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Abstract 

Purpose: Recent evidence suggests that the renin-angiotensin system (RAS) is involved in OSCC 
development. This study aimed to identify RAS-related gene (RASRG) biomarkers associated with OSCC 
prognosis through integrated bioinformatics analysis. 
Methods: First, we identified module genes by intersecting differentially expressed genes (DEGs) from 
the TCGA-OSCC dataset with RASRGs using weighted gene co-expression network analysis 
(WGCNA). Next, Cox and least absolute shrinkage and selection operator (LASSO) regression analyses 
were utilized to construct an OSCC risk model. We also created a nomogram incorporating risk scores 
and relevant clinical variables. Subsequently, receiver operating characteristic (ROC) analysis, 
Kaplan-Meier (KM) curve analysis, Cox regression analysis, and in vitro experiments were performed to 
assess the accuracy of the prognostic risk model and nomogram. Furthermore, protein-protein 
interaction (PPI) network, immune infiltration analysis and functional enrichment analyses were employed 
to reveal OSCC-related pathogenic genes and underlying mechanisms. 
Results: A novel OSCC risk model was established consisting of six key genes: CMA1, CTSG, OLR1, SPP1, 
AQP1, and PTX3. This six-gene signature effectively predicted the prognosis of patients with OSCC and 
served as a reliable independent prognostic parameter. Protein-protein interaction network analysis 
identified 5 hub genes and 13 miRNAs. Immune infiltration analysis indicated a possible association of the 
prognostic features of RASRGs with immunomodulation.  
Conclusion: In this study, we successfully constructed a risk model based on the six identified 
RAS-related DEGs as potential predictive biomarkers for OSCC. 
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1. Introduction 
Head and neck squamous cell carcinoma 

(HNSCC) is one of the most common malignant 
epithelial tumors, with oral squamous cell carcinoma 
(OSCC) being the most prevalent subtype [1,2]. 
Currently, the standard treatment for OSCC includes 
surgery, with or without radiotherapy and 
chemotherapy. Despite advances in early detection 
and therapeutic strategies, the 5-year survival rate for 

patients with OSCC remains approximately 50%, 
largely due to regional relapse and distant metastasis 
[3]. Traditional prognostic indicators, such as tumor 
staging and grading, fail to distinguish between 
carcinomas with different biological characteristics 
within the same histological subgroup. Therefore, 
there is an urgent need to identify effective prognostic 
biomarkers and therapeutic targets for OSCC. 
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The renin-angiotensin system (RAS) consists mainly 
of renin, angiotensinogen (AGT), angiotensin I (Ang 
I), angiotensin-converting enzyme (ACE), angiotensin 
II (Ang II), angiotensin II type 1 receptor (AT1R), and 
angiotensin II type 2 receptor (AT2R) [4]. It is an 
endocrine system that regulates blood pressure 
homeostasis and electrolyte balance, functioning at 
both systemic and local levels [5]. Accumulating 
evidence suggests that alterations in the function and 
activity of the RAS play significant roles in 
carcinogenesis [6]. The ACE/Ang II/AT1R axis 
promotes angiogenesis, fibrosis, tumor invasion, and 
metastasis, exerting a tumorigenic role, whereas the 
ACE-2/Ang 1-7/MASR axis plays an 
anti-tumorigenic role in various cancers [7]. Recent 
studies have shown dysregulation of RAS 
components in OSCC, with RAS component 
expression demonstrated in cancer stem cells of 
several OSCC subtypes [8,9]. Furthermore, genetic 
variants in renin-angiotensin system-related genes 
(RASRGS) have been correlated with an increased risk 
of cancer development and poor prognosis [10]. These 
findings indicate that the RAS is associated with 
OSCC progression. However, few studies have 
investigated the prognostic value of RASRGs in 
patients with OSCC. Moreover, the biological 
functions of RASRGs in OSCC remain underexplored. 
In this study, we aimed to identify prognostic 
biomarkers of RASRGs and develop a prognostic 
signature for patients with OSCC. We 
comprehensively analyzed the expression of RASRGs 
in OSCC and their correlation with OSCC prognosis 
using The Cancer Genome Atlas (TCGA) and Gene 
Expression Omnibus (GEO) databases. We 
constructed a prognostic risk score model consisting 
of six differentially expressed RAS-related genes 
(RASRDEGs), namely CMA1, CTSG, OLR1, SPP1, 
AQP1, and PTX3, to evaluate the predictive value of 
RASRGs in OSCC. Finally, we experimentally 
validated the relationship between RASRDEGs and 
OSCC. 

2 Materials and Methods 
2.1 Data source and preprocessing 

We downloaded the HNSCC dataset (TCGA- 
HNSC) from the TCGA database (https://portal.gdc. 
cancer.gov/) [11]. The OSCC dataset (TCGA-OSCC) 
extracted from this dataset was standardized to 
fragments per kilobase per million (FPKM) format 
and used as the test set for analyses. Corresponding 
clinical data obtained from the UCSC Xena database 
(https://xena.ucsc.edu/) [12] were presented in Table 
1. After excluding samples lacking prognostic 
information, we obtained the count format 

sequencing data from 329 OSCC samples with 
prognostic information and 32 control samples. The 
GSE30784, GSE23558, and GSE25099 OSCC datasets 
were downloaded from the GEO database 
(https://www.ncbi.nlm.nih.gov/geo/) as validation 
sets [13-19], their specific chip information is shown in 
Table S1. The combined GEO datasets comprised 251 
OSCC samples and 72 control samples after batching 
(Fig. S1) [20-22]. Genes in the TCGA-OSCC dataset 
and the integrated GEO datasets (Combined Datasets) 
were intersected, and only the intersecting genes were 
retained. A total 0f 155 RASRGs were collected from 
the GeneCards database (https://www 
.genecards.org/) and related literature [23], as shown 
in Table S2. 

 

Table 1. Characteristics of patients with OSCC in TCGA 
database 

Characteristics Overall 
Age, n (%)  
> 60 154 (52.2%) 
<= 60 141 (47.8%) 
Gender, n (%)  
MALE 203 (68.8%) 
FEMALE 92 (31.2%) 
N Stage, n (%)  
N0 115 (39%) 
N2&3 107 (36.3%) 
NX 24 (8.1%) 
N1 49 (16.6%) 
T Stage, n (%)  
T4 109 (36.9%) 
T1&2 121 (41%) 
T3 65 (22%) 
Stage, n (%)  
IV 165 (55.9%) 
I&II 70 (23.7%) 
III 60 (20.3%) 

OSCC: oral squamous cell carcinoma 
 

2.2 Identification of differently expressed 
renin-angiotensin related genes 

Differentially expressed genes (DEGs) between 
OSCC and control samples were identified using the 
R package DESeq2 [24] with inclusion criteria |log 
FC| > 1 and p < 0.05 in the TCGA-OSCC dataset. Then 
RASRDEGs were identified by determining the 
intersection of the DEGs with RASRGs. The locations 
of the RASRDEGs on the human chromosomes were 
analyzed using the R package RCircos. We further 
analyzed the somatic mutations (SM) and copy 
number variations (CNV) in OSCC samples from the 
TCGA-OSCC dataset. The SM profiles were 
visualized using the R package maftools [25] and 
GISTIC2.0 [26] analysis was performed on the 
downloaded CNV segments. 
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2.3 Calculation of renin-angiotensin system 
score and weighted gene association network 
analysis (WGCNA) 

The renin-angiotensin system score (RASScore) 
for all samples in the TCGA-OSCC dataset was 
calculated based on the expression matrix of 
RASRDEGs using the R package GSVA and the 
ssGSEA algorithm [27]. Then receiver operating 
characteristic (ROC) curve analysis was conducted 
and the area under the curve (AUC) was calculated 
using the pROC package. To identify module genes 
associated with RAS, WGCNA was performed 
through R package WGCNA [28] and genes with the 
highest 75% variance were screened. The correlation 
between RASScore and different modules was 
measured with a minimum genes number of 100, an 
optimal soft threshold of 7, a scale-free fit index of 
0.94, a module integrated shear height of 0.4 and a 
minimum distance of 0.2. All genes in modules with 
|r| > 0.30 were intersected with RASRDEGs and the 
intersecting genes were identified as module genes.  

2.4 Expression analysis of module genes in 
OSCC 

Based on their expression levels in OSCC and 
control samples from the TCGA-OSCC and combined 
GEO datasets, group comparison plots and ROC 
curves of module genes [29] were generated. In 
addition, the consensus clustering method [30] R 
package ConsensusClusterPlus [31] was used to 
identify OSCC subtypes. Expression value heatmaps, 
grouping comparison maps as well as the correlation 
heatmap and scatter plots were also drawn to further 
analyze the distribution characteristics of the module 
genes in different OSCC subtypes.  

2.5 Construction of prognostic risk model for 
OSCC 

Initially, univariate Cox regression analysis was 
conducted on module genes using the R package 
survival [32], and variables with p < 0.10 were selected 
for subsequent least absolute shrinkage and selection 
operator (LASSO) regression analysis. LASSO 
regression analysis (family = "cox") was then 
performed on the previous identified genes using the 
R package glmnet [33] with an iteration number of 10. 
Next, multivariate Cox regression analyses were 
utilized to identify key genes in the risk model. 
Finally, the risk score was calculated using the 
following formula: 

Risk 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  �𝐶𝐶𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶 (𝑔𝑔𝑆𝑆𝐶𝐶𝑆𝑆𝑖𝑖)
𝑖𝑖
∗ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸𝐶𝐶𝑆𝑆𝐶𝐶 (𝑔𝑔𝑆𝑆𝐶𝐶𝑆𝑆𝑖𝑖) 

The risk score for OSCC samples from the 
combined GEO datasets was calculated based on the 
formula above, and patients were divided into high- 
and low-risk groups using the median risk score as 
the dividing point. To further validate the ability of 
key genes to risk group OSCC samples and their 
differential expression among different risk groups, 
we generated group comparison plots and ROC 
curves [29] based on the expression levels of these 
genes in OSCC samples from the TCGA-OSCC and 
combined GEO datasets. 

2.6 Prognostic analyses of OSCC risk model  
To investigate the relationship between gene 

expression levels and overall survival, OSCC patients 
were divided into high- and low-risk groups using the 
median risk score as the cut-off. Based on risk score 
and overall survival of OSCC patients, 
time-dependent ROC curves were plotted and the 
AUC was calculated to predict 1-, 3-, and 5-year 
survival in OSCC samples from the TCGA dataset. 
Kaplan–Meier (KM) analysis [34] and log-rank tests 
were performed to analyze the differences in survival 
between the two groups. A nomogram was plotted by 
R package rms [35] based on the results of 
multivariate Cox regression analysis to demonstrate 
the interrelationships between the risk score and the 
clinical information. Additionally, we plotted 1-, 3-, 
and 5-year calibration curves to evaluate the 
prognostic accuracy and discriminatory power of the 
nomogram. 

2.7 Protein-protein interaction and regulatory 
network analysis 

Patients with OSCC in the TCGA cohort were 
divided into high- and low-risk groups based on the 
median risk score. DEGs between the two groups 
were identified using the R package DESeq2 with 
inclusion criteria |log FC| > 2.5 and p < 0.05. The 
STRING database (https://string-db.org/) [36] was 
applied to construct a PPI Network related to 
RASRDEGs based on DEGs with a minimum required 
interaction score greater than 0.400. Utilizing 
Molecular Complex Detection (MCODE) function in 
Cytoscape software, genes interacted with others in 
the PPI network were selected as hub genes. The 
miRNAs associated with hub genes were obtained 
from the TarBase database (http://www.microrna 
.gr/tarbase) and the mRNA-miRNA regulatory 
network was visualized by Cytoscape software. 
Functional similarity (Friends) analysis was 
performed using the R package GOSemSim [37] to 
assess the functional correlation between hub genes. 
Moreover, we obtained TMB and MSI data from the 
cBioPortal database (https://www.cbioportal.org/) 
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[38]. Mann-Whitney U test (Wilcoxon Rank Sum Test) 
was performed to evaluate differences in TMB and 
MSI scores between high- and low-risk groups of 
OSCC samples from the TCGA-OSCC dataset. 

2.8 Immune infiltration analyses of prognostic 
risk model 

Enrichment scores representing the relative 
infiltration abundance of each immune cell was 
calculated respectively using ssGSE algorithm, and 
then group comparison plots were drawn to compare 
the infiltration abundance of 28 immune cells between 
the high-risk group and the low-risk group. Immune 
cells with statistically significant difference were 
selected for subsequent analyses. The correlation 
between immune cells infiltration abundance was 
calculated by Spearman algorithm and the results was 
shown in the correlation heatmap. The correlation 
between hub genes and immune cells infiltration 
abundance was also calculated by Spearman 
algorithm and the results was shown in the 
correlation bubble plot. 

2.9 Function enrichment analysis 
Gene ontology (GO) [39] and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses [40] were conducted to explore 
the biological functions and pathways associated with 
prognosis-related DEGs using the R package 
"clusterProfiler" [41], with an item selection criterion 
of p < 0.05. Additionally, gene set enrichment analysis 
(GSEA) [42] was performed on all genes in OSCC 
samples to identify significantly enriched pathways 
using the R package clusterProfiler [41]. 

2.10 Cell culture 
OSCC cell lines (HSC4, HSC6, HN6, and SCC15) 

and normal oral keratinocytes (NOK) were 
maintained in our laboratory in Guangzhou, China. 
HSC4, HSC6, and NOK cell lines were provided by J. 
Silvio Gutkind (NIH, Bethesda, MD, USA). SCC15 
was purchased from the ATCC (Rockville, MD, USA), 
kindly provided by Professor Xiaoan Tao (Hospital of 
Stomatology, Sun Yat-sen University, China). HN6 
cells were obtained from Cell Bank at the Chinese 
Academy of Sciences (Shanghai, China). All cells were 
incubated at 37 °C with 5% CO2. NOK was cultured 
in keratinocyte serum-free medium (Gibco, USA), 
supplemented with 25 μg/ml bovine pituitary extract 
(Gibco, USA), 1 ng/ml epidermal growth factor 
(Gibco, USA), and 1% penicillin/streptomycin (Gibco, 
USA). HSC4, HSC6, and SCC15 cells were cultured in 
Dulbecco’s Modified Eagle Medium (DMEM; Gibco) 
supplemented with 10% fetal bovine serum (FBS; 
Gibco, USA). HN6 cells were cultured in DMEM/F-12 

(Gibco, USA) supplemented with 10% FBS. 
2.11 Western blot 

The cells were washed with ice-cold PBS and 
lysed using RIPA lysis buffer (Sigma-Aldrich, USA) 
supplemented with 1% protease and 1% phosphatase 
inhibitors (Beyotime, China). Next, 5× loading buffer 
(Beyotime, China) was added to the protein samples, 
followed by denaturation at 99 °C. The lysates were 
separated on a 4–20% SDS-PAGE gel and transferred 
to a 0.22 μm PVDF membrane (Millipore, USA). After 
blocking with 5% milk, the membranes were 
incubated overnight at 4 °C with primary antibodies, 
followed by incubation with species-matched 
secondary antibodies. The antigen-antibody reaction 
was visualized using enhanced chemiluminescence 
(Thermo Fisher, USA). The following antibodies were 
used: GAPDH (60004-1, 1:3000, Proteintech), AQP1 
(ab168387, 1:1 000, Abcam), OLR1 (11837-1, 1:500; 
Proteintech). 
2.12 Quantitative reverse 
transcription-polymerase chain reaction 
(qRT-PCR) 

Total RNA was isolated from the cells using an 
RNA-Quick Purification Kit (GOONIE, Guangzhou, 
China). RNA concentration was measured using 
NanoDrop One (Thermo Fisher, USA). HiScript Ⅲ RT 
SuperMix for qPCR kit (Vazyme Biotech, Nanjing, 
China) was used to reverse-transcribe 1 μg of RNA to 
acquire cDNA. The expression levels of the six key 
genes were measured using qRT-PCR. SYBR 
Green-based qPCR analyses were conducted using a 
QuantStudio 7 Flex System (Thermo Fisher, USA). 
GAPDH was used as the endogenous control. Relative 
expression levels were calculated using the 
comparative threshold cycle equation (2-ΔΔCT). The 
primer sequences used were as follows: AQP1, 
Forward Primer: 5’- ACCGAGCAGGGTTAATCCCA- 
3’; Reverse Primer: 5’-TGTACATCATCGCCCAG 
TGC-3’; OLR1, Forward Primer: 5’-CTTT-GGATGC 
CAAGTTGCTGAA-3’; Reverse Primer: 5’-GCATCA 
AAGGAGAAC-CGTCC-3’; SPP1, Forward Primer: 
5’-AATACCCAGATGCTGTGGCC-3’; Reverse Pri-
mer: 5’-ACGGCTGTCCCAATCAGAAG-3’; GAPDH, 
Forward Primer: 5’-CTCCTCCTGTTCGACAG 
TCAGC-3’; Reverse Primer: 5’-CCCAATACGAC 
-CAAATCCGTT-3’. 
2.13 Immunohistochemical (IHC) staining 

Twenty patients with OSCC admitted between 
2022 and 2024 without prior pre-operative therapy 
were enrolled and detailed patient information was 
showed in Table S3. Paraffin-embedded OSCC and 
para-cancer tissue sections were subjected to 
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immunohistochemical assays with informed consent, 
following the institutional review board’s guidelines. 
Tissue sections underwent 2h heat treatment at 65 °C, 
dewaxing with xylene, and alcohol rehydration. 
Endogenous peroxidase activity was blocked using 
3% H2O2. Citrate-mediated high-temperature antigen 
retrieval was performed, followed by blocking with 
goat serum and overnight incubation with primary 
antibodies. After washing with TBST, secondary 
antibodies were applied at room temperature. An 
Apreio AT2 digital whole-slide scanner (Leica, 
Wetzlar, Germany) was used for slide scanning. The 
antibodies used included AQP1 (ab168387, 1:1 000, 
Abcam), OLR1 (11837-1, 1:500; Proteintech), SPP1 
(25715-1, 1:500; Proteintech). ImageJ software 
(National Institutes of Health, Bethesda, Maryland, 
United States) was used to quantify the stained area. 

2.14 Statistical analysis 
All data processing and analyses were 

performed using R software (Version 4.3.0). For 
comparisons between two groups of continuous 
variables, the significance of differences between 
normally distributed variables was analyzed using 
the independent Student's t-test, while non-normally 
distributed variables were analyzed using the 
Mann-Whitney U test (Wilcoxon Rank Sum Test). The 
Kruskal-Wallis test was used to compare three or 
more groups. Spearman’s correlation analysis was 
used to calculate correlation coefficients between 
different molecules. All statistical p-values were 
bilateral, and p < 0.05 was considered statistically 
significant unless otherwise stated. 

3. Results 
3.1 Identification of RASRDEGs in OSCC 

The study design and data processing were 
displayed in the flowchart (Fig. 1). In the 
TCGA-OSCC dataset, we conducted an integrated 
bioinformatics analysis to explore DEGs, identifying 
2,980 DEGs, including 1,262 upregulated and 1,718 
downregulated genes (Fig. 2A). A total of 43 
RASRDEGs were identified by intersecting the DEGs 
and RASRGs (Fig. 2B, Table S4). The top 10 positively 
and negatively regulated RASRDEGs based on |log 
FC| in the TCGA-OSCC dataset are shown in a 
heatmap (Fig. 2C). We found most RASRDEGs were 
located on chromosome 1, including UTS2, AGTRAP, 
BSND, NPR1, SELP, REN, and AGT (Fig. 2D). 
Additionally, we conducted a mutation analysis of 
155 RASRGs in OSCC samples from the TCGA-OSCC 
dataset. The results revealed six major categories of 
SM in the RASRGs, with missense mutations being 
the most common. Single nucleotide polymorphisms 

(SNPs) were the predominant variant type, and the 
C-to-T mutation was the most frequent class of single 
nucleotide variants (SNVs) (Fig. S1A). SM and CNV 
analysis of the top 10 positively and negatively 
regulated RASRDEGs in the OSCC samples and 
found that MYH7 exhibited the highest SM rate of 3% 
(Fig. S1B-D).  

3.2 Determining module genes by gene 
co-expression analysis 

The RASScore for all samples in the 
TCGA-OSCC dataset was calculated. As shown in the 
group comparison diagram, RASScore was lower in 
the OSCC samples than in the Control samples (p < 
0.001) (Fig. 3A). The results of ROC curves 
demonstrated that the RASScore had low accuracy in 
discriminating between patients with OSCC and 
healthy volunteers (AUC = 0.692) (Fig. 3B). 
To identify the co-expressed gene modules in OSCC 
samples from the TCGA-OSCC dataset, WGCNA was 
performed on the top 75% of DEGs (Fig. 3C). Genes 
were clustered and labeled with grouping 
information using hierarchical clustering trees to 
visualize the relationships between genes and merged 
modules (Fig. 3D). Using a screening criterion of 0.4, 
genes with the top 75% variance were clustered into 
nine modules: MEred, MEblue, MEbrown, 
MEturquoise, MEgreen, MEpink, MEblack, 
MEyellow, and MEgrey (Fig. 3E). Correlation analysis 
between the gene modules and RASScore found three 
modules with |r| > 0.30, which were selected for 
further analysis: MEgreen (|r| = 0.39), MEblack (|r| 
= 0.49), and MEyellow (|r| = 0.53) (Fig. 3F). Finally, 
17 module genes were identified by intersecting the 43 
RASRDEGs with genes in these three modules: AGT, 
MYH7, NR3C2, CCL2, CMA1, CTSG, OLR1, SPP1, 
APLN, AQP1, MMP1, MMP9, NPR1, PTX3, SELP, 
SERPINE1, and TGFB1 (Fig. 3G). 

3.3 Expression characteristics of module genes 
in OSCC 

Group comparison plots showed that almost all 
module genes expressed differently between OSCC 
and control samples (p < 0.01), except for AGT, which 
showed no statistically significant difference in 
expression (p ≥ 0.05) between the two groups in the 
combined GEO dataset (Fig. S2A, S3A). The 
diagnostic efficacy of the module genes in OSCC was 
further assessed using both the TCGA-OSCC and 
combined GEO datasets. In the TCGA-OSCC dataset, 
four module genes (MMP1, MMP9, SERPINE1, and 
TGFB1) exhibited high diagnostic accuracy (AUC > 
0.9), 10 module genes (AGT, MYH7, NR3C2, CCL2, 
CMA1, OLR1, SPP1, APLN, AQP1, and SELP) 
exhibited moderate accuracy (0.7 < AUC < 0.9), and 
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three module genes (CTSG, NPR1, and PTX3) 
exhibited low accuracy (0.5 < AUC < 0.7) in 
diagnosing OSCC (Fig. S2B-J). In the combined GEO 
dataset, five module genes (NR3C2, SPP1, MMP1, 
SERPINE1, and TGFB1) displayed high diagnostic 
accuracy (AUC > 0.9), eight module genes (CCL2, 
CTSG, OLR1, APLN, AQP1, MMP9, PTX3, and SELP) 
displayed moderate accuracy (0.7 < AUC < 0.9), and 
four module genes (AGT, MYH7, CMA1, and NPR1) 
displayed low accuracy (0.5 < AUC < 0.7) in 
diagnosing OSCC (Fig. S3B-J). Based on the 
expression levels of module genes, we group the 329 
patients with OSCC in the TCGA-OSCC dataset into 
two subgroups using the ConsensusClusterPlus 

package. Subgroup A (cluster 1) consisted of 149 
patients, while subgroup B (cluster 2) included 180 
patients (Fig. S4A-C). Significant differences between 
these two subgroups were observed, as shown in the 
Figure S4D-F. The correlation heatmap revealed that 
most of the module genes were significantly 
positively correlated with each other (r > 0, p < 0.05) 
(Fig. S4G), and the top two positively correlated genes 
are shown in the correlation scatter plot (Fig. S4H-I). 
The expression patterns of the 17 module genes varied 
greatly between the two OSCC subtypes. It suggested 
that RASRDEGs might play a role in defining 
different clinical subtypes of OSCC, which could be 
valuable for clinical diagnosis and treatment. 

 
 

 
Figure 1. Flowchart illustrating the comprehensive analysis of publicly available data from TCGA and GEO databases. 



Int. J. Med. Sci. 2025, Vol. 22 

 
https://www.medsci.org 

2476 

 
Figure 2. Identification of RASRDEGs in OSCC. A Volcano plot depicting differentially expressed genes. B Venn diagram showing the intersection of DEGs and RASRGs. C 
Expression heatmap of the top 10 positively and negatively regulated RASRDEGs based on |log FC|. D Chromosomal mapping of RASRDEGs. 

 
3.4 Modeling a RASRGs-related prognostic risk 
model for OSCC 

We combined the module gene expression data 
with the clinical information of OSCC samples from 
the TCGA-OSCC dataset and performed a univariate 
Cox regression analysis. Module genes with p < 0.10 
were selected for further analysis (Fig. 4A). A LASSO 
regression analysis was then conducted to build a 
LASSO regression model (Fig. 4B-D). Based on the 
optimal number of genes corresponding to the lowest 
lambda value in the LASSO Cox regression analysis, 
the model ultimately included six key genes: CMA1, 
CTSG, OLR1, SPP1, AQP1, and PTX3. Subsequently, a 
prognostic risk model was developed, and the risk 
score was calculated based on the expression levels of 
these six key genes, weighted by their respective 
LASSO regression coefficients. The calculation 
formula is as follows: 

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 =  𝐶𝐶𝐶𝐶𝑚𝑚1 ∗  (−1.1)  +  𝐶𝐶𝐶𝐶𝑆𝑆𝐶𝐶 ∗  (−0.86)  
+  𝑂𝑂𝑂𝑂𝑚𝑚1 ∗  (0.099)  +  𝑆𝑆𝑆𝑆𝑆𝑆1 
∗  (0.031)  +  𝑚𝑚𝐴𝐴𝑆𝑆1 ∗  (−0.155)  
+  𝑆𝑆𝐶𝐶𝑃𝑃3 ∗  (0.113) 

3.5 Expression characteristics of key genes in 
different risk groups 

Different expression of the six key genes in both 
the TCGA-OSCC and combined GEO datasets are 
presented in group comparison plots (Fig. S5A-B). 
The expression levels of AQP1, CMA1, and CTSG 
were lower, whereas those of OLR1, PTX3, and SPP1 
were higher in the high-risk group compared to the 
low-risk group (p < 0.05). However, no statistically 
significant difference was observed in the expression 
of CMA1 between the high- and low-risk groups in 
the combined GEO dataset (p ≥ 0.05). Furthermore, 
ROC analysis was performed to evaluate the 
discriminative ability of the six key genes in the OSCC 
risk groups. In the TCGA-OSCC dataset, CTSG 
demonstrated high accuracy (AUC > 0.9) in risk 
grouping of OSCC samples, whereas CMA1 and 
AQP1 demonstrated moderate accuracy (0.7 < AUC < 
0.9), and OLR1, SPP1, and PTX3 showed low accuracy 
(0.5 < AUC < 0.7) (Fig. S5C-E). In the combined GEO 
dataset, CTSG and AQP1 showed moderate accuracy 
(0.7 < AUC < 0.9) in risk grouping of OSCC samples, 
whereas CMA1, OLR1, SPP1, and PTX3 demonstrated 
low accuracy (0.5 < AUC < 0.7) (Fig. S5F-H). 
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Figure 3. WGCNA of OSCC samples in the TCGA-OSCC dataset. A Group comparison diagram of RASScore between OSCC and control samples in the TCGA-OSCC 
dataset. B ROC curve for RASScore in the TCGA-OSCC dataset. C Scale-free net-work display of the best soft threshold from WGCNA. (The left panel shows the best soft 
threshold, and the right panel shows the network connectivity under different soft threshold conditions.) D-E Module clustering results of genes with the top 75% variance. (The 
upper part shows a hierarchical clustering dendrogram, and the lower part shows the gene modules.) F Results of correlation analysis between clustered modules and RASScore. 
G Venn diagram of the 43 RASRDEGs and modules MEgreen, MEblack, and MEyellow. ***p < 0.001. 
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Figure 4. Construction of the RASRGs-related prognostic risk model. A Forest plot showing the six key genes in the univariate Cox regression model. B-C Plots of the 
prognostic risk model and variable trajectories from the LASSO regression analysis. D Forest plot showing the six key genes in the multivariate Cox regression model. 

 
3.6 Prognostic performance analysis of 
RASRGs-related risk model 

The AUCs of time-dependent ROC curves for the 
1-, 3-, and 5-year survival probabilities were all 
greater than 0.6 (0.666, 0.677, and 0.611, respectively), 
indicating that the risk model demonstrated 
promising prognostic predictive ability in the 
validation cohort (Fig. 5A). The risk score for each 
patient was calculated using the prognostic model, 
and patients with OSCC were divided into high- and 
low-risk groups, with the median risk score serving as 
the cut-off point. Patients in the high-risk group had 
lower survival rates than those in the low-risk group, 

as shown by the Kaplan–Meier curves (p < 0.001) (Fig. 
5B). Distribution of risk scores and survival data in the 
two risk groups was illustrated using a risk factor plot 
(Fig. 5C). Notably, univariate Cox regression analysis 
revealed that the risk score was significantly 
associated with poorer OS (overall survival) in OSCC 
(HR = 2.59, 95% CI: 1.76-3.79, p < 0.01) (Fig. 5D). 
Further multivariate Cox regression analysis 
identified the risk score, age, N stage, and T stage as 
independent prognostic indicators for patients with 
OSCC (p < 0.05) (Fig. 5E, Table S5). To further 
investigate the prognostic predictive value of the 
multi-gene risk model for OSCC, a nomogram was 
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constructed based on the Cox regression analysis (Fig. 
5F). The results demonstrated that the utility of the 
risk score was substantially higher than that of the 
other variables, while sex had the lowest utility. 
Additionally, calibration analysis showed a high 
degree of agreement between the nomogram 

predictions and actual observations for the 3-year OS 
predictive probabilities (Fig. 5G-I). In conclusion, the 
RASRG-related prognostic risk model is both reliable 
and valid for predicting the prognosis of patients with 
OSCC. 

 

 
Figure 5. Prognostic analysis of the RASRGs-related risk model. A Time-dependent ROC curve for OSCC samples in the TCGA-OSCC dataset. B Prognostic Kaplan-Meier 
(KM) curves for high-risk and low-risk OSCC groups. C Risk factor plot of the prognostic risk model for OSCC. D-E Forest plots of risk score and clinical information in 
univariate and multivariate Cox regression models. F A nomogram integrating risk scores and clinical parameters for precision prediction. G-I Calibration curves of the 
prognostic risk model for 1-, 3-, and 5-year overall survival (OS). 
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Figure 6. Validation of the expression patterns of key genes in OSCC tissues and cell lines. A Comparative qPCR analysis illustrating the expression disparities of key risk genes, 
including AQP1, OLR1, and SPP1, between normal oral epithelial cells (NOK) and OSCC cell lines. B-G Immunohistochemical staining of AQP1 (B, E), OLR1 (C, F), and SPP1 (D, 
G) in OSCC cancerous tissues and adjacent normal tissues. H-K Western blot analysis of AQP1 (H, J) and OLR1 (I, K) levels in NOK and OSCC cell lines. * p < 0.05, ** p < 0.01, 
*** p < 0.001, **** p < 0.0001.  

 
3.7 Verification of expression levels of 
prognostic signature genes in OSCC tissues 
and cell lines 

To confirm the reliability and accuracy of the 
results obtained from the bioinformatics analysis, we 
validated the mRNA and protein levels of key genes 
in OSCC samples. We selected three key genes (AQP1, 
OLR1, and SPP1) with higher discriminative ability 
(AUC > 0.7) for OSCC in both the TCGA-OSCC and 
combined GEO datasets as validation genes. Our 
results revealed that AQP1 exhibited low expression 
in OSCC cell lines, whereas the expression levels of 
OLR1 and SPP1 were higher in OSCC cell lines 
compared to normal cells (Fig. 6A, H-K). 
Additionally, the expression levels of AQP1, OLR1, 
and SPP1 in cancerous and para-cancerous tissues 
were significantly different. The IHC results showed 
that the expression trends of these genes in tissues 
were consistent with those observed in the cell lines 
(Fig. 6B-G). Overall, these results are consistent with 
the bioinformatics analysis. 

3.8 Construction of PPI network and 
regulatory network  

Differential expression analysis was conducted 
between the high- and low-risk groups of OSCC 

samples in the TCGA-OSCC dataset, resulting in the 
identification of 15 DEGs, including CTSG, NR5A1, 
MUC7, CRISP3, ZG16B, CRNN, TKTL1, MAL, 
TMPRSS11B, SCGB2A2, DCAF4L2, SOX14, MAGEC1, 
UCN3, and SMR3B. Among these, six genes were 
upregulated and nine were downregulated (Fig. 
S7A-B). A PPI network was constructed for these 15 
DEGs, and five hub genes were identified in the PPI 
network, including TMPRSS11B, CRNN, MUC7, 
SMR3B, and ZG16B (Fig. 7A). Subsequently, 13 
miRNAs associated with the five hub genes were 
obtained from the TarBase database to construct an 
mRNA-miRNA regulatory network (Fig. 7B, Table 
S6). Additionally, friend analysis of the hub genes 
revealed that MUC7 had the strongest correlation 
with the other hub genes (Fig. 7C). MUC7 was the 
gene closest to the cut-off value (cut-off value = 0.80), 
suggesting that it may play a central role in the 
biological processes of OSCC. 
Furthermore, mutation analysis showed that the 
low-risk group exhibited lower MSI and TMB scores 
than the high-risk group (Fig. 7D-E) (p < 0.05), 
indicating a potential link between the prognostic 
features of RASRGs and tumor somatic mutation 
trends. 
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Figure 7. PPI and regulatory network, MSI, and TMB analyses. A PPI network of 15 DEGs. B mRNA-miRNA regulatory network of hub genes. C Cloud and rain diagram of friend 
analysis. D-E Group comparison plots of MSI scores (D) and TMB scores (E) between different OSCC risk groups. * p < 0.05, ** p < 0.01. 

 
3.9 Immune infiltration analysis and Potential 
molecular characteristics of prognostic risk 
model 

Infiltration abundance of immune cells in the 
high-risk group and the low-risk group was 
calculated through ssGSEA algorithm. As shown in 
the group comparison group (Fig. 8A), the infiltration 
abundance of nineteen immune cells in the low-risk 

group was statistically higher than those in the 
high-risk group (p < 0.05), including activated B cell, 
activated CD8 T cell, central memory CD4 T cell, 
effector memory CD4 T cell, effector memory CD8 T 
cell, mast cell, monocyte, neutrophil, T follicular 
helper cell, central memory CD8 T cell, immature B 
cell, MDSC, type 1 T helper cell, eosinophil, 
macrophage, natural killer cell, plasmacytoid 
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dendritic cell, regulatory T cell and type 17 T helper 
cell. The degree of immune infiltration of nine other 
immune cells was not statistically significant between 
the two groups. In both high-risk group and low-risk 
group, most of the immune cells showed relatively 
strong positive correlation (Fig. 8B-C). In addition, the 
correlations between hub genes and the infiltration 
abundance of immune cells were also assessed. In the 
high-risk group, CRNN showed the strongest positive 
correlation with neutrophil (r = 0.383, p < 0.05), and 

ZG16B showed the strongest negative correlation 
with eosinophil (r = -0.25, p < 0.05) (Fig. 8D). In the 
low-risk group, CRNN showed the strongest positive 
correlation with neutrophil (r = 0.387, p < 0.05), and 
ZG16B showed the strongest negative correlation 
with T follicular helper cell (r = -0.215, p < 0.05) (Fig. 
8E). This evidence suggested a possible association of 
the prognostic characteristics of RASRGs and immune 
regulation, in which hub genes may play a regulatory 
role.  

 

 
Figure 8. Immune Infiltration analyses of Risk Groups. A Group comparison plots of immune cells in the high-risk group and the low-risk group of OSCC samples. B-C 
Correlation heatmaps of immune cells infiltration abundance in the high-risk group (B) and the low-risk group (C) of OSCC samples. D-E Bubble plots of correlation between 
immune cell infiltration abundance and Hub Genes in the high-risk (D) and low-risk (E) groups of OSCC.  
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3.10 Potential molecular characteristics of 
prognostic risk model 

A total of 15 DEGs were included in the GO and 
KEGG enrichment analyses. The results indicated that 
these DEGs were primarily involved in the biological 
processes (BP) of hormone-mediated signaling 
pathway. They were also enriched in molecular 
functions (MF) of serine-type endopeptidase activity, 
serine-type peptidase activity, serine hydrolase 
activity, caspase binding, and peptidase regulator 
activity. In terms of KEGG pathways, the DEGs were 
enriched in the RAS, neuroactive ligand-receptor 
interaction, pentose phosphate pathway, cortisol 
synthesis and secretion, and biosynthesis of amino 
acids (Fig. S7C-G). More detailed results of the GO 
and KEGG enrichment analyses were shown in Table 
S7. The RAS pathway enrichment analysis was 
visualized using the R package Pathview (Fig. S8). 
Additionally, GSEA was performed to investigate 
potential pathway associated with RAS in OSCC, and 
the specific results were shown in Table S8 (Fig. S9A). 
As the results indicated, all genes in OSCC samples 
were significantly enriched in several key signaling 
pathways, including the PI3K-Akt signaling pathway 
(Fig. S9B), JAK-STAT signaling pathway (Fig. S9C), 
FceRI-mediated NF-κB activation (Fig. S9D), IL-2 
pathway (Fig. S9E), and FceRI-mediated MAPK 
activation (Fig. S9F). These enriched BP, MF and other 
biological pathways may serve as potential 
therapeutic targets for OSCC treatment. 

4. Discussion 
OSCC remains an intractable disease with a low 

5-year survival rate, primarily because most patients 
are diagnosed at an advanced stage, which is strongly 
associated with poor prognosis. Distinguishing 
patients with different biological characteristics will 
facilitate early diagnosis and intervention, as well as 
allow for stratified prognosis assessment, which can 
significantly improve patient survival. While RAS has 
recently been linked to OSCC, the functional 
landscape and mechanistic underpinnings of RASRGs 
in this malignancy await systematic investigation. In 
the present study, we applied a bioinformatics 
approach to elucidate the prognostic value of RASRGs 
in OSCC and constructed a RASRG-related risk model 
comprising six key genes (CMA1, CTSG, OLR1, SPP1, 
AQP1, and PTX3). This model was rigorously 
validated using data from 329 patients in the 
TCGA-OSCC dataset. 

The key genes CMA1, CTSG, OLR1, SPP1, and 
PTX3 have been identified as potential prognostic 
markers for OSCC in previous studies. CMA1 encodes 
a serine protease that activates angiotensin II, a key 

component of the RAS [43]. CMA1 is expressed at low 
levels in OSCC cells and tissues, which may influence 
OSCC progression by regulating Ang II synthesis 
through ACE/Ang II/AT1R axis or ACE/Ang 
II/AT2R axis [44,45]. Its abnormal expression has 
been reported in prostate cancer [46]. CTSG inhibits 
HNSCC proliferation and metastasis in vivo and in 
vitro, which has the potential to be an oncogenic 
factor for HNSCC by focusing on the JAK2/STAT3 
signaling pathway [47]. CTSG is considered a 
potential immune-related biomarker in OSCC, 
involved in host immune defense, tumor 
angiogenesis, and metastasis [48-50], and has been 
targeted for immunotherapy in acute myeloid 
leukemia (AML) [51]. Low expression levels of CMA1 
and CTSG are associated with poor OS [44,48-50]. In 
contrast, the expression of OLR1 and SPP1 is 
significantly elevated in OSCC cell lines and tissues, 
promoting OSCC development and correlating with 
poor prognosis [52-56]. OLR1 may affect EMT, 
invasion, stemness, and proliferative activity of 
HNSCC [52-54]. What’s more, OLR1 expression 
positively correlates with immune-suppressive cell 
infiltration and immune checkpoint molecules, while 
negatively correlating with effector T cells, suggesting 
its correlation with immune-suppressive 
microenvironment [57]. SPP1, also known as OPN, 
functions as a crucial adhesion protein and plays a 
major role in numerous tumors. SPP1 facilitates 
proliferation, metastasis, angiogenesis, and disease 
progression [55,56]. A recent study found that SPP1+ 
macrophages increase the secretion of TNF-α and 
IL-1β via the NF-kappa B pathway to promote 
HNSCC cell proliferation, and TNF-α and IL-1β in 
turn upregulate the expression of OPN in tumor cells 
and macrophages [58]. PTX3 is involved in 
cancer-associated inflammation, upregulated in the 
surgical margins of advanced OSCC, and correlates 
with cancer recurrence and progression [59]. In 
addition, PTX3 can affect cell proliferation, cycle and 
apoptosis, and may also affect the expression of HLA 
system-related proteins in esophageal squamous cell 
carcinoma (ESCC) [60]. Recently, AQP1 has been 
reported as a distinctive prognostic factor in various 
cancers, including breast, cervical, colorectal, 
hepatocellular, lung, renal, and squamous cell 
carcinomas [61,62]. AQP1 has traditionally been 
recognized as a water channel protein, and many 
studies have shown its association with 
carcinogenesis, metastasis, poor prognosis, lymph 
node metastasis, and cellular migration [61-63]. 
However, the role of AQP1 in HNSCC remains 
controversial. On one hand, AQP1 has been suggested 
to act as a tumor suppressor inhibiting the growth of 
HNSCC [64,65]. On the other hand, AQP1 is highly 
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expressed in aggressive basaloid-like 
oro-hypopharynx squamous cell carcinomas with 
poor prognosis [66]. The downregulation of AQP1 in 
OSCC may suppress tumor cell motility, yet its 
specific biological functions in this malignancy 
require further investigation. In this study, for the first 
time, we found that AQP1 is downregulated in OSCC 
tissues and cell lines, and we demonstrate that AQP1 
may serve as a potential prognostic biomarker for 
OSCC. The roles of the five key genes in OSCC were 
consistent with previous reports, with CMA1 and 
CTSG acting as protective genes and OLR1, PTX3, and 
SPP1 acting as risk-promoting genes. Additionally, 
AQP1 appears to function as a protective gene against 
OSCC. Although several key genes have been 
previously implicated as prognostic markers or 
functionally relevance in OSCC or other cancers, our 
study is the first to link these genes to RAS 
abnormalities and suggests that they may have 
important role in shaping the immunosuppressive 
microenvironment, highlighting their combined 
potential as therapeutic target.  

Our study identified several clinically actionable 
applications of the RAS-related gene signature. First, 
the risk model has strong potential for prognostic 
stratification that could complement existing TNM 
staging by capturing biological aggressiveness 
beyond the anatomical range. With more accurate risk 
stratification, high-risk patients could be treated more 
aggressively, whereas low-risk patients might be 
spared overtreatment. Second, clinical applications 
could also extend to early detection strategies, with 
noninvasive testing of RAS-related biomarkers in 
saliva or other body fluid as liquid biopsy to screen 
high-risk populations. What’s more, our findings 
support exploring repurposed RAS-modulating 
drugs, such as ACE inhibitors and angiotensin 
receptor blockers (ARBs). These drugs had shown 
promise in preclinical cancer models, and their role in 
OSCC required experimental exploration [67-69]. Our 
immune infiltration analysis showed that high-risk 
tumors have immunosuppressive features, suggesting 
a possible synergy between RAS modulation and 
immunotherapy-a hypothesis worthy of clinical 
investigation. To facilitate clinical implementation, we 
outline three key translational steps: prospective 
validation in multicenter cohorts, functional studies to 
elucidate mechanisms and testing the potential value 
of RAS-modulating drugs in OSCC.  

Although no direct comparisons of current 
standard prognostic tools (e.g., TNM staging) were 
performed in this paper, we analyzed baseline TNM 
staging in the TCGA dataset to assess its role in 
prognostic modeling. In our study, a multivariate Cox 
regression analysis showed that the risk score as well 

as age, N-staging and T-staging were significant (p < 
0.05) in prognosis and the utility of the risk score was 
substantially higher than that of the other variable. It 
tentatively suggested that our risk score can be 
combined with traditional TNM staging to provide a 
more comprehensive assessment of patient prognosis.  

Our study indicated that the hub gene MUC7 
might play a critical role in OSCC, as suggested by 
PPI network analysis. It was found that MUC7 
expression was down-regulated in the high-risk 
group, suggesting that low expression of MUC7 may 
be detrimental to the survival of patients with OSCC. 
The present finding is concordant with the results of 
previous study proposing that high expression of 
MUC7 is associated with better survival in patients 
with HNSCC [70]. It is noteworthy that most immune 
cells including neutrophil, eosinophil, activated B cell, 
activated CD8 T cell and natural killer cell showed 
lower infiltration abundance in the in the high-risk 
group, suggesting extensive RAS-related 
immunosuppressive microenvironment might exist in 
the high-risk group. Further functional enrichment 
analysis revealed that a larger number of DEGs were 
enriched in the BP of the hormone-mediated signaling 
pathway and the renin-angiotensin system, reiterating 
the connection between RAS and OSCC prognosis. 
Additionally, several key pathways were identified in 
GSEA, including the PI3K-Akt signaling pathway, 
JAK-STAT signaling pathway, FceRI-mediated NF-κB 
activation, IL-2 pathway, and FceRI-mediated MAPK 
activation. Previous studies have shown that the 
PI3K-Akt-mTOR, JAK-STAT3, and MAPK pathways 
are downstream of AT1R, which promotes cell 
proliferation and cancer progression [6,71-73]. NF-κB 
synergizes with Ang II in cancer development by 
regulating metastasis and angiogenesis [74-76]. In our 
study, all of these signaling pathways were 
downregulated in the high-risk group compared to 
the low-risk group. These findings can be interpreted 
in several ways. First, OSCC samples from the 
high-risk group may represent more advanced tumor 
stages, where cells may reduce the activity of 
pathways that promote cell proliferation and survival 
in order to adapt to unfavorable microenvironmental 
conditions. Second, negative NES values may be 
associated with poor prognosis in OSCC patients. 
Tumor cells may downregulate these signaling 
pathways to avoid recognition and attack by the 
immune system. The IL-2 pathway, which was the 
first immunotherapy approved for cancer treatment 
nearly 30 years ago by the U.S. Food and Drug 
Administration (FDA) [77], plays a crucial role in 
counteracting the dysregulated immune system by 
targeting regulatory T cells and enhancing antitumor 
responses through effector, memory, and natural 
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killer cells [78,79]. In our study, IL-2 was 
downregulated in the high-risk group, indicating that 
low expression of IL-2 may contribute to a worse 
prognosis. These enrichment pathways may be 
significant molecular mechanism for OSCC to form an 
immunosuppressive microenvironment and escape 
from immune supervision.  

Our study identified RAS-related biomarkers 
and established a prognostic risk model for OSCC, 
however, there are still several limitations. First, the 
retrospective nature of the study and the modest 
sample size might limit the generalizability of the risk 
model. Second, clinical heterogeneity (e.g., variations 
in tumor stage, treatment history, and comorbidities) 
was not fully adjusted in the multivariate analysis. 
Larger prospective cohorts are needed to validate the 
model’s robustness. Third, although we validated key 
RAS genes at the mRNA and protein level, functional 
experiments (e.g., gene knockdown/overexpression) 
were not performed to establish their causal roles in 
OSCC progression. Additionally, the results of 
miRNA-mRNA and PPI networks still need 
experimental validation of the expression patterns 
and binding specificity. Ultimately, the risk model’s 
utility in guiding personalized therapy (e.g., 
RAS-targeted drugs) also needed lots of prospective 
trials to assess its predictive value for treatment 
response. 

5. Conclusion 

In conclusion, to the best of our knowledge, our 
study is the first to identify the significant impact of 
renin-angiotensin-related genes on the clinical 
prognosis of OSCC. We constructed a six-gene 
(CMA1, CTSG, OLR1, SPP1, PTX3, and AQP1) 
prognostic risk model and verify its accuracy and 
universality in predicting the prognosis of OSCC. Our 
findings may facilitate personalized treatment 
strategies for patients with OSCC at different risks. 
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