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Abstract 

Chronic kidney disease (CKD) is closely associated with endothelial dysfunction, leading to symptoms 
such as albuminuria, edema, and coagulopathy. Recent advancements in single-cell sequencing have 
deepened our understanding of the heterogeneity of renal endothelial cells, which is significantly 
influenced by their microenvironment. Understanding the influence of neighboring cells on endothelial 
heterogeneity is essential for elucidating the mechanisms underlying vascular dysfunction and CKD 
progression. This review explores the latest research on renal endothelial cell heterogeneity and their 
interactions with neighboring cells. We further discuss the mechanisms of endothelial injury in CKD, 
including alterations to the endothelial glycocalyx, inflammation, oxidative stress, and dysfunction of the 
glomerular filtration barrier. Renal endothelial injury contributes to complications, including 
cardiovascular disease, diabetic nephropathy, and impaired vascular function. Therapeutic strategies 
encompass antihypertensive, hypoglycemic, and lipid-lowering treatments, supplemented by emerging 
approaches such as anti-inflammatory therapies, gene therapy, and lifestyle modifications. Through 
reviewing the relationship between endothelial injury and CKD progression, we emphasize potential 
strategies to enhance prognosis and mitigate disease progression. 
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1. Introduction 
Endothelial cells (ECs), also known as vascular 

endothelial cells, form a monolayer lining the inner 
surfaces of arteries, veins, and capillaries. These cells 
have a luminal membrane exposed to blood and 
circulating cells, while their basolateral surface is 
supported by a glycoprotein basement membrane that 
they produce1. ECs play critical roles in barrier 
functions, filtration, angiogenesis, and the regulation 
of vascular tone2. Additionally, they are involved in 
immune responses, inflammation, and maintaining 

the balance between coagulation and fibrinolysis3,4. 
Recent research has provided detailed insights into 
the roles of vascular endothelium in 
mechanotransduction, metabolism, guidance 
signaling, and aging5. Therefore, studying ECs is 
essential for understanding various pathological 
conditions.  

Recent studies have identified distinct subsets of 
ECs, including glomerular ECs and those forming the 
blood-brain barrier6. Advances in technology, 

 
Ivyspring  

International Publisher 



Int. J. Med. Sci. 2025, Vol. 22 

 
https://www.medsci.org 

2104 

particularly single-cell RNA sequencing (scRNA-seq), 
have significantly deepened our understanding of 
these subsets. Compared to traditional methods such 
as serial analysis of gene expression, microarrays, or 
bulk RNA sequencing, scRNA-seq enables a more 
comprehensive analysis by integrating transcriptomic 
profiles across diverse cell types7–9. 

CKD affects approximately 10% of the global 
adult population and is becoming increasingly 
prevalent10. CKD arises from a variety of pathological 
conditions, influenced by factors such as blood 
glucose, lipid levels, homocysteine, and bilirubin, 
which impact tissues through the circulatory system. 
These changes alter the microenvironment within 
tissues. Clinically, CKD is characterized by symptoms 
such as edema, proteinuria, coagulation 
abnormalities, and a reduced glomerular filtration 
rate (GFR), all of which are associated with 
endothelial cell damage11,12. 

Recent research has delved into these 
complexities. Sedrakyan et al. classified renal 
endothelial cells based on transcriptomic differences 
and reviewed several scRNA-seq studies that 
explored the effects of CKD and acute kidney injury 
(AKI) on the renal endothelium13. Despite these 
advancements, the underlying causes of endothelial 
heterogeneity and the mechanisms of injury remain 
poorly understood. This study seeks to unravel the 
origins of renal endothelial cell heterogeneity by 
examining intra-tissue cell interactions. Furthermore, 
it consolidates current insights into the mechanisms 
and clinical manifestations of endothelial cell damage 
in CKD, offering new perspectives for identifying 
therapeutic targets related to the interplay between 
endothelial cells and CKD. 

2. Heterogeneity of Renal Endothelial 
Cells 

The renal vascular system exhibits remarkable 
diversity, with blood entering the kidney via the renal 
artery, passing through the glomerular capillaries, 
and exiting through the efferent arterioles. The renal 
vasculature adapts to distinct microenvironments, 
demonstrating specialization in endothelial cell 
structure, blood flow dynamics, and fenestration. 
Early studies employing electron microscopy and 
microarray analysis highlighted significant 
heterogeneity in the morphology and function of 
renal endothelial cells across various vascular sites. 
Techniques such as immunostaining and FACS 
analysis have identified renal endothelial markers, 
including Erg, VE-cadherin, Meca32, 
Thrombomodulin, and vWF1, yet further classification 
of renal endothelium remains necessary14. 
 

2.1 Endothelial Cell Subtypes and 
Characteristics 

Advances in scRNA-seq technology have 
significantly enhanced our understanding of 
individual cell types, uncovering organ-specific gene 
expression signatures9. For instance, Jihwan Park et al. 
constructed a single-cell transcriptome atlas of mouse 
kidneys, producing the most comprehensive map of 
kidney transcriptomes to date15. Their findings 
suggest that these data can facilitate the inference of 
cell type-specific functions and link numerous genetic 
kidney diseases to specific cell types. 

Dumas et al. employed scRNA-seq to 
comprehensively characterize the transcriptional 
landscape of kidney endothelial cells in adult mice, 
identifying 24 transcriptionally distinct subtypes, 
including 5 glomerular, 9 cortical, and 10 medullary 
EC subtypes7. Within the cortical subtypes, specific 
populations such as large artery endothelial cells, 
afferent arterioles, efferent arterioles, four distinct 
capillary subtypes, and large vein endothelial cells 
were delineated. Furthermore, Dumas et al. 
highlighted gene-specific markers associated with 
endothelial cell function and their adaptation to the 
local microenvironment. For example, in glomerular 
endothelial subtypes, genes such as Edn1, Alox12, and 
S1pr1, which are implicated in the regulation of 
angiotensin signaling, were found to be selectively 
expressed in afferent arterioles. Notably, the 
S1P-S1PR1 signaling pathway was shown to regulate 
angiotensin levels by activating the nitric oxide 
synthase (eNOS) system, a critical mechanism for 
maintaining glomerular blood flow and preserving 
GFR16. 

Several genes remain under-characterized. For 
example, the ELN gene, expressed in large artery 
endothelial cells, encodes elastin, a protein crucial for 
vascular elasticity and associated with renal cyst 
progression and diabetic nephropathy17,18. The Calca 
gene, expressed in efferent arterioles, encodes 
calcitonin, a hormone that influences G 
protein-coupled receptor signaling and NMDA 
receptor function, regulating vascular tone by 
modulating calcium influx19. Col4a1 and Col4a2, 
expressed in capillary endothelial cells, encode 
collagen type IV proteins in the basement membrane 
and are linked to vascular diseases. Studies have 
shown that the Col4a1 G498V mutation can delay 
glomerular development and podocyte 
differentiation, underscoring its role in kidney 
vascular and podocyte development20,21. 

Furthermore, gene expressions are also 
connected to renal tubular function. For instance, the 
Jup gene, encoding Aquaporin-2 and expressed in the 
post-capillary venule subtype, interacts with the 



Int. J. Med. Sci. 2025, Vol. 22 

 
https://www.medsci.org 

2105 

transcription regulator β-catenin and contributes to 
the renal anti-diuretic response22. 

2.2 Involvement of Endothelial Cell Subtypes 
in Vascular Dysfunction and CKD Pathogenesis 

It is well-established that different endothelial 
cell subtypes play critical roles in the progression of 
CKD by regulating vascular permeability, 
inflammatory responses, vascular tone, fibrotic 
signaling, and microvascular integrity. These 
subtypes exhibit unique characteristics and gene 
expression profiles, which collectively determine their 
central functions in disease mechanisms23. 

Regulation of vascular permeability is a key 
function of endothelial cell subtypes. Capillary 
endothelial subtypes express crucial genes involved 
in permeability regulation, including VEGF and 
Plvap24,25. Aberrant expression of VEGF in glomerular 
collapse leads to rapid loss of glomerular endothelial 
cells (gRECs) and proteinuria, while PV1, the protein 
product of Plvap, facilitates water, ion, and solute 
exchange by covering endothelial fenestrae26. In the 
medullary capillary plexus, Plvap works in concert 
with VEGF receptor genes such as Kdr, Flt1, and Nrp1 
to maintain vascular barrier function. However, in 
CKD, dysfunction of these genes disrupts the barrier, 
increasing inflammatory cell infiltration and tissue 
damage, thereby exacerbating inflammation, fibrosis, 
and renal dysfunction16. 

Inflammatory responses are central to CKD 
progression, with specific endothelial cell subtypes 
exhibiting significant pro-inflammatory properties. 
For example, glomerular endothelial cells derived 
from efferent arterioles express Klf2, Klf4, and their 
target gene Thbd, which are suppressed under 
conditions of low shear stress, triggering 
pro-inflammatory signaling that worsens both local 
and systemic inflammation27. Studies have shown that 
activation of KLF2 protects gRECs from CKD-related 
injury28. Additionally, certain endothelial subtypes, 
such as capillary endothelial cells of the interferon 
(IFN) response phenotype, express Isg15 and Ifit gene 
families, which are involved in antigen processing 
and presentation, suggesting their potential role in 
CKD-associated inflammatory responses29. 

Regulation of vascular tone depends on the 
secretion of vasoactive substances such as nitric oxide 
(NO) and endothelin-1 (ET-1) by endothelial 
subtypes. For instance, capillary endothelial cells 
express NOSTRIN, whose protein product interacts 
with eNOS to regulate NO production30,31. In CKD, 
dysfunction of NOSTRIN leads to reduced NO 
production, enhanced vasoconstriction, and 
decreased blood flow, exacerbating renal ischemia 
and injury32. Furthermore, eNOS uncoupling induces 

endothelial surface remodeling, promoting receptor 
expression and facilitating interactions with platelets 
and immune cells, thereby aggravating coagulopathy 
and disease progression33,34. 

Fibrotic signaling and microvascular integrity 
are further disrupted during CKD progression. 
Certain capillary endothelial subtypes express genes 
such as Apln, Aplnr, Col4a1, Col4a2, Esm1, and Fscn1, 
which play essential roles in angiogenesis and fibrotic 
signaling. Additionally, venous endothelial cells of 
the IFN response phenotype express Isg15 and Ifit 
gene families, potentially contributing to immune 
regulation in fibrosis. The loss of microvascular 
barrier function creates a feedback loop that 
exacerbates inflammation and fibrosis11,35.  

3. Interaction of Glomerular Endothelial 
Cells (GECs) with Neighboring Cells 

Recent research has shown that the 
microenvironment significantly influences the 
development of endothelial cells in various tissues. In 
the kidney, the gene expression of renal endothelial 
cells is closely linked to signals from neighboring 
cells. GECs, key components of blood vessel walls, 
engage in complex communication with tubular 
epithelial cells, interstitial cells, and immune cells. 
This signaling network plays a critical role in 
regulating glomerular filtration, maintaining vascular 
tone, and modulating the inflammatory response in 
the glomerulus36 (Table 1). 

3.1 GECs Interact with Podocytes 
GECs are connected to podocytes through the 

glomerular basement membrane (GBM) within the 
glomerular filtration barrier. Their differentiation is 
regulated by key signaling molecules, including 
vascular endothelial growth factor-A (VEGF-A), 
angiopoietin (Ang), and ET-1, which are secreted by 
podocytes. 

In the kidney, podocyte-derived VEGF-A is 
essential for maintaining the structure and function of 
glomerular capillaries37. VEGF-A also protects 
podocytes from apoptosis by promoting nephrin 
phosphorylation and enhancing the podocin-CD2- 
associated protein (CD2AP) interaction55. 
Additionally, VEGF-C increases endothelial 
fenestration density, reduces albumin permeability, 
and lowers microalbuminuria in patients with 
diabetic kidney disease36,38. The specific knockout of 
the VEGF gene in mouse podocytes leads to 
endothelial abnormalities and thrombotic 
microangiopathy, highlighting the importance of 
VEGF in these processes37. 

  Ang, a key vascular growth factor involved in 
vascular remodeling and stability, is widely expressed 
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in the kidney. Podocyte-derived Ang-1 interacts with 
the Tie-2 receptor on GECs, promoting endothelial 
survival. Tie-2 activation triggers Akt-dependent 
phosphorylation, inactivating forkhead box protein 
O1 (FOXO1) and suppressing gene expression linked 
to endothelial instability and apoptosis. This pathway 
supports vascular integrity, enhances cell survival, 
and promotes vascular stability. Ang-1 also exerts 
anti-inflammatory effects by inhibiting tumor necrosis 
factor-alpha (TNF-α)-induced leukocyte migration, 
suppressing damage-induced angiogenesis and 
fibrosis, and protecting glomerular capillaries from 
high blood sugar and other harmful factors39. 

ET-1, a potent vasoconstrictor peptide secreted 
by endothelial cells, mediates communication 
between podocytes and GECs. Podocyte-derived ET-1 

induces calcium influx in GECs, regulating vascular 
tone and glomerular hemodynamics. ET-1 also 
stimulates endothelial proliferation and cytokine 
production, influencing inflammation and fibrosis in 
GECs40. Additionally, endothelial-derived ET-1 
regulates podocyte function and differentiation. By 
binding to podocyte receptors, ET-1 affects podocyte 
morphology, function, and proliferation, and 
regulates extracellular matrix synthesis and secretion. 
Activation of the ETAR on podocytes triggers the 
mitogen-activated protein kinase (MAPK), 
p21waf/cip1, and nuclear factor-kappa B (NF-κB) 
pathways, disrupting the F-actin cytoskeleton and 
impairing slit diaphragm function via Rho kinase and 
phosphoinositide 3-kinase (PI3 kinase) activation41. 

 

Table 1. Summary of interaction of glomerular endothelial cell (GECs) with surrounding cells under physiological conditions 

Interaction with GECs Mediators Related Pathways or Mechanisms Physiological effects Reference(s) 
Podocyte → GECs VEGF-A VEGF-A/VEGFR2 signaling 

pathway 
Promoting endothelial cell differentiation and development, 
maintaining endothelial cell structure and function 

37 

VEGF-C VEGF-C/VEGFR3 signaling 
pathway 

Increasing fenestration density in endothelial cells, reducing 
albumin permeability 

36,38 

Ang-1 Ang-1/Tie-2 signaling pathway Maintaining vascular integrity, enhances cell survival, 
promotes vascular stability, and facilitating angiogenesis; 
Inhibiting injury-induced angiogenesis and fibrosis  

39 

ET-1 ET-1 signaling pathway Promoting endothelial cell proliferation, enhances cytokine 
production, and affecting the regulation of inflammatory 
responses and fibrosis in glomerular endothelial cells 

40 

GECs→ podocyte VEGF-A VEGF-A/VEGFR1 signaling 
pathway  
 

Protecting podocytes from apoptosis by promoting nephrin 
phosphorylation and enhancing podocin-CD2AP interaction 

36,37 

ET-1 ET-1/ETAR signaling pathway Influencing the morphology, function, and proliferation of 
podocytes; 
Regulating the synthesis and secretion of extracellular matrix 
proteins by podocytes, influencing podocyte adhesion, 
migration, and invasion 

41 

TECs→ GECs Ang-(1-7) Ang-(1-7)/Mas signaling pathway Leading to sustained activation of the klotho and Nrf2/HO-1 
signaling pathways, collectively inhibiting the aging process of 
GECs 

42,43 

VEGF-A VEGF-A/ VEGFR2 signaling 
pathway 

Promoting endothelial cell differentiation and development, 
maintaining endothelial cell structure and function 

37,44 

VEGF-C VEGF-C/VEGFR3 signaling 
pathway 

Increasing fenestration density in endothelial cells, reducing 
albumin permeability 

36,38 

GECs→ TECs IGFBPs IGF signaling pathway Producing IGFBP4, IGFBP-2, and IGFBP-3, and express mRNA 
for IGFBP-2 to IGFBP-5, regulating IGF signaling in TECs and 
influencing renal tubular function 

45 

MCs→ GECs Ang-2 Ang-2/Tie-2 signaling pathway Regulating endothelial cell proliferation 43,46 
VEGF-A VEGF-A/VEGFR2 signaling 

pathway 
Inhibiting Tie2 phosphorylation and promoting endothelial cell 
proliferation 

47,48 

GECs→ MCs PDGF-B PDGF-B/PDGFR-β signaling 
pathways 

Promoting the differentiation and development of MCs 49 

NO Nitric oxide-mediated signaling 
pathways 

Stimulating cGMP production in MCs through a 
NO-dependent pathway 

50 

Exosome 
containing 
TGF-β1 mRNA 

TGFβ1/Smad3 signaling pathways Promoting cellular proliferation and extra cellular matrix 
production 

46,51 

PECs→ GECs VEGF-A VEGF-A/VEGFR2 Inhibiting Tie2 phosphorylation and promoting endothelial cell 
proliferation 

52 

GECs→ PECs EGF EGF/EGFR Regulating cell survival, proliferation and apoptosis 53,54 

GECs: Glomerular Endothelial Cells; TECs: Tubular Epithelial Cells; MCs: Mesangial Cells; PECs: Parietal Epithelial Cells; VEGF: Vascular Endothelial Growth Factor; 
VEGFR: Vascular Endothelial Growth Factor Receptor; Ang-1: Angiopoietin-1; ET-1: Endothelin-1; ETAR: Endothelin A Receptor; IGFBPs: Insulin-like Growth Factor 
Binding Proteins; NO: Nitric Oxide; PDGF-B: platelet-derived growth factor-B; TGF-β1: Transforming growth factor Beta 1; EGF: Epidermal Growth Factor; EGFR: 
Epidermal Growth Factor Receptor; cGMP: cyclic guanosine monophosphate 
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3.2 GECs Interact with Renal Tubular 
Epithelium 

The balance between glomerular-tubular 
interactions and feedback mechanisms is essential for 
maintaining renal metabolic function. GECs are 
closely linked with tubular epithelial cells, forming a 
complex network within the renal microenvironment. 

Research has shown the significant role of the 
klotho protein in the kidney. Studies on gene-deficient 
mice reveal endothelial dysfunction, highlighting 
klotho's importance in renal homeostasis. 
Angiotensin-(1-7), a bioactive peptide produced by 
tubular epithelial cells, binds to the Mas receptor, 
activating the klotho and Nrf2/HO-1 pathways42,43. 
This mechanism helps inhibit GEC aging and 
preserves renal function. Additionally, tubular 
epithelial cells secrete VEGF, which binds to VEGFR 
on GECs, promoting endothelial differentiation and 
supporting renal microvasculature integrity44. 

Endothelial cells also influence tubular epithelial 
cells by releasing NO and various growth factors and 
regulatory proteins. For instance, insulin-like growth 
factors (IGFs) expressed by GECs regulate renal cell 
growth and function, with IGFBPs modulating IGF 
signaling in tubular epithelial cells45. 

3.3 GECs Interact with Glomerular Mesangial 
Cells (MCs)   

The strategic location of MCs within the 
glomerulus positions them as a hub for intercellular 
communication46. Ang-1 and Ang-2 are thought to 
competitively regulate GEC proliferation and 
differentiation via the Tie-2 receptor43. In models of 
mesangial proliferative glomerulonephritis (MPGN), 
co-culture studies have shown that mesangial 
cell-derived VEGF-A induces the expression of VEGF 
receptor 2 and Ang-2 in GECs, inhibiting Tie-2 
phosphorylation and modulating GEC proliferation47. 
Mesangial cells also influence GEC secretion of ET-1, 
as demonstrated in co-culture experiments, which 
show decreased mRNA and protein levels of 
endothelin-converting enzyme-1 (ECE-1)48. 

Research indicates that MC development relies 
on endothelial cell-derived PDGF-B49. Endothelial 
cells also release NO, altering cGMP levels in MCs, 
thereby impacting their structure and function50. In 
vitro studies further reveal that extracellular vesicles 
from endothelial cells are internalized by MCs, 
promoting proliferation and matrix production via 
the TGF-β1/Smad3 pathway46,51. 

3.4 GECs Interact with Glomerular Parietal 
Epithelium   

While the influence of the glomerular parietal 

epithelium on GECs is less prominent than that of 
other cell types, it still plays a role in modulating 
endothelial function. Glomerular epithelial cells, 
derived from mesenchymal cells, are located near 
GECs along the vascular lumen. Studies have shown 
that VEGF release by glomerular epithelial cells 
promotes fenestration formation and GEC 
differentiation52. Additionally, the glomerular parietal 
epithelium secretes various cytokines, hormones, and 
bioactive substances, such as aldosterone, 
vasopressin, and prostaglandins, which can influence 
GEC function56. Simultaneously, studies have also 
found that GECs can regulate the survival, 
proliferation, and apoptosis of glomerular epithelial 
cells in the glomerular wall layer through the 
epidermal growth factor (EGF)/epidermal growth 
factor receptor (EGFR) signaling pathway53,54 (Figure 
1).  

4. The factors contributing to endothelial 
injury in chronic kidney disease 
4.1 Inflammation and oxidative stress 

Chronic low-grade inflammation is common in 
CKD, triggered by unresolved kidney damage57. This 
involves activation of the innate immune system, 
including monocytes, macrophages, and 
granulocytes, leading to persistent inflammation and 
endothelial cell damage58,59. Damaged cells release 
damage-associated molecular patterns (DAMPs) and 
toxins, increasing toll-like receptor (TLR) and NALP3 
inflammasome expression in endothelial cells, which 
activates NF-κB60. This amplifies inflammation and 
increases ROS production while reducing NO 
bioavailability61,62, further damaging endothelial cells. 
Key inflammatory markers include elevated cytokines 
such as interleukin (IL)-1, IL-6, IL-18, TNF-α, 
C-reactive protein (CRP), and pentraxin-3 (PTX3), as 
well as adhesion molecules like vascular cell adhesion 
molecule-1 (VCAM-1), intercellular adhesion 
molecule-1 (ICAM-1), and monocyte chemoattractant 
protein-1 (MCP-1), all of which promote endothelial 
damage63. 

Chemokines also contribute to this damage. For 
instance, in kidney diseases such as crescentic 
glomerulonephritis and diabetic kidney disease, 
CX3CL1, produced by renal endothelial cells, interacts 
with CX3CR1 to mediate inflammation64. TNF-α, 
interleukin-1 beta (IL-1β), and lipopolysaccharides 
(LPS) stimulate CX3CL1 expression, though its role in 
CKD requires further research65. CCR6 is 
constitutively expressed in glomerular endothelial 
cells but decreases during glomerular inflammation, 
suggesting its level can indicate endothelial damage66. 
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Complement activation also plays a role in 
kidney diseases, with anaphylatoxins from 
complement activation contributing to CKD by 
activating neutrophil inflammation, indirectly 
damaging glomerular endothelial cells67,68. 

4.2 Factors Associated with Hemodynamics   

4.2.1 Blood Pressure   

Hypertension often affects the kidneys and can 
lead to CKD, exacerbated by the overactivation of the 
renin-angiotensin-aldosterone system (RAAS) and the 
sympathetic nervous system, causing sustained high 
blood flow and pressure59. Hypertension also 
contributes to cardiovascular disease by damaging 
endothelial cells69.  

Studies in hypertensive rats have shown 
impaired vasodilation, with increased sensitivity to 
vasoconstrictors such as angiotensin II and 
endothelin, and reduced NO levels, leading to 
endothelial damage70–72. Circulating endothelial 
microparticles (EMPs) are elevated in hypertensive 
patients, impairing vascular function and serving as 

early biomarkers of endothelial dysfunction73. 
Hypertension also alters endothelial progenitor cell 
numbers, gene expression, and lifespan, contributing 
to oxidative stress74. 

Research suggests a mutual influence between 
blood pressure and endothelial cells, potentially 
creating a "vicious cycle"75. For example, inhibiting 
nitric oxide synthase increases arterial pressure, 
indicating that endothelial damage affects blood 
pressure regulation76. 

4.2.2 Shear Stress   

Vascular endothelial cells respond to shear 
stress, which regulates their function. Laminar shear 
stress (LSS) in straight arteries supports endothelial 
cell growth and prevents apoptosis77,78. In contrast, 
oscillatory shear stress (OSS) in artery branches and 
curves promotes endothelial dysfunction, increases 
oxidative stress, and triggers inflammation, thereby 
raising the risk of cardiovascular disease in CKD 
patients79. 

 

 
Figure 1. Enhanced schematic illustrating the influence of diverse cellular signaling pathways on the differentiation and development of glomerular endothelium. GBM, 
Glomerular Basement Membrane; GECs, Glomerular Endothelial Cells; TECs, Tubular Epithelial Cells; MCs, Mesangial Cells; PECs, Parietal Epithelial Cells; VEGF-A, Vascular 
Endothelial Growth Factor A; VEGFR2, Vascular Endothelial Growth Factor 2 Receptor; Ang-1, Angiopoietin-1; ET-1, Endothelin-1; ETAR, Endothelin A Receptor. 
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OSS induces oxidative stress via NADPH 
oxidase, activating pro-inflammatory signals such as 
NF-κB and disrupting endothelial eNOS function77. 
Integrins interact with extracellular matrix proteins, 
activating RhoA and mitogen-activated protein 
kinases (MAPKs), which regulate endothelial cell 
proliferation, migration, and morphological 
changes80. This process leads to high cell turnover and 
replicative senescence, particularly at arterial 
bifurcations, contributing to atherosclerosis81,82. 

Low shear stress may induce endothelial 
dysfunction through the liver kinase B1 (LKB1)/ 
AMP-activated protein kinase (AMPK)/p47phox 
pathway. Studies have shown that glycocalyx 
shedding under OSS is associated with increased 
endothelial injury markers, indicating a potential 
pathway for endothelial damage83. 

4.3 Factors Related to Metabolism 

4.3.1 Glycometabolism 

Chronic hyperglycemia is the leading cause of 
diabetes-related renal microvascular complications. 
Metabolic dysregulation, increased ROS, activation of 
the polyol pathway, and the formation of advanced 
glycation end products (AGEs) contribute to early 
endothelial dysfunction84,85. Elevated glucose 
promotes oxidative stress in endothelial cells, reduces 
NO bioavailability, and inhibits sirtuin proteins and 
histone acetyltransferases, which suppress forkhead 
box O1 (FOXO1) activity and induce ROS 
generation86. 

Studies have shown that endothelial cells rely 
heavily on anaerobic glycolysis for energy87. 
However, diabetes-induced endothelial dysfunction 
involves mitochondrial defects, leading to elevated 
ROS levels and further damage88. Hyperglycemia also 
reduces telomerase activity and endothelial eNOS 
phosphorylation, thereby lowering NO 
production89,90. 

Hyperglycemia promotes vascular dysfunction 
by thinning the glycocalyx, thereby reducing its 
protective role91. Increased glycocalyx shedding and 
oxidative stress markers indicate impaired 
endothelial function92. Additionally, hyperglycemia 
induces an inflammatory environment, affecting 
ICAM, VEGF, and Notch signaling, ultimately leading 
to endothelial cell apoptosis and glycocalyx 
degradation93. 

4.3.2 Amino Acid Metabolism 

Homocysteine, a methionine metabolite, is 
associated with endothelial damage94–96, particularly 
in advanced CKD patients with 
hyperhomocysteinemia97. Elevated homocysteine 

levels stimulate hydroxyl radical production, reduce 
NO activity, and increase oxidative stress, leading to 
endothelial dysfunction98,99. Studies have shown 
higher homocysteine levels in patients with coronary 
artery disease and endothelial dysfunction100. 
Homocysteine-mediated low-density lipoprotein 
(LDL) oxidation further damages the endothelium by 
altering mitochondrial gene expression and 
promoting oxidative stress98,101. 

4.3.3 Lipid Metabolism 

CKD patients often experience lipoprotein 
metabolism disorders, characterized by abnormal 
lipid profiles and the accumulation of atherogenic 
particles102,103, which contribute to endothelial damage 
via oxidative stress and inflammation104,105. 

High-density lipoprotein (HDL) normally 
protects against LDL oxidation by ROS; however, in 
CKD, HDL’s protective functions are impaired due to 
decreased apolipoproteins and abnormal 
post-translational modifications106–108. CKD-related 
HDL dysfunction reduces eNOS activation and 
impairs endothelial repair. Moreover, paraoxonase 1 
(PON1) deficiency in CKD further diminishes HDL’s 
antioxidant capacity, exacerbating LDL oxidation and 
endothelial damage34,103,109,110. 

ATP and Energy Uptake 

Endothelial cell stability depends on energy 
metabolism, particularly ATP production. ATP 
generated by endothelial cell mitochondria regulates 
vascular tone by controlling calcium-dependent nitric 
oxide (NO)-mediated relaxation111. ATP deficiency or 
disruption of calcium influx can lead to endothelial 
dysfunction and proteinuria112–114. Studies have 
shown that ATP influences endothelial fenestrae 
stability, cytoskeleton maintenance, and cell 
connections. In CKD patients, decreased ATP levels 
result in impaired vascular tension control and 
endothelial barrier damage caused by prolonged 
ischemia and hypoxia115–118. 

5. Outcomes of Endothelial Injury in 
CKD 
5.1 Albuminuria 

Patients with cardiovascular conditions, such as 
hypertension and heart failure, often exhibit trace 
albuminuria, which signals endothelial barrier 
damage, including glycocalyx injury and endothelial 
dysfunction119. The presence of albuminuria in 
cardiovascular diseases indicates shared 
pathophysiological processes, such as endothelial 
dysfunction, chronic inflammation, and increased 
vascular leakage120. A study by Stephen L. Seliger and 
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colleagues confirmed a close association between 
microvascular endothelial dysfunction, significant 
albuminuria, and CKD, underscoring the systemic 
cardiovascular risk in these patients121. 

Early research identified a correlation between 
the prevalence of microalbuminuria and the severity 
of hypertension122,123. Sparving and colleagues first 
described the association between primary 
hypertension and microalbuminuria in 1974, noting 
that urinary albumin excretion increased with blood 
pressure but decreased when blood pressure was 
controlled124. Microalbuminuria is also associated 
with glomerular endothelial glycocalyx damage. 
Studies on rat kidneys demonstrated that albumin 
remains confined to the glomerular capillary lumen, 
indicating that the endothelial surface regulates 
albumin leakage125. In vitro studies further revealed 
that removing the glycocalyx reduces endothelial 
resistance and increases albumin flux126. 

In the early stages of diabetes, GEC dysfunction 
serves as an early marker of diabetic nephropathy. 
Elevated glucose levels induce mitochondrial 
dysfunction and increase ROS, which damage 
endothelial cells and the glomerular filtration barrier 
(GFB), leading to albuminuria85. In diabetic patients, 
increased endothelial cell surface adhesion molecules 
and selectins exacerbate injury. Research has shown 
that platelet activation via the mTORC1 pathway 
contributes to GEC damage127. 

The GFB also functions as an electrical charge 
barrier that repels negatively charged proteins, 
preventing albumin leakage. Studies have 
demonstrated that glycocalyx thinning reduces the 
charge selectivity of the GFB, resulting in 
albuminuria128,129. Increased expression of 
proteinases, such as MMP9, hyaluronidase, and 
heparanase, in diabetic patients degrades the 
endothelial glycocalyx, compromising the charge 
barrier and exacerbating albuminuria130,131. 

5.2 Edema 
Edema, the accumulation of excess fluid in 

tissues, is traditionally attributed to inadequate blood 
volume and activation of the renin-angiotensin- 
aldosterone system. However, changes in the 
endothelial filtration barrier also contribute to edema 
development132. The low-filling theory proposes that 
proteinuria and hypoalbuminemia reduce serum 
osmotic pressure, resulting in edema. Research has 
shown that, in some patients, a primary renal defect in 
sodium and water excretion increases plasma volume, 
leading to overflow edema. Clinical studies have 
identified an increased capillary filtration coefficient 
(CFC) and elevated capillary permeability as key 
factors in peripheral edema133. Tight junctions 

between endothelial cells regulate hydraulic 
conductivity, and hypoalbuminemia may enhance 
capillary permeability by promoting intracellular 
calcium influx134. 

5.3 Coagulation 
CKD patients are at higher risk of coagulation 

disorders due to the loss of coagulation inhibitors 
through excretion and increased fibrinogen 
production135–137. Endothelial dysfunction contributes 
to venous thrombosis, with uremic toxins activating 
endothelial cells to exhibit procoagulant properties138. 
Elevated levels of the endothelial injury marker 
ProET-1 and depletion of platelet granules have been 
observed in end-stage CKD139. Inflammation-driven 
immune thrombosis further exacerbates fibrin 
formation and local clotting140. 

Although CKD patients have an increased risk of 
venous thrombosis, they typically do not develop 
disseminated intravascular coagulation (DIC), as DIC 
is more commonly associated with acute illnesses, 
whereas CKD follows a chronic course141. 

6. Improving CKD by Intervening in 
Endothelial Cells 
6.1 Vascular Protective Factors  

Vascular protective factors are critical in 
managing CKD, as they enhance vascular function, 
regulate blood pressure through vasodilation, and 
reduce inflammation and oxidative stress, thereby 
protecting the endothelium and maintaining vascular 
health in CKD patients. Among these factors, nitric 
oxide (NO) plays a pivotal role. Reduced NO 
bioavailability is a hallmark of CKD progression, 
particularly in end-stage kidney disease (ESKD). This 
reduction is driven by various factors, including the 
accumulation of endogenous eNOS inhibitors, 
oxidative stress, inflammation, AGEs, disturbances in 
bone mineral metabolism (e.g., hyperphosphatemia), 
elevated FGF23 levels, and deficiencies in active 
vitamin D and Klotho. Collectively, these factors 
contribute to endothelial dysfunction142,143. 

Interventions aimed at increasing NO 
bioavailability have shown potential in improving 
endothelial function. For instance, the phosphate 
binder sevelamer has been shown to lower serum 
phosphate levels and enhance endothelium- 
dependent vasodilation in CKD stage 4 patients144,145. 
Similarly, vitamin D analogs, such as paricalcitol, 
have demonstrated therapeutic efficacy in preserving 
endothelial integrity. Research by Amanda Lima 
Deluque et al. found that paricalcitol treatment in 
ARD rats increased eNOS/NO expression, reduced 
oxidative stress, and inhibited the TGF-β1/Smad2/3 
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pathway, thereby restoring endothelial structure and 
function146–148. 

Furthermore, endothelial cell factors like soluble 
fms-like tyrosine kinase-1 (sFlt-1/sVEGFR1), a natural 
antagonist of VEGF, play a complex role in CKD. 
While sFlt-1 helps regulate VEGF activity to prevent 
excessive angiogenesis, elevated circulating sFlt-1 
levels have been associated with endothelial 
dysfunction in CKD patients and post-kidney 
transplantation. Heparin administration during 
hemodialysis can further increase sFlt-1 secretion, 
exacerbating endothelial damage. However, clinical 
evidence regarding the benefits of targeting sFlt-1 
levels to improve kidney and cardiovascular 
outcomes remains insufficient149. 

Gene Therapy 
Hypoxia-inducible factors (HIFs) regulate genes 

critical to the survival, metabolism, and angiogenic 
activity of vascular endothelial cells, playing a pivotal 
role in vascular development and diseases, including 
CKD150,151. Endothelial cell dysfunction is considered 
a key factor in the progression of AKI to CKD, with 
prolyl hydroxylases (PHD) 1-3 playing a crucial role 
in regulating kidney repair following ischemia152. 
Researchers developed a transgenic mouse model 
using Cdh5Cre (PAC)ER to induce the specific 
inactivation of PHD2 in endothelial cells, either alone 
or in combination with PHD1 and PHD3. Their 
findings highlight the multifaceted effects of the 
PHD/HIF pathway on vascular endothelial cells. 
Notably, metabolic alterations are associated with the 
upregulation of solute carrier family 16 member 3 
(SLC16A3), which encodes monocarboxylate 
transporter 4 (MCT4). This regulation selectively 
impacts the endothelial cell hypoxia-driven 
glycolysis/MCT4 axis, effectively preventing the 
progression from AKI to CKD. Furthermore, the 
study demonstrated that MCT4 inhibition could 
attenuate the inflammatory activation of endothelial 
cells and reduce interactions between monocytes and 
endothelial cells. These findings suggest that both 
gene silencing and pharmacological inhibition of 
MCT4 hold potential as therapeutic strategies for 
reprogramming endothelial cell metabolism 
comprehensively153. 

Despite the promising prospects of gene therapy, 
it faces several challenges. The high research and 
production costs, particularly for personalized gene 
editing technologies such as CRISPR-Cas9154, result in 
expensive treatments. Additionally, gene therapy 
requires customization based on patients' genetic 
characteristics, making the production process 
complex and difficult to scale up. Safety concerns are 
another significant issue, as gene editing may lead to 

off-target effects, causing unforeseen side effects such 
as cancer or other genetic disorders155. The use of viral 
vectors in gene therapy can also trigger immune 
reactions, leading to treatment failure or severe side 
effects156. Therefore, the long-term effects and 
potential risks of gene therapy require further 
investigation, particularly concerning possible 
complications following gene editing. 

6.3 Anti-Inflammatory and Antioxidant 
Therapy 

In CKD patients, inflammation markers such as 
C-reactive protein and cytokines play a pivotal role in 
endothelial dysfunction and serve as independent 
predictors of CKD prognosis157. Targeting 
inflammation presents a promising strategy for 
protecting endothelial cells. The interplay between 
inflammation and oxidative stress is profound, with 
NF-κB activation and Nrf2 imbalance contributing to 
endothelial dysfunction. Notably, IL-6, regulated via 
the NF-κB pathway, is a critical biomarker for CKD 
prognosis158. 

Patients with CKD and concurrent 
cardiovascular disease often exhibit abnormal lipid 
profiles, which exacerbate oxidative stress and 
inflammation. Statins, such as rosuvastatin, have been 
shown to significantly reduce CRP levels and lower 
cardiovascular event rates in CKD patients159. 
Omega-3 fatty acids may enhance endothelial health 
by increasing NO bioavailability, though large-scale 
clinical trials are still needed to confirm their 
efficacy142,160. Similarly, vitamin C, recognized for its 
anti-inflammatory properties, has demonstrated 
benefits in small-scale studies, including 
improvements in carotid intima-media thickness and 
flow-mediated dilation in CKD patients161. 

Nonetheless, prolonged use of anti- 
inflammatory agents in CKD patients can increase 
infection risks and potentially worsen renal function, 
as observed with NSAIDs162,163. The variability in 
CKD progression, influenced by genetic factors and 
disease stage, complicates treatment decisions. This 
underscores the importance of precision medicine 
approaches, such as genetic testing and biomarker 
analysis, to optimize therapeutic strategies164. While 
anti-inflammatory treatments show short-term 
benefits, their long-term impact on CKD progression 
remains uncertain, necessitating further 
investigation165,166. 

6.4 Blood Pressure Therapy 
Multiple antihypertensive drugs, including 

ARBs, CCBs, and ACE inhibitors, can reverse 
endothelial damage in primary hypertension by 
modulating redox states and Ang-II receptor 
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signaling167. Recent studies have also highlighted the 
role of the vasoconstrictor ET-1 in CKD-related 
endothelial damage142. 

Amlodipine, an LTCC blocker, has been shown 
to slightly improve renal function and reverse 
endothelial dysfunction, likely through enhanced 
kinin activity, NO generation, antioxidant effects, and 
free radical scavenging168–170. Elevated ET-1 levels in 
CKD patients contribute to kidney injury via ETAR 
activation, which reduces NO production, increases 
oxidative stress, and promotes inflammation171. ETAR 
antagonists, such as zibotentan, have demonstrated 
efficacy in improving renal blood flow, reducing 
proteinuria, and ameliorating NO-mediated 

endothelial function172. They may also improve 
coronary atherosclerosis, a common CKD 
complication, though more research is needed on 
their effects in this population173,174. 

Angiotensin II, similar to ET-1, causes 
endothelial damage by activating inflammatory 
pathways such as NF-κB and oxidative stress. ACE 
inhibitors, such as ramipril, have been shown to 
improve endothelial function (e.g., increased FMD) 
and reduce FGF-23 levels, a key contributor to 
endothelial dysfunction in CKD175–177. Further studies 
are needed to explore the long-term benefits of these 
therapies in CKD patients. 

 

 
Figure 2. Treatment Strategies for Endothelial Injury in CKD Currently. ECs, Endothelial Cells; Vit D, Vitamin D; Flt-1, Fms-like tyrosine kinase 1; sFlt-1, soluble Fms-like 
tyrosine kinase-1; VEGF, Vascular Endothelial Growth Factor; ROS, Reactive Oxygen Species; eNOS, Endothelial Nitric Oxide Synthase; ω-3 FA, omega-3 fatty acids; Vit C, 
Vitamin C; ACEI, Angiotensin-Converting Enzyme Inhibitors; ARB, Angiotensin II Receptor Blockers; CCB, Calcium Channel Blockers; AT1R, Angiotensin II Type 1 Receptor; 
ET-1, Endothelin-1; ETAR, Endothelin A Receptor; FGF-23, Fibroblast Growth Factor 23; GLUT, Glucose Transporter; INS, Insulin; DPP-4i, Dipeptidyl peptidase 4 inhibitors; 
GLP-1RA, Glucagon-like peptide-1 receptor agonists; SGLT2i, Sodium-Glucose Co-Transporter-2 Inhibitors; LTR, lipid transport receptor; CRP, C-reactive protein. 
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Figure 3. Integrated Mechanistic Network: Endothelial Dysregulation Pathways Converging with Cellular Interactions to Inform Therapeutic Targeting AECI, 
Angiotensin-Converting Enzyme Inhibitor; ARB, Angiotensin Receptor Blocker; CCB, Calcium Channel Blockers; ETAR, Endothelin A Receptor; ET-1, Endothelin-1; OxLDL, 
oxidized low-density lipoprotein; GLUT, Glucose Transporter; INS, Insulin; DPP-4i, Dipeptidyl peptidase 4 inhibitors; GLP-1RA, Glucagon-like peptide-1 receptor agonists; 
SGLT2i, Sodium-Glucose Co-Transporter-2 Inhibitors; sFlt-1, soluble Fms-like tyrosine kinase-1; VEGF, Vascular Endothelial Growth Factor; ROS, Reactive Oxygen Species; 
eNOS, Endothelial Nitric Oxide Synthase; ω-3 PUFA, omega-3 polyunsaturated fatty acid; ECs, Endothelial Cells. 

 
6.5 Blood Sugar-Lowering Therapy 

Type 2 diabetes (T2D) often leads to 
microvascular complications, including CKD and 
ESRD178. Several antidiabetic medications, such as 
insulin, metformin, SGLT2 inhibitors, GLP-1 receptor 
agonists, and DPP-4 inhibitors, have shown protective 
effects on vascular endothelium by reducing oxidative 
stress and inflammation. 

SGLT2 inhibitors consistently lower 
cardiovascular and renal event risks in T2D patients. 
For instance, empagliflozin improved endothelium- 
dependent vasodilation and reduced oxidative stress 
in diabetic mice after 8 weeks of treatment179,180. 
Similarly, the DEFENSE study demonstrated that 
dapagliflozin enhances endothelial function and 
glycemic control by reducing endothelial activation181. 

DPP-4 inhibitors, especially when combined 
with insulin or metformin, also improve endothelial 
dysfunction in diabetic kidney disease (DKD). 
Linagliptin, for example, regulates endothelial 
markers like PECAM1, VEGF-A, and NOS3 by 
mitigating oxidative stress, as shown in a study by 
Hasan B Awal et al.182. 

6.6 Lipid-Lowering Therapy 
Statin-based lipid-lowering therapy has been 

shown to reduce proteinuria and slow renal function 
decline in CKD. The National Kidney Foundation 
recommends that CKD patients with LDL levels ≥100 
mg/dL (2.59 mmol/L) should be managed with diet 
modifications or statins183. Statins can lower 
inflammatory markers, such as high-sensitivity 
C-reactive protein (HS-CRP), and improve endothelial 
function in high-risk cardiovascular populations184. 
Elevated total cholesterol and reduced HDL 
cholesterol are associated with an increased risk of 
CKD, and CKD patients face a higher risk of 
cardiovascular disease and mortality185,186. 

Clinical studies indicate that atorvastatin 
improves endothelial function more effectively than 
ezetimibe, likely by reducing oxidative stress and 
upregulating eNOS187. Statins may also inhibit 
endothelial-to-mesenchymal transition (EndoMT). For 
example, lovastatin has been shown to protect 
endothelial cells in diabetic nephropathy by reducing 
oxidative stress and TGF-β1 signaling188. 

However, statins may not mitigate all forms of 
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endothelial injury. For instance, indoxyl sulfate (IS), a 
uremic toxin, increases endothelial activation markers 
(e.g., ICAM-1, VCAM-1), and atorvastatin does not 
significantly counteract IS-induced damage189. Thus, 
the role of statins in improving endothelial function in 
CKD requires further investigation. 

6.7 Lifestyle Intervention 
Controlling blood pressure and blood sugar, as 

well as lifestyle changes such as maintaining a healthy 
weight and quitting smoking, can significantly 
improve endothelial health in CKD patients. 
Moderate exercise and dietary adjustments also play a 
crucial role in slowing the progression of the disease 
(Figure 2). 

7. Conclusion 
Endothelial cell behavior in CKD is influenced 

by the internal environment, including inflammatory 
mediators and intercellular signaling pathways. The 
microenvironment regulates endothelial transcription 
factors and cell differentiation, leading to endothelial 
heterogeneity. This diversity contributes to the 
complex pathogenesis of CKD (Figure 3). 
Understanding the factors that drive endothelial 
dysfunction and heterogeneity is essential for 
developing new therapeutic strategies. 
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