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Abstract 

This study measures expression of nuclear factor kappa B (NF-κB)1 and related cytokine genes in bone 
marrow mononuclear cells in patients with hematological malignancies, analyzing the relationship 
between them with an integrated framework of statistical analyses, machine learning (ML), and 
explainable artificial intelligence (XAI). While traditional dimensionality reduction techniques—such as 
principal component analysis, linear discriminant analysis, and t-distributed stochastic neighbor 
embedding—showed limited differentiation embedding, ML classifiers (k-Nearest Neighbors, Naïve 
Bayes Classifier, Random Forest, and XGBoost) successfully identified critical patterns. Notably, 
normalized caspase-1 counts consistently emerged as the most influential feature associated with NF-κB1 
activity across disease groups, as highlighted by SHapley Additive exPlanations analyses. Systematic 
evaluation of ML performance on small datasets revealed that a minimum sample size of 15–24 is 
necessary for reliable classification outcomes, particularly in cohorts of acute myeloid leukemia and 
myelodysplastic syndrome. These findings underscore the pivotal role of caspase-1 to the NF-κB1 gene 
expression in hematologic malignancy diseases. Furthermore, this study demonstrates the feasibility of 
leveraging ML and XAI to derive meaningful insights from limited data, offering a robust strategy for 
biomarker discovery and precision medicine in rare hematological malignancies. 

Keywords: NF-κB / Hematological Malignancy / Machine Learning Classifiers / Explainable Artificial Intelligence / Small Data 
Adaptation 

Introduction 
Hematological malignancies involve complex 

genetic interactions, with nuclear factor kappa B 
(NF-κB) playing a key role in regulating immune 
responses and inflammation within the bone marrow 
[1-3]. NF-κB has been identified as a critical oncogenic 
driver in various hematological cancers, remarkably 
influencing disease progression and patient outcomes 
[4-6]. Despite its pivotal role, the detailed mechanisms 
linking NF-κB with other cytokine genes remain 
inadequately explored, leaving crucial gaps in 

understanding its functional interactions and 
implications for disease management. 

The NF-kB transcription factor family comprises 
five members, including NF-kB1 (the mature p50 and 
its precursor, p105), NF-kB2 (the mature p52 and its 
precursor, p100), RelA (p65), RelB, and c-Rel [7]. 
These assemble into various homo- and heterodimeric 
combinations to regulate the expression of a large 
number (>500) of target genes, including those of 
cytokines, chemokines, growth factors, apoptosis 
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regulators, cell surface receptors, and other 
transcription factors [7]. P50 or p52 homodimer acts as 
a transcriptional repressor, while the dimers 
containing RelA (p65), RelB and c-Rel act as 
transcriptional activators and cause different reactions 
depending on the combination of the dimers [8, 9]. 

In the canonical pathway, for transcriptional 
activation, p50 is required to heterodimerize with 
RelA, which contains a transactivation domain [7, 8]. 
Transcriptional activation via the canonical pathway 
is characterized by instant and reversible expression 
of target genes encoding inflammatory cytokines, 
such as IL-6, and immune response genes [7]. In line 
with the relationship of p50 to such many genes, 
recently haploinsufficiency of the NF-kB1 subunit p50 
was reported to be associated with a common variable 
immunodeficiency (CVID) phenotype [7]. 

While p50 is encoded by NF-κB1 gene, NF-κB1 
gene interacts with numerous genes, including 
caspase-1, myeloid differentiation primary response 88 
(MyD88), interferon beta 1, and tumor necrosis factor, 
which regulate key processes such as inflammation 
and cell survival [10-12]. Deciphering these 
relationships is essential for uncovering the molecular 
basis of hematological malignancies and developing 
targeted therapeutic strategies. However, traditional 
statistical methods often fail to capture subtle 
associations, particularly in studies constrained by 
small sample sizes. 

Clinical specimens, such as bone marrow (BM) 
aspirates, are typically obtained through invasive 
procedures. The necessity for patient consent and the 
challenging nature of sample collection often results 
in limited sample availability. To address these 
challenges and investigate the associations between 
NF-κB1 and other cytokine genes in BM samples, 
machine learning (ML) and explainable artificial 
intelligence (XAI) techniques offer promising 
solutions [13-16]. ML models, including k-Nearest 
Neighbors (kNN), Naïve Bayes Classifier (NBC), 
Random Forest (RF), and XGBoost, combined with 
XAI techniques such as SHapley Additive 
exPlanations (SHAP), can reveal significant patterns 
not evident through traditional statistical analyses. 
XAI provides critical insights into feature importance, 
enhancing interpretability and enabling researchers to 
identify influential genes and interactions. 

Another challenge in rare disease research is 
identifying the minimum sample size required to 
achieve reliable classification accuracy. This can be 
addressed by employing adaptive ML techniques and 
systematically evaluating model performance across 
varying dataset sizes. Such an approach not only 
mitigates the limitations posed by data scarcity in rare 
diseases but also provides deep insights into NF-κB 

interactions. 
By integrating ML and XAI, researchers can 

uncover complex biological relationships, offering 
new directions for precision medicine in 
hematological malignancies.  

This study aimed to analyze NF-κB1 and 
cytokine genes in bone marrow mononuclear cells in 
patients with hematological malignancies and to 
explore their interactions. The methodology integrates 
statistical analyses, dimensionality reduction 
techniques, and ML models to uncover complex gene 
interactions and validate findings, particularly in the 
context of small datasets. 

Materials and Methods 
Study population and data collection 

Aliquots of leftover BM aspirate samples were 
collected from patients undergoing BM examinations 
for the diagnosis of hematological malignancies. 
Based on the world health organization diagnostic 
criteria, patients were classified into following groups 
after the BM smear and pathological review: 
myeloproliferative neoplasm (MPN), acute myeloid 
leukemia (AML), myelodysplastic syndrome (MDS), 
and plasma cell neoplasm (PCN). The control group 
(n = 17) comprised patients with lymphoma without 
BM involvement (n = 16) or normocellular marrow 
without hematological malignancy confirmed by BM 
smear and pathological review. BM aspirates were 
collected in BD Vacutainer tubes (Becton Dickinson, 
Franklin, NJ, USA) containing ethylene-diamine- 
tetra-acetic acid and centrifuged (2399 × g for 10 min). 
Following centrifugation, BM infranatants (including 
hematopoietic BM cells) were used for mononuclear 
cell (MNC) isolation. Baseline demographic 
information and hematological parameters, including 
hemoglobin levels, white blood cell (WBC) counts, 
neutrophil and platelet counts, C-reactive protein 
(CRP) levels, and estimated glomerular filtration rate 
(eGFR) were collected from medical records. 

Lymphoprep (density gradient medium; density: 
1.077 g/mL; STEMCELL Technologies, Vancouver, 
Canada) and SepMate tubes (STEMCELL 
Technologies, Vancouver, Canada) were used to 
isolate MNCs from BM aspirates. MNC isolation was 
performed as previously described (14). Isolated BM 
MNCs were stored at -80 °C until mRNA extraction. 
mRNA was extracted from BM MNCs as previously 
described (14) and RNA quality was determined 
using a 2100 Bioanalyzer capillary electrophoresis 
system (Agilent Technologies, Santa Clara, CA). 
Extracted RNA samples were run on an nCounter 
Analysis System (NanoString Technologies Inc., 
Seattle, WA, USA) following the manufacturer’s 
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instructions (14). A cytokine panel was used, which 
included the following genes (National Center for 
Biotechnology Information [NCBI] reference 
sequence): BAX (NM_138761.3), BCL2L1 
(NM_138578.1), caspase-1 (NM_001223.3), INFB 
(NM_002176.2), MyD88 (NM_002468.3), NF-κB1 
(NM_003998.2), NFKB1A (NM_020529.1), NGAL 
(NM_005564.3), NLRP3 (NM_001079821.2), RAGE 
(NM_014226.2), and TNF (NM_000594.2). NF-κB1 
(NM_003998.2) [17] encodes a 105 kD protein which 
can undergo cotranslational processing by the 26S 
proteasome to produce a 50 kD protein. The 105 kD 
protein is a Rel protein-specific transcription inhibitor 
and the 50 kD protein is a DNA binding subunit of the 
NF-κB protein complex.  

To ensure the quality of the raw data, the 
following criteria were confirmed: (i) Imaging quality 
control (QC): Field of View >75%; (ii) Binding Density 
QC: 0.1 <Binding Density <2.25; (iii) Positive Control 
Linearity QC: R2 >0.95; and (iv) Limit of Detection 
QC: 0.5 fM positive control probe exceeded more than 
two standard deviation plus mean of the negative 
controls. The data were normalized using the control 
probes from Codeset. Normalized expression values 
of NF-κB1 and ten other cytokine genes were used for 
the statistical analysis. 

Ethical considerations  
This study was approved by the Institutional 

Review Board of Korea University Ansan Hospital 
(Ansan-si, Republic of Korea; Approval No. 
2018AS0256), and was conducted in accordance with 
the principles outlined in the Declaration of Helsinki. 
Patients were recruited between May 2018 and July 
2019, with all 114 participants provided informed 
consent. 

Study design 

The flowchart (Figure 2) outlines a systematic 
framework for data analysis and interpretation, 
divided into three interconnected phases: data 
preparation, analysis, and interpretation.  

In the data preparation phase, the dataset 
underwent preprocessing and normalization to 
ensure quality and compatibility for subsequent 
analyses. BM gene expression data were evaluated to 
preprocess key cytokine features, and scatter plots 
were generated to visualize initial feature 
distributions and relationships, such as NF-κB1 gene 
expression vs. caspase-1 gene expression, highlighting 
significant patterns. The analysis phase integrated 
statistical methods and ML techniques to extract 
deeper insights. Correlation analyses (Spearman, 
Kendall, and Pearson) identified relationships among 
cytokine features, such as caspase-1 and NGAL, while 
dimensionality reduction techniques—including 
principal component analysis (PCA), linear 
discriminant analysis (LDA), and t-distributed 
stochastic neighbor embedding (t-SNE)—were 
employed to simplify the dataset. PCA highlighted 
features contributing most to variance, LDA 
improved class separability, and t-SNE visualized 
non-linear clustering, providing complementary 
perspectives on data structure. Supervised ML 
models, including kNN, NBC, RF, and XGBoost, were 
applied to classify patient groups and assess feature 
importance. Explainable AI (XAI) methods, such as 
permutation feature importances and SHAP, were 
utilized to interpret model results. These methods 
revealed critical patterns, such as the strong 
association of caspase-1 and NF-κB1 gene expression in 
each hematological malignancy group—patterns that 
might have been overlooked by traditional statistical 
approaches.  

 

 
Figure 1. Pie chart of group distributions. (A) Comparison between “Disease” (combining groups 1 to 4) and “Control” groups. (B) Detailed breakdown of the “Disease” 
category into its constituent groups. Abbreviations: MPN, myeloproliferative neoplasm; PCN, plasma cell neoplasm; MDS, myelodysplastic syndrome; AM, acute myeloid 
leukemia. 
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Figure 2. Flowchart of the study highlighting the three main phases: data preparation, 
analysis, and interpretation. 

 
In the interpretation phase, findings from 

statistical and AI-driven analyses were synthesized to 
enhance robustness and reliability. To address the 
challenges posed by small sample sizes in rare disease 
research, k-fold cross-validation was employed 
alongside systematic evaluations of dataset sizes to 
determine the minimum sample size needed for 
reliable classification. This approach optimized the 
utility of limited data and ensured robust model 
performance. Overall, this framework provided a 
deeper understanding of NF-κB1 interactions, 
emphasizing their diagnostic and targeted therapeutic 
potential in hematological malignancies. 

Correlation analysis 
Spearman correlation was selected as the 

primary method to evaluate monotonic relationships 
without assuming linearity or normal distribution [18, 
19]. To provide additional perspectives, 
complementary analyses using Kendall and Pearson 
correlations were also performed [20, 21]. Spearman 
analysis revealed significant positive correlation 
between NF-κB1 gene expression and expressions of 
caspase-1, BAX, and NGAL genes. In MDS and PCN 
groups, a notable positive correlation between NF-κB1 
and caspase-1 gene expression suggested potential 
interactions relevant to disease progression. 
Consistent negative correlations between NF-κB1 and 
NGAL gene expression across all patient groups 
indicated a potential inverse regulatory relationship. 

Dimensionality reduction 
PCA was employed to reduce dataset 

dimensionality while preserving significant variance 
[22, 23]. The first two principal components 

highlighted key variance-driven features. These 
components provided insights into patient clustering 
patterns and molecular-level differences between the 
groups. LDA further optimized class separability by 
identifying feature combinations that enhanced group 
discrimination [24, 25]. Non-linear relationships were 
explored using t-SNE, which effectively visualized 
clustering and sub-group patterns in two dimensions 
[26]. 

ML models for classification of disease groups 
Beyond conventional statistical analyses and 

dimensionality reduction methods, ML techniques 
were employed to analyze NF-κB1 gene 
expression-related profiles and classify disease 
groups with high accuracy. By leveraging ML 
classifiers, we aimed not only to achieve robust 
predictive performance but also to gain insight into 
the key features that distinguish each disease 
subgroup, even when working with relatively small 
datasets—a common challenge in biomedical research 
[27, 28]. Demonstrating reliable classification under 
these constraints lends credibility to our findings and 
supports the feasibility of similar studies with 
restricted sample availability.  

Specifically, gene expression data were 
normalized using z-score transformation to 
standardize the dataset, and features were selected 
based on variance. Four classifiers—k-Nearest 
Neighbors (kNN) [29], Naïve Bayes Classifier (NBC) 
[30], Random Forest (RF) [31], and XGBoost [13]— 
were implemented to classify disease groups. The 
dataset was divided into training and testing sets 
using an 80–20 split, and model evaluation was 
conducted using k-fold cross-validation (k = 3) to 
ensure robust and unbiased estimation of 
performance metrics. Key metrics assessed for each 
model included classification accuracy, precision, 
recall, and F1-score, thereby enabling a 
comprehensive assessment of predictive performance. 

To identify features pivotal for group 
discrimination, permutation feature importances 
were analyzed. Notably, the classifiers maintained 
high accuracy despite the limited sample size, 
underscoring the potential of ML-based 
methodologies in rare disease research. This 
observation motivated further analyses on minimal 
sample requirements, confirming that the models’ 
robustness and predictive power could be retained 
even under more stringent data constraints. 
Therefore, the use of ML classification frameworks 
complements traditional analytical methods, 
providing both strong predictive accuracy and 
biologically meaningful feature selection. 
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XAI regression analysis of NF-κB relationships  

To explore relationships between NF-κB1 gene 
expression and other key features, we employed 
XGBoost regression and used SHAP to enhance 
interpretability by quantifying the contribution of 
each feature to model predictions [32]. SHAP 
summary plots identified key features, including 
caspase-1, RAGE, NGAL, MYD88, and BCL2L1 
normalized counts, underscoring their roles in 
inflammation and apoptosis pathways. k-fold 
cross-validation (k = 3) with a 10% test size ensured 
robust performance, balancing effective training and 
validation for small datasets. This approach offered a 
transparent exploration of NF-κB1 interactions, 
advancing the understanding of its regulatory 
pathways in hematological malignancies. 

Small sample size adaptation  
To evaluate the robustness of classification 

performance across varying sample sizes, we tested 
models on combined sample sizes that included each 
disease group (MPN, AML, MDS, PCN) and the 
control group. The total sample size was 
systematically increased, ranging from five to the 
maximum available samples for each disease and its 
corresponding control group. An exception was made 
for kNN, which required a minimum of eight samples 
due to its reliance on nearest neighbor calculations. 
The goal was to determine the minimum sample size 
required to achieve reliable and meaningful 
classification results, defined as accuracy ≥ 80–90%. 
k-fold cross-validation (k = 3) was employed to 
ensure consistent and robust performance across all 
sample sizes. This approach demonstrated that for 
AML and MDS, reliable classification accuracy was 
achieved with as few as 15 and 14 samples, 
respectively. In contrast, MPN and PCN exhibited 
greater variability in performance, requiring larger 
sample sizes yet exhibiting instability, even at higher 
thresholds. These findings provide valuable insights 
into the minimum dataset requirements for effective 
classification, addressing a critical challenge in small 
data scenarios characteristic of rare disease research. 
By incrementally increasing the sample size, this 
analysis revealed the thresholds at which the ML 
models—kNN, NBC, RF, and XGBoost—achieved 
stable and reliable accuracy when distinguishing 
between disease groups and the control group.  

This approach provides insight into the sample 
size requirements for efficient machine learning-based 
categorization, which may help guide future 
investigations with comparable restricted data. It 

illustrates that, while smaller datasets can still 
produce reliable results for certain disease categories 
(AML and MDS), bigger datasets may be required to 
get consistent performance in others (MPN and PCN), 
especially where biological complexity or 
heterogeneity are high. 

Results 
Patient characteristics 

BM aspirates were collected from 114 patients 
with a median age of 63 (range 22–90) years. All 114 
patients were at the initial diagnosis stage. Patient 
demographics, hematological parameters, and NF-κB1 
gene normalized counts are shown in Table 1.  

 

Table 1. Patient demographic features and laboratory 
parameters. 

Characteristics Value 
Age (y)  63 (47, 74) 
Men/Women 67/47 
Hb (g/L) 106.5 (86, 130.3) 

WBC count (109/L) 5.65 (3.14, 10.59) 

Neutrophil counts (109/L) 2.70 (1.39, 5.92) 

Platelet count (109/L) 179.0 (81.8, 322.5) 

BM cellularity 45 (25, 80) 
M:E ratio 2.4 (1.5, 4.0) 
NF-κB1 gene normalized counts 87.78 (57.06, 172.50) 
Disease entities (n = 114) MPN† (n = 20) 
 AML (n = 12) 
 MDS (n = 11) 
 PCN (n = 10) 
 Control‡ (n = 17) 
 Others* (n = 44) 

Quantitative data are represented as the median (quartile1 [Q1], Q3) values; †MPN 
included CML (n = 8), PV (n = 4), ET (n = 4), PMF (n = 3), and MPN-U (n = 1); ‡The 
control group comprises patients with lymphoma without BM involvement (n = 16) 
or a normocellular marrow without hematological malignancy according to the BM 
smear and pathological review (n = 1); *Others include the involvement of 
lymphoma in bone marrow (n = 10), hypocellular marrow (n = 8), hypercellular 
marrow (n = 3), aplastic anemia (n = 3), chronic lymphocytic leukemia (n = 3), 
immune thrombocytopenia (n = 2), megakaryocytic hyperplasia (n = 2), 
histiocytosis with some hemophagocytosis (n = 2), B-lymphoblastic leukemia (n = 
1), hypereosinophilic syndrome (n = 1), idiopathic hypereosinophilia (n = 1), 
idiopathic cytopenia of undetermined significance (n = 1), and decreased 
megakaryopoiesis (n = 1). 
Abbreviations: AML, acute myeloid leukemia; BM, bone marrow; CML, chronic 
myeloid leukemia; ET, essential thrombocythemia; Hb, hemoglobin; MDS, 
myelodysplastic syndrome; MPN, myeloproliferative neoplasm; MPN-U, 
MPN-unclassifiable; PCN, plasma cell neoplasm; PMF, primary myelofibrosis; PV, 
polycythemia vera; WBC, white blood cell 

 
As for the MPN, AML, MDS, PCN, and control 

groups, patient demographics and laboratory 
parameters are presented in Table 2. Ten continuous 
variables exhibited significant differences among the 
five groups (Table 2). 

 
 



Int. J. Med. Sci. 2025, Vol. 22 

 
https://www.medsci.org 

2213 

Table 2. Patient demographic features and laboratory parameters of each hematological malignancy and control group (n = 70). 

 MPN† (n = 20) AML (n = 12) MDS (n = 11) PCN (n = 10) Control‡ (n = 17) p-value* 
Sex 10 men 11 men 11 men 10 men 13 men 0.030 

10 women 1 woman 0 women 0 women 4 women 
Age (y) 55 (39, 63) 59 (42, 75) 70 (56, 81) 72 (59, 78) 65 (47, 73) 0.068 
Hb (g/L) 124 (104, 145) 79 (66, 85) 86 (68, 88) 97 (87, 114) 123 (105, 134) < 0.0001 
WBC count (109/L) 19.31 (10.34, 109.34) 3.37 (2.25, 17.86) 2.38 (1.37, 3.29) 5.04 (4.45, 6.73) 6.87 (4.30, 9.07) < 0.0001 
Neutrophil count (109/L) 14.43 (7.41, 70.51) 0.74 (0.22, 1.76) 0.77 (0.49, 1.09) 3.10 (1.98, 4.59) 3.88 (2.48, 6.39) < 0.0001 
Platelet count (109/L) 620 (403, 876) 49 (24, 131) 78 (31, 138) 179 (112, 198) 288 (227, 337) < 0.0001 
CRP (mg/dL) 0.100 (0.030, 0.743) 8.390 (1.086, 13.385) 0.460 (0.258, 1.330) 0.180 (0.105, 1.180) 0.180 (0.070, 2.095) 0.003 
eGFR|| 
(mL/min/1.73m2) 

94.50 (79.67, 111.50) 86.72 (68.18, 95.42) 80.95 (54.03, 104.88) 61.26 (30.35, 81.21) 93.09 (84.54, 105.51) 0.001 

NF-κB1 gene normalized 
counts  

54.25 (39.21, 79.56) 177.65 (55.37, 231.33) 167.54 (113.46, 288.56) 133.49 (78.77, 270.60) 56.75 (43.55, 76.98) < 0.0001 

Caspase-1 gene normalized 
counts 

162.55 (87.64, 403.05) 451.77 (158.09, 
766.34) 

805.92 (339.01, 1144.15) 453.48 (258.82, 952.57) 199.82 (120.76, 
213.35) 

< 0.0001 

BAX gene normalized 
counts 

463.45 (253.51, 
931.39) 

931.85 (580.05, 
1609.36) 

639.08 (309.94, 885.57) 546.53 (317.65, 1672.87) 396.47 (292.88, 
559.31) 

0.021 

NGAL gene normalized 
counts 

34490.76 (23170.44, 
48587.74) 

324.80 (114.39, 5278.39) 5037.18 (4522.28, 7581.07) 17372.95 (2745.81, 
44363.49) 

45859.73 (31338.67, 
55617.08) 

< 0.0001 

Quantitative data are represented as the median (quartile1 [Q1], Q3) values; †MPN includes CML (n = 8), PV (n = 4), ET (n = 4), PMF (n = 3), and MPN-U (n = 1); ‡The control 
group comprises patients with lymphoma without BM involvement (n = 16) or normocellular marrow without hematological malignancy according to the BM smear and 
pathological review (n = 1); * for gender, the Pearson Chi-squared test was used, for age, Hb, platelet count, and the eGFR variable, a one-way ANOVA was performed, and 
for the other variables, the Kruskal–Wallis H-test was performed; ||, eGFR was calculated using the CKD-EPI equation. 
Abbreviations: AML, acute myeloid leukemia; BAX, BCL2-associated X; BM, bone marrow; CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration equation; CML, 
chronic myeloid leukemia; CRP, C-reactive protein; eGFR, estimated glomerular filtration rate; ET, essential thrombocythemia; Hb, hemoglobin; MDS, myelodysplastic 
syndrome; MPN, myeloproliferative neoplasm; MPN-U, MPN-unclassifiable; NF-κB1, nuclear factor kappa light chain enhancer of activated B cells 1; NGAL, neutrophil 
gelatinase-associated lipocalin; PCN, plasma cell neoplasm; PMF, primary myelofibrosis; PV, polycythemia vera; WBC, white blood cell 

 
 

 
Figure 3. Scatter plot and marginal density distributions of caspase-1 and NF-κB1 
normalized counts across the five patient groups (MPN, AML, MDS, PCN, and 
Control). The scatter plot highlights intergroup differences, while the marginal 
density plots provide an overview of the parameter distributions within each group, 
emphasizing the overlapping trends and variability among the groups. 
Abbreviations: AML, acute myeloid leukemia; MDS, myelodysplastic syndrome; 
MPN, myeloproliferative neoplasm; PCN, plasma cell neoplasm 

 
Among them, six laboratory parameters (except 

for NF-κB1, caspase-1, BAX, and NGAL normalized 
counts) exhibited the following intergroup differences 
(Table 3): Hb and neutrophil counts were significantly 

lower in the AML and MDS groups than those in the 
MPN and control groups. Furthermore, the Hb count 
was significantly lower in the PCN group than that in 
the MPN group. WBC counts were significantly lower 
in the AML and MDS groups than those in the MPN 
group, being significantly lower in the MDS group 
than those in the control group. Platelet counts were 
significantly lower in the AML, MDS, PCN, and 
control groups than those in the MPN group. The CRP 
was significantly higher in the AML group than that 
in the MPN group. eGFR was significantly lower in 
the PCN group than that in the MPN and control 
groups.  

Figure 3 depicts the distribution of two key 
parameters, caspase-1 and NF-κB1 normalized counts, 
across the five groups, highlighting the observed 
differences outlined in Table 3. These parameters 
were selected for scatter plot analysis due to their 
pivotal roles in regulating inflammation and 
apoptosis—processes critically involved in the 
pathogenesis of hematological malignancies [12, 33]. 
Caspase-1 is a key mediator of the inflammatory 
response, activating pro-inflammatory cytokines such 
as IL-1β and IL-18, and playing a pivotal role in cell 
death pathways, which are often dysregulated in 
cancer [9, 34]. Also, the NFKB1 gene displays pivotal 
roles in the regulation of inflammatory responses and 
genetic variations in this gene have been documented 
in the several pathologies [9, 35]. Scatter plot analysis 
of these parameters provided an initial exploration of 
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their group-wise distributions, offering insights into 
their potential interactions. Significant group-specific 
differences were observed in caspase-1 and NF-κB1 
normalized counts; however, overlaps among groups 
such as AML, MDS, and PCN highlighted the 
complexity of these interactions. This observed 
overlap highlights the inherent limitations of 
conventional statistical analyses and standard 
visualization techniques in distinguishing subtle 
group differences within high-dimensional datasets.  

Correlation analysis 
To investigate the relationships between 

expression of NF-κB1 and other key cytokine genes, 
correlation analyses were conducted. Figure 4A 
presents a Pearson correlation heatmap, illustrating 
the strength and direction of relationships across 
selected features. Among the analyzed variables, 
caspase-1 normalized counts exhibited the strongest 
positive correlation with NF-κB normalized counts (r 
= 0.79), indicating a strong association between these 
two genes. Figure 4B shows the correlation 
coefficients between NF-κB1 and caspase-1 normalized 
counts using three different methods—Spearman, 
Pearson, and Kendall—across each patient group. In 
the MPN group, caspase-1 and NF-κB1 gene 
normalized counts demonstrated consistently high 
correlation coefficients, with Pearson’s r = 0.84, 
Spearman’s r = 0.83, and Kendall’s τ = 0.83. These 
strong correlations suggest a central role for caspase-1 
in regulating NF-κB activity within the MPN group. 
By contrast, the control group exhibited moderate 
correlations, with Pearson’s r = 0.56, Spearman’s r = 
0.57, and Kendall’s τ = 0.32, indicating weaker 
co-regulation between caspase-1 and NF-κB1 

normalized counts in non-malignant conditions. In 
the AML and MDS groups, correlations were 
moderate, with Pearson’s r values ranging between 
0.67 and 0.70, reflecting the inflammatory activity 
commonly associated with these malignancies. The 
PCN group showed weak correlations across all 
methods, with the highest Pearson value at r = 0.60, 
suggesting a less direct relationship in this group. 

 

Table 3. Pairwise comparison of six numerical variables in five 
groups: MPN, AML, MDS, PCN, and control 

Variable Comparison groups p-value* 
Hb MPN vs. AML <0.0001  

MPN vs. MDS <0.0001 
 MPN vs. PCN 0.027  

AML vs. Control <0.0001  
MDS vs. Control 0.001 

WBC count MPN vs. AML 0.003  
MPN vs. MDS <0.0001  
MDS vs. Control 0.009 

Neutrophil count MPN vs. AML <0.0001 
 MPN vs. MDS <0.0001 
 AML vs. Control 0.003 
 MDS vs. Control 0.006 
Platelet count MPN vs. AML <0.0001 
 MPN vs. MDS <0.0001 
 MPN vs. PCN <0.0001 
 MPN vs. Control <0.0001 
CRP MPN vs. AML 0.001 
eGFR MPN vs. PCN 0.002 
 PCN vs. Control 0.001 
*p-value was modified by Bonferroni correction.  
Abbreviations: AML, acute myeloid leukemia; CRP, C-reactive protein; eGFR, 
estimated glomerular filtration rate; Hb, hemoglobin; MDS, myelodysplastic 
syndrome; MPN, myeloproliferative neoplasm; NGAL, neutrophil 
gelatinase-associated lipocalin; PCN, plasma cell neoplasm; WBC, white blood cell 

 

 

 
Figure 4. (A) Pearson correlation heatmap illustrating the relationships between NF-κB1 and other cytokine genes. Caspase-1 normalized counts demonstrates the strongest 
correlation with NF-κB1 normalized counts (r = 0.79). (B) Correlation coefficients (Spearman, Pearson, and Kendall) between NF-κB1 and caspase-1 normalized counts across the 
five patient groups. The MPN group shows consistently strong correlations across all methods, highlighting the robust interaction between these two features. 
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Statistical analyses (Simple, Multiple 
regression and PCA, LDA, t-SNE) 

NF-κB1 normalized counts (median [Q1, Q3]) in 
BM MNCs (n = 114) were 87.78 (57.06, 172.50) (Table 
1). Among ten cytokine genes, a simple regression 
analysis identified six significant predictors of NF-κB1 
normalized counts (Table 4). Table 4 describes the 
normalized counts (median [Q1, Q3]) of each of the 
six cytokine genes. 

 

Table 4. Simple regression analysis of normalized counts of 
NF-κB1 and ten cytokine genes in 114 bone marrow mononuclear 
cells 

Gene Name R2 P-value† Normalized counts‡ 
BAX 0.077 0.003* 559.31 (345.47, 880.01) 
BCL2L1 0.030 0.066 1564.99 (1048.08, 3438.39) 
Caspase-1 0.390 <0.0001* 344.35 (180.33, 629.68) 
IFNB1 0.003 0.574 6.06 (2.89, 15.68) 
MyD88 0.188 <0.0001* 1172.02 (794.85, 1689.91) 
NFKBIA 0.114 <0.0001* 3508.07 (2126.11, 5518.07) 
NGAL 0.165 <0.0001* 29320.74 (7367.25, 46058.72) 
NLRP3 0.004 0.514 520.03 (325.66, 861.76) 
RAGE 0.017 0.161 29.30 (16.20, 57.11) 
TNF 0.070 0.005* 204.65 (121.95, 339.48) 
† Statistically significant (P <0.05); ‡Normalized counts are represented as the 
median (quartile1 [Q1], Q3 values); * these cytokine genes were included as 
independent factors in multiple regression models; P-values <0.05 were typed in 
boldface.  
Abbreviations: BAX, bcl-2-associated X protein; BCL2L1, bcl-2-like 1; IFNB1, 
interferon beta 1; NGAL, neutrophil gelatinase-associated lipocalin; Q, quartile; 
RAGE, receptor for advanced glycation end products 

 
Using normalized counts of NF-κB1 as the 

dependent variable and six significant predictors 
(normalized counts of six cytokine genes) as 
independent variables, a multiple regression analysis 
was performed. The following multiple regression 
models were developed (Table 5). 

 

Table 5. Regression analysis models of the relationship between 
the normalized counts of NF-κB1 and those of cytokine genes in 
the bone marrow. 

 Coefficient t‐
value 

P‐
value† 

VIF Adj 
R2 

AIC 

Constant 75.034 2.972 0.004  0.434 1068.667 
BAX normalized counts 0.030 2.378 0.019 1.032   
Caspase-1 normalized 
counts 

0.157 6.843 < 
0.0001 

1.196   

NGAL normalized 
counts 

-0.001 -2.271 0.025 1.189   

†Statistically significant (P <0.05). 
Abbreviations: Adj, adjusted; AIC, Akaike's information criterion; VIF, variance 
influence factor 

 

(Model) NF-κB1 normalized counts = 75.034 + 0.157 × 
caspase-1 normalized counts + 0.03 × BAX normalized 
counts - 0.001 × NGAL normalized counts (Adjusted 

R2 = 0.434, P <0.0001)  

The median (Q1, Q3) of NF-κB1 normalized 
counts according to disease entities are summarized 
in Table 2. NF-κB1 normalized count in the control 
group was 56.75 (43.55, 76.98). The MPN group (n = 
20) exhibited the lowest NF-κB1 normalized count 
(54.25 [39.21, 79.56]). The MPN and control groups 
exhibited statistically lower NF-κB1 normalized 
counts than those in the AML, MDS, and PCN groups 
(Figure 5A). The median (Q1, Q3) of caspase-1 
normalized counts in the control group was 199.82 
(120.76, 213.35) (Table 2). The MDS group (n = 11) 
exhibited the highest caspase-1 normalized counts 
(805.92 [339.01, 1144.15]). The MDS group exhibited 
statistically higher caspase-1 normalized counts those 
that in the MPN and control groups (Figure 5B). The 
median (Q1, Q3) of BAX normalized counts in the 
control group was 396.47 (292.88, 559.31) (Table 2). 
The AML group exhibited statistically higher BAX 
normalized counts than those in the control group 
(Figure 5C). The median (Q1, Q3) of NGAL 
normalized counts in the control group was 45859.73 
(31338.67, 55617.08) (Table 2). The AML group 
exhibited statistically lower NGAL normalized counts 
than those in the MPN and control groups (Figure 
5D). The MDS group exhibited statistically lower 
NGAL normalized counts than those in the MPN and 
control groups (Figure 5D). These results further 
support the previously observed correlation between 
NF-κB1 and caspase-1 normalized counts (Figure 4), as 
their group-wise distribution trends align closely 
(Figure 5A, B), suggesting a potential 
interdependence between these features. 

To further explore the relationships identified in 
the correlation analysis (Figure 4), dimensionality 
reduction techniques were applied to the MPN and 
Control groups. Figure 6 presents the results of PCA 
and t-SNE, offering insights into the separability of 
these groups based on gene expression profiles. 
Figure 6A illustrates the PCA scatter plot showing the 
distribution of the MPN and Control groups along the 
first two principal components (PC1 and PC2). 
Although some degree of separation is observed, 
significant overlap persists, suggesting that PCA 
alone cannot fully resolve the complex relationships 
between these groups. Figure 6B displays the PCA 
loadings plot, identifying the contributions of features 
to the principal components. Contrary to 
expectations, NF-κB1 and caspase-1 normalized counts 
were not dominant contributors to PC1 or PC2, with 
other features emerging as more influential. This 
highlights the limitations of PCA in isolating key 
biological drivers within complex and 
high-dimensional datasets. Figure 6C presents the 
t-SNE scatter plot, a non-linear dimensionality 
reduction method, which provides an alternative 
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view of local clustering patterns. Although t-SNE 
reveals a slight separation between MPN and Control 
groups, substantial overlap remains, mirroring the 
findings from PCA. Figure 6D, which visualizes the 
t-SNE feature loadings and similarly does not identify 
NF-κB1 and caspase-1 normalized counts as major 
contributors to clustering patterns, further 
highlighting the challenges of distinguishing these 
groups using these methods. Taken together, these 
findings demonstrate the limitations of 
dimensionality reduction techniques—both linear 
(PCA) and non-linear (t-SNE)—in fully resolving the 
subtle molecular distinctions between MPN and 
Control groups.  

To further support these observations, additional 

analyses were performed for the AML, MDS, and 
PCN groups as presented in Supplementary Figures 
S1–S3, providing a broader perspective on group 
separability. For AML and MDS, clearer clustering 
patterns emerged, particularly in LDA plots, 
highlighting stronger differentiation relative to 
Control groups. Conversely, the PCN group exhibited 
substantial overlap with the Control group across all 
methods, reflecting the molecular complexity and 
weaker discriminatory signals within this group. 
These supplementary results provide additional 
evidence of disease-specific molecular patterns and 
emphasize the importance of multi-method 
approaches in identifying subtle gene expression 
differences.  

 

 
Figure 5. A comparison of the normalized counts of NF-κB1 (A), caspase-1 (B), BAX (C), and NGAL (D) in BM mononuclear cells of the hematological malignancy and control 
groups. The control group comprises patients with normal BM. (A) NF-κB1 normalized counts in the MPN and control groups are statistically lower than those in the AML, MDS, 
and PCN groups. (B) Caspase-1 normalized counts in the MPN and control groups are statistically lower than those in the MDS group. (C) BAX normalized counts in the control 
group are statistically lower than those in the AML group. (D) NGAL normalized counts in the AML and MDS groups are statistically lower than those in the MPN and control 
groups. Abbreviations: AML, acute myeloid leukemia; BAX, BCL2-associated X; BM, bone marrow; MDS, myelodysplastic syndrome; MPN, myeloproliferative neoplasm; 
NF-κB1, nuclear factor kappa light chain enhancer of activated B cells 1; NGAL, neutrophil gelatinase-associated lipocalin; PCN, plasma cell neoplasm. 
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Figure 6. (A) PCA scatter plot showing the distribution of the MPN and Control groups along the first two principal components (PC1 and PC2). (B) PCA loadings indicating 
the contributions of key features (e.g., NF-κB1 normalized counts, caspase-1 normalized counts) to PC1 and PC2. (C) t-SNE scatter plot depicting the clustering of MPN and 
Control groups in a non-linear feature space. (D) Loading projections highlighting the most influential features in the t-SNE analysis. Abbreviations: MPN, myeloproliferative 
neoplasm; PCA, principal component analysis; PC, principal component; LDA, linear discriminant analysis; t-SNE, t-distributed stochastic neighbor embedding; LD, linear 
discriminant. 

 
ML classification 

The average receiver operating characteristic 
(ROC) curves in Figure 7 illustrate the classification 
performance of ML models—kNN, NBC, RF, and 
XGBoost (XGB)—across comparisons between disease 
groups (MPN, AML, MDS, PCN) and the control 
group. To ensure robust and unbiased evaluation, we 
employed k-fold cross-validation (k = 3), 
systematically training and testing the models across 
different subsets of the data. The reported 
performance metrics, including accuracy, precision, 
recall, and area under the ROC curve (AUC), reflect 
the average values obtained across all folds. This 
approach minimizes bias and variance, which are 
common challenges in small datasets, enhancing 
confidence in the results [36-38]. Figure 7A illustrates 
the ROC curves for distinguishing between the MPN 
and control groups. Among the classifiers, RF (AUC = 
0.81) demonstrated the highest performance, followed 

by NBC (AUC = 0.66) and XGB (AUC = 0.67). In 
contrast, kNN demonstrated the lowest performance 
(AUC = 0.60), likely due to its sensitivity to local data 
structures and inability to capture complex patterns in 
high-dimensional, small datasets. Despite RF’s 
relatively superior results, the moderate accuracy 
(62%) and F1-score (67%) indicate substantial 
molecular overlap between MPN and control groups, 
a finding consistent with earlier dimensionality 
reduction analyses (Figure 6). Figure 7B shows the 
ROC curves for AML vs control classification. All 
models performed strongly, with NBC and RF 
achieving perfect classification (AUC = 1.00), while 
XGB achieved comparably high performance (AUC = 
0.93). The kNN model also performed well (AUC = 
0.95). Precision, recall, and F1-scores further 
confirmed these results, reflecting the distinct gene 
expression patterns observed in AML, which 
facilitated clear separation from the control group. 
Figure 7C focuses on the ROC curves for 
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distinguishing between MDS and control groups. 
Both NBC (AUC = 0.97) and RF (AUC = 1.00) 
demonstrated excellent performance, while XGB 
achieved a slightly lower AUC (0.84). The kNN model 
performed reasonably well (AUC = 0.91). However, 
variability in precision and F1-scores (ranging 61–
90%) highlights the subtle molecular overlaps 
between MDS and control samples, posing challenges 
for consistent classification despite the overall high 
AUC values. Figure 7D presents the ROC curves for 
PCN vs control classification. RF (AUC = 0.91) and 
XGB (AUC = 0.94) outperformed simpler models like 
NBC (AUC = 0.76) and kNN (AUC = 0.70). While 
ensemble methods performed well, the relatively 
lower F1-scores (RF = 65%, XGB = 63%) suggest 
significant gene expression overlap between PCN and 
control groups, reflecting the molecular complexity of 
PCN. Overall, Table 6 summarizes the model 
performance metrics—accuracy, precision, recall, 
F1-score, and AUC—across all disease group 
comparisons. RF consistently demonstrated the 
highest performance, achieving the best AUC values 

for MPN (0.81), AML (1.00), MDS (1.00), and PCN 
(0.91). XGB also performed strongly, particularly in 
PCN (AUC = 0.94). NBC excelled in AML (AUC = 
1.00) and MDS (AUC = 0.97), underscoring its 
suitability for small, high-dimensional datasets. In 
contrast, kNN exhibited variable performance, 
achieving strong results in AML but performing 
poorly in MPN (AUC = 0.60) and PCN (AUC = 0.70). 
These findings highlight the strengths of ensemble 
models (RF and XGB) in capturing non-linear patterns 
and relationships, while simpler models like kNN 
were limited by their reliance on local data 
distributions. Importantly, the use of k-fold 
cross-validation and averaging across all subsets 
ensured that these results were robust and 
reproducible. The consistent performance of ensemble 
methods across folds further emphasizes their 
reliability in addressing challenges posed by small 
sample sizes and overlapping gene expression 
patterns, making them particularly suitable for rare 
disease research. 

 

 
Figure 7. Average ROC Curves for Machine Learning Classifiers (kNN, NBC, RF, XGB) Applied to Distinguish Between Control and Hematological Malignancy Groups. (A) 
MPN vs Control. (B) AML vs Control. (C) MDS vs Control. (D) PCN vs Control. Abbreviations: MPN, myeloproliferative neoplasm; AML, acute myeloid leukemia; MDS, 
myelodysplastic syndrome; PCN, plasma cell neoplasm; ROC, receiver operating characteristic; TPR, true positive rate; FPR, false positive rate. 
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Table 6. Performance metrics for k-Nearest Neighbors (kNN), 
Naïve Bayes Classifier (NBC), Random Forest (RF), and XGBoost 
(XGB) applied to distinguish between the control group and each 
hematological malignancy group (MPN, AML, MDS, PCN). Metrics 
include accuracy, precision, recall, F1 score, and area under the 
ROC curve (AUC), summarizing the classification performance of 
each model across different comparisons. 

Group 
Pair 

Model Accuracy Precision Recall F1 
Score 

ROC 
AUC 

MPN vs 
Control 

kNN 0.48 0.50 0.48 0.46 0.60 
NBC 0.60 0.66 0.58 0.59 0.66 
RandomForest 0.62 0.68 0.75 0.67 0.81 
XGB 0.59 0.65 0.79 0.67 0.67 

AML vs 
Control 

kNN 0.90 1.00 0.82 0.88 0.95 
NBC 1.00 1.00 1.00 1.00 1.00 
RandomForest 1.00 1.00 1.00 1.00 1.00 
XGB 0.93 0.93 0.90 0.89 0.93 

MDS vs 
Control 

kNN 0.78 0.73 0.58 0.61 0.91 
NBC 0.89 0.87 0.96 0.90 0.97 
RandomForest 0.87 0.70 0.70 0.67 1.00 
XGB 0.86 0.73 0.66 0.67 0.84 

PCN vs 
Control 

kNN 0.62 0.40 0.30 0.33 0.70 
NBC 0.71 0.75 0.78 0.66 0.76 
RandomForest 0.71 0.67 0.78 0.65 0.91 
XGB 0.67 0.65 0.78 0.63 0.94 

Abbreviations: MPN, myeloproliferative neoplasm; AML, acute myeloid leukemia; 
MDS, myelodysplastic syndrome; PCN, plasma cell neoplasm; kNN, k-nearest 
neighbors; NBC, naïve Bayes classifier; XGB, extreme gradient boosting. 

 
 

Permutation feature importance for classifying 
control and disease groups across ML models 

Figure 8 presents the results of permutation 
feature importance analysis across the four ML 
models. Figure 8A illustrates the feature importance 
as determined by the kNN model. For both MPN and 
PCN groups, NF-κB1 normalized counts 
demonstrated the highest contribution to 
classification, emphasizing its significance in 
distinguishing these groups. However, for AML and 
MDS, the kNN model failed to identify significant 
features, reflecting the algorithm’s inherent simplicity 
and limited ability to capture complex patterns within 
these datasets. Figure 8B displays the results from the 
NBC, where caspase-1 consistently emerged as the 
most influential feature across all groups—MPN, 
AML, MDS, and PCN. This highlights the robustness 
of NBC in identifying a universal feature with strong 
predictive relevance for group differentiation. Figure 
8C highlights the feature importance derived from the 
RF model. For MPN, NF-κB1 normalized counts were 
identified as the most critical feature, reflecting its 
dominant role in this group. In contrast, AML showed 
a co-dominance of NF-κB1 and caspase-1 normalized 
counts, suggesting a combined regulatory influence. 
For MDS and PCN, caspase-1 emerged as the most 
important feature, underscoring its pivotal role in 
these groups’ inflammatory and apoptotic pathways 

[9, 34]. Figure 8D presents the results of the XGB 
model, which provided relevant insights for MPN, 
MDS, and PCN groups. For all three groups, caspase-1 
normalized counts were identified as the dominant 
feature, further reinforcing its universal relevance 
across these malignancies. However, no significant 
feature importance was observed for AML, likely due 
to data imbalance or insufficient representation of key 
patterns within this group. 

Regression analysis and interpretability 
To further elucidate the key features of driving 

NF-κB1 normalized counts across hematological 
malignancy groups, SHAP analysis was applied to the 
XGB regression models. This approach enabled the 
identification and quantification of each feature’s 
impact on NF-κB1 normalized counts, providing a 
transparent and interpretable framework for 
understanding the molecular determinants of NF-κB1 
gene activity. Figure 9 illustrates the SHAP-based 
feature importance derived from XGB regression 
models for predicting NF-κB1 normalized counts in 
the four hematological malignancy groups: AML, 
MPN, MDS, and PCN. Across all groups, caspase-1 
gene normalized counts consistently emerged as the 
most influential feature, reinforcing its central role in 
the regulation of NF-κB1-mediated inflammatory 
pathways. This finding suggests that caspase-1 gene 
normalized counts represents a universal driver of 
NF-κB1 gene activity and a potential therapeutic 
target for modulating inflammatory responses in 
various hematological malignancies. Beyond caspase-1 
gene normalized counts, the SHAP analysis highlights 
group-specific features, reflecting the unique 
regulatory mechanisms in each malignancy type. In 
the AML group (Figure 9A), identified were notable 
contributions from NFKB1A, MYD88, and BCL2L1 
normalized counts. The influence of NFKB1A gene 
normalized counts is consistent with the previous 
report that NF-κB activity would be influenced by 
NFKBIA, which encodes the main NFKB inhibitor, I 
kappa B alpha [39]. MYD88 gene highlights immune 
signaling pathways, and BCL2L1 gene emphasizes the 
role of anti-apoptotic pathways in modulating the 
NF-κB1 gene activity. These findings underscore the 
multifaceted nature of NF-κB regulation in AML 
pathophysiology, characterized by a complex 
interplay of immune and apoptotic factors. For the 
MPN group (Figure 9B), features such as RAGE, INFβ, 
and NGAL normalized counts played significant roles 
alongside caspase-1, indicating the involvement of 
receptor-mediated signaling and immune modulation 
in driving NF-κB1 gene activity. In the MDS group 
(Figure 9C), RAGE and BAX normalized counts 
emerged as key features. The prominence of RAGE 
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gene normalized counts suggests that inflammatory 
signaling is a primary driver of NF-κB1 gene activity, 
while BAX gene indicates the simultaneous regulation 
of apoptosis in MDS. This dual influence highlights 
the delicate balance between inflammation and 
programmed cell death in the pathophysiology of 
MDS. Finally, in the PCN group (Figure 9D), RAGE 
normalized counts were identified as significant 
contributors, suggesting that inflammatory and 
immune responses play dominant roles in NF-κB1 
gene regulation in plasma cell neoplasms. The 
consistent importance of these features underscores 
the centrality of inflammation in PCN pathogenesis. 

 To evaluate the reliability of ML performance on 
small datasets and determine the minimum sample 
size required for stable classification accuracy, 
systematic analyses were conducted to measure the 

average classification performance of four ML 
models—kNN, NBC, RF, and XGB—across varying 
sample sizes for each disease group (AML, MPN, 
MDS, and PCN) against the control group. The 
results, illustrated in Figure 10, provide insights into 
the relationship between sample size and average 
classification accuracy, emphasizing the strengths and 
limitations of ML models when applied to small 
datasets in rare disease research. For AML vs. Control 
and MDS vs. Control, the average accuracy across the 
four ML models improved steadily with increasing 
sample sizes. Beyond thresholds of 15 and 14 samples 
for AML and MDS, respectively, the performance of 
RF and XGB stabilized consistently above 0.8, 
indicating strong and reliable classification accuracy. 
In contrast, simpler models like kNN and NBC 
exhibited greater sensitivity to smaller sample sizes, 

 

 
Figure 8. Permutation feature importance for distinguishing control and disease groups (MPN, AML, MDS, PCN) across four machine learning models: (A) kNN, (B) NBC, (C) 
RF, and (D) XGB. Bars represent the relative feature importance of NF-κB1 and caspase-1 normalized counts for classification tasks. Features highlighted with red-bordered 
yellow boxes indicate the top feature within each group that contributed the most to classification. Absence of bars (e.g., XGB for AML) reflects models where no features 
contributed relevantly to classification in the corresponding group. Abbreviations: MPN, myeloproliferative neoplasm; AML, acute myeloid leukemia; MDS, myelodysplastic 
syndrome; PCN, plasma cell neoplasm; kNN, k-nearest neighbors; NBC, naïve Bayes classifier; XGB, extreme gradient boosting; NF-κB1, nuclear factor kappa light chain 
enhancer of activated B cells 1; Caspase-1, cysteine-aspartic protease 1. 
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with accuracy fluctuating initially, before improving 
progressively. This pattern suggests that while kNN 
and NBC demonstrate rapid gains in performance as 
sample sizes increase, their variability highlights a 
reliance on larger datasets to achieve stable results 
compared to the more robust performance of 
ensemble models like RF and XGB. This stability in 
performance demonstrates the robustness of 
ML-based analyses for AML and MDS, suggesting 
that even small datasets can be effectively leveraged 
to explore feature importance and gene expression 
relationships. In contrast, the results for MPN vs. 
Control and PCN vs. Control revealed greater 
variability. For MPN vs. Control, the average accuracy 
fluctuated significantly across all models, even as the 
sample size increased, indicating challenges in 
achieving stable performance due to molecular 
complexity and group overlap. Similarly, for PCN vs. 
Control, the average accuracy began to improve 

around 23 samples, but inconsistencies persisted, 
particularly for kNN and NBC, limiting confidence in 
further analyses. While RF and XGB showed relative 
improvements, the instability across sample sizes 
underscores the need for cautious interpretation of 
results for these groups. 

Discussion 
This study systematically explored NF-κB1 gene 

expression dynamics across various hematological 
malignancies using statistical methods, 
dimensionality reduction techniques, ML, and XAI. 
By integrating these approaches, we identified critical 
molecular interactions—particularly the NF-κB1 and 
caspase-1 axis—and demonstrated the robustness of 
ML-based approaches for small datasets, offering new 
insights into disease-specific regulatory mechanisms.  

 

 
Figure 9. SHAP Feature Importance Analysis for Predicting NF-κB1 Expression Across Hematological Malignancy Groups. (A) AML, (B) MPN, (C) MDS, and (D) PCN groups. 
Caspase-1 consistently ranks as the top feature in all groups, underscoring its critical role in NF-κB1 regulation. Group-specific features, such as RAGE, NGAL, and MYD88, 
further highlight distinct regulatory mechanisms contributing to NF-κB1 activity across malignancy types. Abbreviations: MPN, myeloproliferative neoplasm; AML, acute myeloid 
leukemia; MDS, myelodysplastic syndrome; PCN, plasma cell neoplasm; XGB, extreme gradient boosting; Caspase-1, cysteine-aspartic protease 1; SHAP, SHapley Additive 
exPlanations. 
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Figure 10. Average classification accuracy of four machine learning models (kNN, NBC, RF, and XGB) across varying sample sizes for distinguishing disease groups from the 
control group. (A) MPN, (B) AML, (C) MDS, and (D) PCN. The red dotted line indicates the sample size threshold (15, 14, and 23 samples) at which stable accuracy is achieved 
across most models for each disease group. Abbreviations: MPN, myeloproliferative neoplasm; AML, acute myeloid leukemia; MDS, myelodysplastic syndrome; PCN, plasma cell 
neoplasm; kNN, k-nearest neighbors; NBC, naïve Bayes classifier; XGB, extreme gradient boosting. 

 
The initial demographic and laboratory findings 

revealed distinct clinical and molecular profiles 
among MPN, AML, MDS, PCN, and control groups. 
Despite statistically significant differences, notably in 
NF-κB1 and caspase-1 normalized counts, considerable 
overlaps persisted. These overlaps underscore the 
limitations of conventional diagnostic methods and 
visualizations for effectively distinguishing these 
diseases [40-42], especially in high-dimensional 
datasets where subtle molecular variations are 
embedded within complex gene expression networks. 

A simple regression analysis performed on a 
data from a total of 114 BM MNCs showed that 
NF-κB1 normalized counts exhibited statistical 
significance with the following six variables: BAX, 
caspase-1, MyD88, NFKB1A, NGAL, and TNF 
normalized counts. NF-κB1 normalized counts had 
the highest level of statistical association with 
caspase-1 normalized counts (R2 = 0.390, p <0.0001, 
Table 4). In sequence, NGAL (R2 = 0.165, Table 4) and 
BAX normalized counts (R2 = 0.077, Table 4) exhibited 
high explanatory power levels. The study also 

examined the roles of other significant variables in the 
canonical NF-κB pathway [8, 9]. MyD88, activated via 
Toll-like receptor signaling is a key regulator of NF-κB 
signaling [43]. Functional polymorphisms of NFKBIA, 
a known inhibitor of NF-κB, play an essential role in 
influencing NF-κB function, demonstrating the 
association of NFKBIA with NF-κB in several diseases, 
such as cancers. [35, 39] Similarly, TNF is instrumental 
in NF-κB activation, binding to TNF receptors on the 
cell surface and initiating signaling cascades that lead 
to NF-κB activation [44]. 

Correlation analyses revealed that the MPN 
group consistently exhibited the strongest correlation 
between NF-κB1 and caspase-1 normalized counts, 
supporting its selection for further dimensionality 
reduction and ML analyses. By contrast, the weaker 
correlations in the Control and PCN groups 
highlighted their heterogeneity and the potential 
involvement of distinct regulatory mechanisms 
(Figure 4). To further investigate these molecular 
dynamics, PCA and t-SNE were applied to AML, 
MDS, and PCN groups (Figure S1-S3). However, these 
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dimensionality reduction techniques revealed 
overlapping distributions across all groups. The 
inability of PCA and t-SNE to achieve clear 
discrimination reinforced the notion that subtle 
molecular distinctions may not be readily captured by 
dimensionality reduction methods alone (Figure 6) 
[13, 45, 46]. Although PCA and t-SNE provided 
insights into variance-based and local clustering 
patterns, their inability to achieve clear group 
separability highlighted their limitations in capturing 
the complexity of the data. 

Given these challenges, the next logical step was 
to employ ML models to identify more nuanced 
patterns. Despite initial insights from scatter plots and 
dimensionality reduction, the data’s complexity 
required more robust analytical tools. ML methods 
were thus introduced to enhance classification 
performance and uncover key features that drive 
group differentiation. Classifiers such as kNN, NBC, 
RF, and XGB, were employed to uncover higher-order 
interactions and complex relationships that traditional 
statistical and dimensionality reduction methods 
could not discern [47]. Coupled with XAI techniques, 
such as SHAP and permutation feature importances, 
the ML framework enabled interpretability and the 
association analysis of biologically meaningful 
features, including NF-κB and caspase-1 [48, 49]. 

The application of ML methods yielded 
promising results, as summarized in Table 6. 
Ensemble models, such as RF and XGB, generally 
outperformed simpler classifiers like kNN and NBC, 
especially when distinguishing between disease 
groups and the control group. Nonetheless, NBC 
showed remarkable accuracy in AML and MDS 
classifications, underscoring its suitability for certain 
small, high-dimensional datasets. The challenges in 
MPN and PCN classification, as reflected by 
moderate-to-low performance metrics, echoed the 
subtle intergroup differences and molecular 
complexity observed earlier [50, 51]. The variability in 
performance across classifiers further highlighted the 
importance of selecting robust techniques capable of 
handling nuanced gene expression profiles. 

Permutation analysis consistently identified 
NF-κB1 and caspase-1 normalized counts as key 
features. While these two features emerged as key 
regulators, the feature importance patterns differed 
across groups, emphasizing the intricate nature of 
gene-disease relationships and suggesting that hybrid 
or ensemble ML approaches might provide even 
deeper insights [52]. 

These findings align with the interpretability 
results derived from XAI methods. As shown in 
Figure 9, SHAP analysis pinpointed caspase-1 as the 
most influential feature governing NF-κB1 expression 

across multiple disease groups. This pattern 
corroborated the regression results and provided 
mechanistic insights, highlighting caspase-1’s pivotal 
role in the canonical NF-κB pathways across 
hematological malignancies [8, 9]. Importantly, 
features such as RAGE, NGAL, and MYD88 emerged 
with varying influence across different diseases, 
suggesting that the NF-κB1 and caspase-1 interaction 
occurs within a broader and context-dependent 
molecular network [53-55]. NF-κB1 gene was reported 
to be associated with genes such as NF-κB2, RELA, 
RELB, NFKB1A, BTRC, REL, UBC, CUL1, SQSTM1, 
and CHUK. However, as identified in this study, the 
relationship between NF-kB1 and caspase-1 would be 
highlighted in hematologic malignancies such as 
AML, MDS, MPN, and PCN [56]. 

The relationship between NF-κB and caspase-1 is 
complex and multifaceted, with both pathways 
influencing each other in various ways [57-59]. 
Inflammasomes are innate immune system sensors 
found in the cytosol of macrophages, granulocytes, 
dendritic cells and monocytes, are activated by 
NF-κB, activating caspase-1 [59]. Conversely, 
caspase-1 can activate NF-κB signaling through 
interactions with caspase-7, cleavage of the 
MyD88-adapter-like protein, or receptor-interacting 
protein-2 activation [57]. 

A previous human study reported that NF-κB1 
haploinsufficiency is associated with the CVID 
phenotype and that the levels of NF-κB1 (p50) are 
tightly regulated [7]. Furthermore, while the specific 
reasons for the phenotypic variability and the variable 
age of disease onset associated with p50 
haploinsufficiency remain unclear, the study 
suggested the potential existence of modifier genes 
that could explain these variations [7]. Given the 
results of our study, caspase-1 may regulate the levels 
of NF-κB1 and serve as one of the modifier genes 
influencing disease onset related to deficient NF-κB1.  

Beyond these molecular insights, the small 
dataset size inherent in rare disease research 
introduced analytical challenges. The evaluation of 
model performance across varying sample sizes, as 
illustrated in Figure 10, highlighted the overall 
improvement in classification accuracy with 
increasing sample sizes across all models (kNN, NBC, 
RF, and XGBoost). For AML and MDS, the average 
accuracy across all four models stabilized above 0.8 
when the sample size exceeded 15 and 14 for AML 
and MDS, indicating reliable classification 
performance. While simpler models such as kNN and 
NBC exhibited greater variability and sensitivity to 
small sample sizes, ensemble methods like RF and 
XGB demonstrated consistent robustness and 
achieved more stable results across varying sample 
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sizes [60]. For PCN, model performance began to 
improve around 23 samples, though variability 
persisted, particularly for kNN and NBC. These 
findings emphasize the importance of ensemble 
methods in handling small datasets typical of rare 
disease research and demonstrate the potential for 
extracting meaningful insights despite the limitations 
imposed by data scarcity. In contrast, the MPN group 
continued to show fluctuations in accuracy, 
underscoring the challenges posed by molecular 
complexity and group overlap. 

Overall, integrating statistical analyses, 
dimensionality reduction techniques, ML classifiers, 
and XAI-driven interpretations proved critical for 
untangling the complex relationships between NF-κB1 
and other cytokine genes. The consistent 
identification of NF-κB1 and caspase-1 normalized 
counts as central players across multiple analytical 
methods—regression, correlation, ML classification, 
and SHAP interpretations—highlights their pivotal 
role in inflammation and apoptosis pathways. This 
universality across disease groups underscores their 
potential as key targets for therapeutic intervention in 
hematological malignancies. 

Importantly, this study demonstrates that 
meaningful and stable analyses can be achieved even 
with small datasets, addressing a fundamental 
challenge in rare disease research. The systematic 
evaluation of model performance across varying 
sample sizes revealed that ensemble methods, 
particularly RF and XGB, can achieve robust and 
stable classification accuracy with as few as 15–24 
samples for AML and MDS. This underscores the 
feasibility of deriving biologically meaningful insights 
even under data-limited scenarios, a critical 
consideration in rare disease research. By 
demonstrating the utility of ML-based approaches for 
identifying key molecular interactions, particularly 
the NF-κB–caspase-1 axis, this study provides a 
strong foundation for future applications in precision 
medicine. Importantly, these results reinforce the 
viability of leveraging ensemble models to overcome 
the challenges posed by small datasets, offering a 
reliable strategy for refining diagnostic tools and 
guiding targeted therapeutic interventions in 
resource-limited clinical settings. By focusing on the 
NF-κB and caspase-1 axis, this work deepens our 
understanding of disease-specific regulatory 
mechanisms and highlights their therapeutic 
potential. Importantly, it demonstrates that ML-based 
approaches can extract reliable insights from limited 
data, offering a feasible strategy for precision 
medicine applications in rare hematological 
malignancies. These findings provide a strong 
foundation for future studies aimed at refining 

diagnostic tools and developing innovative 
therapeutic hypotheses, even in resource-constrained 
environments. 

Conclusion 
This study demonstrates the efficacy of 

integrating traditional statistical methods, ML, and 
XAI to unravel the complex gene interactions in 
hematological malignancies, with a specific focus on 
the NF-κB1 and caspase-1 axis. By identifying caspase-1 
normalized counts as the most influential factor 
governing NF-κB1 gene activity across disease groups, 
our findings highlight their central role in 
inflammation and apoptosis pathways. 
Group-specific regulatory mechanisms, uncovered 
through SHAP and feature importance analyses, 
provide additional insights into disease-specific 
molecular signatures. 

Addressing the challenges of small sample sizes 
inherent in rare disease research, this study 
establishes a minimum threshold of 15 samples for 
robust classification, particularly in AML and MDS. 
These results underscore the potential of ensemble 
ML models like RF and XGB to achieve stable and 
interpretable outcomes even in data-limited 
environments. Further validation in similar sized and 
independent cohorts will be essential to translate 
these findings into practical clinical applications. 
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