevent overfitting, LASSO 
regression was employed to identify the most 
promising predictive biomarkers (Figure 3A, B). 

Furthermore, the multivariate Cox regression analysis 
identified seven lncRNAs crucial for the construction 
of the prognostic signature (Table 2). A co-expression 
network diagram and Sankey plot (Figure 3C, D) were 
used to illustrate the interactions between the ARGs 
and lncRNAs incorporated into the signature. 

 

Table 1 The clinical characteristics of patients in different 
cohorts. 

Variables  Type Training cohort 
 (n = 272) (％) 

Testing cohort 
 (n = 271) (％) 

Entire TCGA 
dataset (n = 543) (％) 

Age ≤60 108 (39.7) 99 (36.5) 207 (38.1)  
>60 164 (60.3) 170 (62.7) 334 (61.5)  
Unknown 0 2 (0.7) 2 (0.4) 

Grade Grade 1 48 (17.6) 51 (18.8) 99 (18.2)  
Grade 2 56 (20.6) 65 (24.0) 121 (22.3)  
Grade 3 168 (61.8) 155 (57.2) 323 (59.5) 

Stage Stage I 159 (58.5) 180 (66.4) 339 (62.4)  
Stage II 26 (9.6) 26 (9.6) 52 (9.6)  
Stage III 68 (25) 55 (20.3) 123 (22.7)  
Stage IV 19 (7.0) 10 (3.7) 29 (5.3) 

 

Table 2 Multivariate cox regression analysis of DE-ARLNCRs. 

id coef HR HR.95L HR.95H pvalue 
CFAP58-DT 0.506634 1.659696 1.015894 2.711494 0.04308 
AC004585.1 -0.3563 0.700261 0.455276 1.077072 0.104809 
AC103563.9 1.066652 2.905636 1.069599 7.893348 0.036446 
AL121895.2 0.311126 1.364961 0.927871 2.00795 0.114146 
AC004596.1 -0.74335 0.475516 0.292538 0.772945 0.002708 
AC010761.4 0.376952 1.457835 1.046708 2.030445 0.025746 
AC087564.1 -1.74644 0.174394 0.030023 1.013001 0.051706 

 

 
Figure 1. The flowchart of this study. 
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Figure 2. (A) Volcano plot identifying DE-ARGs, showing downregulated and upregulated genes. (B) Heatmap displaying the expression levels of DE-ARGs in each sample. (C) 
KEGG Pathway Enrichment Analysis. (D) GO Enrichment Analysis. 

 

Validation of the DE-ARLNCR prognostic 
signature 

Patients with EC were divided into high- and 
low-risk groups based on the median risk score 
(Figure 4A-C). In the training cohort, the high-risk 
group exhibited an increased mortality rate, 

suggesting that a higher risk score is indicative of a 
poorer prognosis for patients with EC (Figure 4D). 
The heatmap analysis (Figure 4G) revealed the 
differential expression of seven lncRNAs between the 
two groups. The K–M analysis demonstrated that the 
prognosis of the high-risk group was significantly 
worse than that of the low-risk group (P < 0.001; 
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Figure 4J). To evaluate the accuracy of survival 
prediction, we plotted ROC curves, as shown in 
Figure 4M, with AUC values of 0.673, 0.77, and 0.776 
at 1, 3, and 5 years, respectively. To further validate 
the applicability of the prognostic signature, the same 
analysis was conducted on two additional cohorts. 
Consistent findings were also confirmed in the testing 
cohort (Figure 4E, H, K and N) and the entire patient 
cohort (Figure 4F, I, L and O). Furthermore, we 
validated the grouping capability of the signature 
using PCA at different levels, revealing that the 
samples were successfully segregated into two 
independent groups. 

Clinical evaluation of the DE-ARLNCR 
prognostic signature 

Univariate Cox regression analysis revealed that 
age, stage, grade, and risk score were significantly 
associated with OS in patients with EC (Figure 5A). 

Multivariate Cox regression analysis further 
demonstrated that the grade, stage, and risk score 
were independent predictors of OS (Figure 5B). A 
clinical correlation heatmap illustrated age, grade, 
and stage distribution across the high- and low-risk 
groups. The ROC curve indicated that the risk score 
exhibited the largest AUC (0.757) compared with age, 
grade, and stage. Subgroup analyses based on the 
stage and age of patients with EC were conducted to 
ascertain the predictive capability of various clinical 
features. It was found that the signature effectively 
differentiated between high-risk and low-risk groups, 
as evidenced by the significantly lower OS rates in the 
high-risk group compared to the low-risk group 
across the following subgroups: patients ≤60 years, 
patients > 60 years, patients with stage I–II, and 
patients with stage III–IV. 

 

 
Figure 3. (A, B) LASSO regression analysis of 68 prognostic related DE-ARLNCRs. (C, D) The correlation between DE-ARGs and 7 DE-ARLNCRs in the signature. 
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Figure 4. (A-C) Risk curves showing risk score distribution. (D-F) Scatter plot of survival duration and status of patients in the high-risk and low-risk groups. (G-I) Heatmap 
showing the expression levels of lncRNAs in the prognostic signature. (J-L) K-M survival curves for OS in the high-risk and low-risk groups. (M-O) ROC curves for predicting 
OS at 1, 2, and 3 years based on DE-ARLNCRs prognostic signature. (P-S) PCA based on (P) all genes, (Q) ARGs, (R) DE-ARLNCRs and (S) the 7 lncRNAs included in the 
signature. 
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Figure 5. (A) Univariate cox regression analysis for age, grade, stage, and risk score. (B) Multivariate cox regression analysis for age, grade, stage, and risk score. (C) 
Distribution heatmap of 7 prognostic DE-ARLNCRs and clinicopathological variables in high-risk and low-risk groups. (D) ROC curves of clinical characteristics and risk score. 
(E-H) K-M survival analysis of clinical characteristics. 

 

Construction of the nomogram 
To further predict the prognosis of patients with 

EC, we constructed a nomogram that included 
clinicopathological variables and risk scores. This 
nomogram predicted the 1-, 3-, and 5-year prognosis 
of patients with EC (Figure 6A). The calibration 
curves exhibited good consistency between the actual 
OS rates and the predicted survival rates at 1, 3, and 5 
years (Figure 6B–D). 

GSEA based on the DE-ARLNCR prognostic 
signature 

To gain further insight into the underlying 
molecular mechanisms between DE-ARLNCRs and 
EC, we performed GSEA to elucidate the possible 
differences in enriched signaling pathways and 

biological functions between the high- and low-risk 
groups. The results indicated that the high-risk group 
exhibited enrichment in pathways such as the calcium 
signaling pathway, cardiac muscle contraction, 
dilated cardiomyopathy, neuroactive ligand receptor 
interaction, PPAR signaling pathway, tight junctions, 
and type II diabetes mellitus (Figure S2A). These 
pathways are typically associated with intercellular 
interactions, cell proliferation, differentiation, 
apoptosis, angiogenesis, and glucose metabolism 
[16-18]. The low-risk group demonstrated enrichment 
in pathways including allograft rejection, cytokine–
cytokine receptor interaction, fatty acid metabolism, 
graft-versus-host disease, Leishmania infection, 
ribosomes, and type I diabetes mellitus (Figure S2B). 
These pathways are closely associated with immune 
responses, inflammatory reactions, and metabolic 
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regulation [19-21]. Furthermore, the high-risk group 
was enriched in functions such as cell–cell adhesion 
via plasma membrane adhesion molecules, synapse 
organization, cell body, presynapse, and cation 
transmembrane transporter activity (Figure S2C). The 
low-risk group showed enrichment in functions such 
as axoneme assembly, microtubule bundle formation, 
ciliary plasma, immunoglobulin complex, and T-cell 
receptor complex (Figure S2D). In summary, 
DE-ARLNCRs may be involved in the regulation of 
various cellular processes that influence EC 
progression, including intercellular interactions, cell 
proliferation, differentiation, apoptosis, angiogenesis, 
glucose and fatty acid metabolism, immune 
responses, and inflammatory regulation. These 
findings not only provide a new perspective for 
understanding the role of DE-ARLNCRs in EC but 
also provide a basis for further exploration of their 
potential as therapeutic targets. Therefore, we further 
explored the differences in immune function between 
high- and low-risk groups. 

Immune function analysis between high- and 
low-risk groups  

To investigate the relationship between the 
prognostic signature and immune-infiltrating cells, 
we employed seven standard methods for 
comprehensive integration and analysis [22]. The 
results indicated a broad negative correlation between 
the immune cell array and the risk scores (Figure 7A). 
To further explore this, we used single-sample 
(ss)GSEA to quantify the enrichment scores of 
different immune cell subsets and immune functions. 
Significant differences were observed in the 
proportions of most immune cell types and immune 
functions between the two groups. Cells, such as B 
cells, CD8+ T cells, DCs, immature dendritic cells 
(iDCs), neutrophils, plasmacytoid dendritic cells 
(pDCs), T helper cells, T follicular helper (Tfh), T 
helper 1 (Th1) cells, T helper 2 (Th2) cells, 
tumor-infiltrating lymphocytes (TIL), and T cells 
regulatory (Tregs), were higher in the low-risk group, 
while activated dendritic cells (aDCs) showed a 
greater level in the high-risk group (Figure 7B).  

 

 
Figure 6. (A) Establishment of prognostic nomogram to predict survival of EC. (B) Calibration curves of the nomogram to predict 1-year and 3-year and 5-year survival. 
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Figure 7. (A) Bubble chart showing the correlation between the immune cell array and risk scores. (B) Immune cell, and (C) immune function differences through ssGSEA. ***, 
P<0.001; **, P<0.01; *, P<0.05; ns, not significant. (D) Box plots of stromal score, immune score, and ESTIMATE score for two groups. (E) Immune checkpoints analysis in two 
groups. ***, P<0.001; **, P<0.01; *, P<0.05. 

 
In addition, APC co-stimulation, chemokine 

receptor (CCR), checkpoint, cytolytic activity, human 
leukocyte antigen (HLA), inflammation-promotion, T 
cell co-inhibition, T cell co-stimulation, and type II 
IFN response were more active in the low-risk group, 
except for the type I IFN response (Figure 7C). 
Furthermore, the stromal, immune, and ESTIMATE 
scores of low-risk patients exceeded those of high-risk 
patients (Figure 7D). 

The advent of immune checkpoint inhibitors 
(ICIs) has revolutionized therapeutic approaches for a 
wide range of tumor types, including EC [23]. In this 
study, we found that certain immune checkpoints 
were differentially expressed between the high- and 
low-risk groups (Figure 7E). These findings suggest 
that DE-ARLNCRs may play a pivotal role in 
modulating immune responses to tumors and that the 
DE-ARLNCR prognostic signature has the potential 
to aid in predicting the efficacy of immunotherapy in 
patients with EC. 

Sensitivity of anticancer drugs between high- 
and low-risk groups  

We aimed to establish a correlation between our 
prognostic signature and the efficacy of drug 
treatments for EC. Through the analysis of commonly 
prescribed anticancer drugs, we found that the 
low-risk group exhibited greater sensitivity to most 
drugs, such as 5-Fluorouracil, Olaparib, Docetaxel, 
Paclitaxel, Topotecan, and Dabrafenib; however, their 
sensitivities to WEHI-539 and WIKI4 were lower than 
that of the high-risk group (Figure S3). This suggests 
that our signature has potential as a predictor of 
chemotherapy sensitivity and offers new options for 
future clinical treatment strategies. 

Expression and functional validation of 
CFAP58-DT in EC 

To examine the potential involvement of these 
lncRNAs in EC development, CFAP58-DT was 
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selected for further studies. We first used the external 
database KM Plotter for verification, which 
corroborated our results, indicating that CFAP58-DT 
was predictive of poor prognosis (Figure 8A) [24]. 
After evaluating the expression of CFAP58-DT in EC 
cell lines, we transfected the shCFAP58-DT plasmid 
into KLE cells for loss-of-function experiments (Figure 
8B). The CCK8 assay showed that the inhibition of 
CFAP58-DT repressed the viability of KLE cells 
(Figure 8C). The EdU assay, calcein/PI cell staining, 
flow cytometry and colony formation assays showed 
that CFAP58-DT knockdown enhanced the apoptosis 
and inhibited proliferation of KLE cells (Figure 8D–
H). The protein expression levels of BAX, BCL2, 
caspase3 and active caspase-3, which are key 
indicators of cellular apoptosis, were significantly 
upregulated in the shCFAP58-DT cells (Figure 8I). 
Therefore, our results indicated that CFAP58-DT 
plays a significant role in the regulation of 
proliferation and apoptosis. 

To explore the effects of CFAP58-DT on EC 
growth in vivo, a nude mouse tumorigenicity assay 
was performed. KLE cells were stably transfected 
with shCFAP58-DT and injected subcutaneously into 
female BALB/c nude mice. After 4 weeks, the tumor 
volumes in shCFAP58-DT mice were significantly 
smaller than those in the NC group (Figure 9A-C). HE 
staining revealed the cellular morphology of 
subcutaneously transplanted tumors. In addition, 
immunohistochemical staining of these subcutaneous 
tumors demonstrated that the CFAP58-DT 
knockdown group exhibited a decrease in the 
expression of Ki67 and PCNA in tumor tissues (Figure 
9D). Overall, the results of these experiments revealed 
that CFAP58-DT may play a crucial role in the 
development of EC tumors. 

Discussion 
As a highly heterogeneous malignant tumor of 

the female genital tract, the incidence and 
disease-associated mortality of EC are rapidly 
increasing globally [25, 26]. Although most patients 
with EC present with early-stage disease and have a 
favorable prognosis after surgery, the prognosis 
remains poor in patients with advanced-stage EC, 
disease recurrence, or distant metastases [27]. Based 
on molecular characterization, TCGA Research 
Network has identified four widely accepted EC 
subtypes: POLE ultra-mutated, mismatch 
repair-deficient, copy number low, and copy number 
high [28]. However, this classification cannot 
adequately and accurately predict patient prognosis. 
Therefore, it is of paramount importance to identify 
novel biomarkers that can effectively predict the 
prognosis of patients with EC, thereby providing 

them with more precise prognostic models and 
tailored treatment plans. 

Anoikis, a form of programmed cell death 
induced by detachment from neighboring cells or the 
ECM, has received widespread attention since its 
formal nomination by Frisch and Francis in 1994 [6]. 
Multiple pathways regulate anoikis, ultimately 
leading to caspase activation and DNA 
fragmentation, resulting in cell death [8, 29]. Anoikis 
resistance and anchorage-independency empower 
tumor cells to proliferate and infiltrate neighboring 
tissues, facilitating their dissemination throughout the 
body and ultimately leading to metastasis [30, 31]. 
Overcoming anoikis is a pivotal stage in the sequence 
of transformations that cancer cells undergo during 
their progression to malignancy [32]. Consequently, a 
deeper understanding of the mechanisms underlying 
anoikis resistance could aid in the inhibition of tumor 
progression and the prevention of metastasis. 

Although once considered transcriptional noise, 
lncRNAs have emerged as critical regulators of gene 
expression and are key players in cancer biology 
[33-35]. Promoter methylation of the lncRNA 
LOC554202 leads to decreased miR-31 expression, 
which contributes to breast cancer invasion and 
metastasis [36]. In pancreatic cancer, HOTTIP 
promotes progression and gemcitabine resistance by 
regulating HOXA13 [37]. In many relevant studies, 
lncRNAs have been investigated as potential key 
factors in the prognostic assessment of tumors [38-40]. 
Gaining a profound understanding of the functional 
roles of lncRNAs in cancer has the potential to 
facilitate the development of novel lncRNA-based 
interventional strategies, thereby opening new 
avenues for the treatment or prevention of cancer. 

Therefore, it is necessary to conduct further 
research on the co-regulatory functions of anoikis and 
lncRNAs in EC. In this study, by integrating the 
transcriptomic data of patients with EC from the 
TCGA database and the ARGs from the GeneCards 
and Harmonizome database, we identified seven 
DE-ARLNCRs (CFAP58-DT, AC004585.1, AC103563.9, 
AL121895.2, AC004596.1, AC010761.4, and 
AC087564.1) and constructed a prognostic signature.  

Of the seven DE-ARLNCRs included in the 
signature, CFAP58-DT and AC004585.1 have been 
previously reported. CFAP58-DT has been shown to 
be a potential cofactor for MDA5; it enhances the 
innate immune response to viral infections by 
facilitating the oligomerization and activation of 
MDA5 [41]. Furthermore, it has been proven to be able 
to regulate cell viability, invasion, and migration [42]. 
Our results also indicated that CFAP58-DT may be a 
risk indicator in patients with EC, which is related to 
poor prognostic outcomes.  
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Figure 8. (A) KM Plotter database exhibited the relationship between expression of CFAP58-DT and OS in EC patients. (B) qRT-PCR showed the CFAP59-DT expression in 
different EC cells. (C-H) CCK8, EdU, Calcein/PI cell staining, flow cytometry and colony formation assays showed shCFAP59-DT enhanced the apoptosis and inhibited 
proliferation of KLE cells. (I) Western blot showed the protein levels of BAX, Bcl2, Caspase3, Active Caspase3.β-Actin is an internal parameter. 
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Figure 9. (A) Images of tumors by subcutaneous injection at the end point of BALB/c nude mice. (B) Tumor volume measured at the end point. (C) Tumor weight measured 
at the end point. (D) Images of HE staining and immunohistochemistry (IHC) of subcutaneous xenograft tumors. 

 
Based on our experiments, the silencing of 

CFAP58-DT significantly affected cell proliferation, 
promoted cell apoptosis, suppressed the growth of 
subcutaneous tumors in nude mice, and reduced 
tumor malignancy. These data were not available in 
previous studies. AC004585.1 has been reported to 
predict the outcomes of patients with breast and 
bladder cancer in several studies [43, 44].  

In the validation of our signature, there is a 
strong correlation between the OS and the risk score 
in patients with EC. The AUCs for predicting 1-, 3-, 
and 5-year OS were 0.673, 0.77, and 0.776, 
respectively. PCA showed a good grouping ability of 
the signature. Compared to other clinical parameters, 
such as age, grade, and stage, the risk score had the 
best predictive effect, further proving that the 
signature is an extremely accurate predictor of patient 
prognosis. In addition, we established a nomogram 
for the personalized prediction of prognosis in 

patients with EC. The calibration curves proved that 
the nomogram had reliable prediction efficiency, 
showing good consistency between prediction and 
actual survival.   

GSEA revealed differences in the enrichment of 
signaling pathways and biological functions between 
the high- and low-risk groups. The high-risk group 
exhibited enrichment in multiple signaling pathways 
related to cellular function and metabolism. In 
contrast, the low-risk group showed enrichment of 
pathways related to immunity and infection. 
Regarding biological functions, the functional 
enrichment of the high-risk group was primarily 
focused on intercellular communication and material 
transport. The low-risk group showed enrichment in 
functions related to cellular structural stability and 
regulation of immune responses. These findings 
indicate that DE-ARLNCRs may play a role in 
regulating diverse cellular processes that impact the 
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progression of EC, including intercellular interactions, 
cell proliferation, differentiation, apoptosis, 
angiogenesis, glucose and fatty acid metabolism, 
immune responses, and inflammatory regulation. 

The immune microenvironment in cancer 
represents a complex and pivotal ecosystem that 
significantly influences tumor initiation, 
development, and progression [45, 46]. Through an 
integrated analysis of multiple recognized and 
effective methods, the results indicated that patients 
in the high-risk group typically exhibited lower levels 
of immune cell infiltration, suggesting a suppressed 
immune system that was unable to effectively control 
and monitor tumor development. Furthermore, 
high-risk patients demonstrated a lower stromal 
score, immune score, and ESTIMATE score compared 
to low-risk patients, reflecting a tumor 
microenvironment that was less conducive to immune 
cell infiltration and functionality, resulting in a 
so-called “cold immunity” state. Specifically, within 
the high-risk group, only the type I IFN response 
among key immune-related functional pathways was 
more active than that in the low-risk group. However, 
IFN-I signaling has been reported to lead to more 
aggressive phenotypes, not only limiting the 
expansion of effector cells but also inhibiting their 
functional adaptability, thereby contributing to poor 
immunogenicity and clinical outcomes [47]. Notably, 
there were significant differences in the expression of 
certain immune checkpoints between the high- and 
low-risk groups. This finding implies that 
DE-ARLNCRs participate in regulating the tumor 
immune response and aid in predicting the response 
of patients with EC to immunotherapy. With the 
widespread application of ICIs across various tumor 
types, this finding offers potential targets for 
immunotherapy in EC. 

This study has certain limitations. One major 
limitation is that our prognostic signature was 
developed using publicly available transcriptomic 
and clinical data from TCGA, and its accuracy was 
evaluated via an internal testing set. Future studies 
should consider incorporating external validation 
using data from other sources or independent cohorts 
to achieve more comprehensive conclusions. Second, 
although preliminary findings have been established, 
the upstream and downstream regulatory 
mechanisms underlying the function of CFAP58-DT 
remain insufficiently explored and should be 
addressed in future investigations. 

Conclusion 
Our study identified seven DE-ARLNCRs, 

successfully established a prognostic signature for 
patients with EC, and validated its robust predictive 

capabilities. After conducting thorough discussions 
on its relationship with clinical characteristics, 
immunity, and drug sensitivity, we found that the 
signature could provide effective guidance for the 
prognosis and treatment of patients with EC. 
Additionally, we verified that CFAP58-DT affected EC 
progression both in vitro and in vivo, further 
confirming our results. In clinical practice, there is an 
emphasis on planned and rational comprehensive 
treatment with a strong focus on individualized 
therapy in EC. We hope that our study will enhance 
the evaluation of the prognosis, molecular 
characteristics, and therapeutic approaches in patients 
with EC, potentially paving the way for future clinical 
applications and translation. 
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