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Abstract 

Background: Ovarian cancer (OC) is the deadliest malignant tumor in the female reproductive system. 
Sphingolipid metabolism (SM) is crucial for cellular function and has been linked to OC progression. 
Dysregulation of sphingolipid pathways contributes to tumor growth, chemoresistance, and metastasis in 
OC. Currently, investigations into the relationship between sphingolipid-related genes (SRGs) and OC 
prognosis in their initial stages. Our study aimed to develop a novel molecular subtyping based on SRGs 
and construct a signature to predict the prognosis of patients with OC, immune cell infiltration 
characteristics, and chemotherapy sensitivity.  
Methods: Bulk and single-cell RNA-sequencing data of OC was analyzed primarily from the TCGA and 
GEO databases. The gene set related to the sphingolipid pathway (hsa00600) was selected from the SM 
pathway, and the enrichment of SRGs was analyzed in the annotated single-cell sequencing data. The 
Scanpy function was used to score the gene features of each cell and further identify differentially 
expressed genes. By intersecting with the genes most closely related to SM activity identified through 
Weighted Gene Co-expression Network Analysis (WGCNA) based on bulk RNA sequencing data, and 
after performing univariate COX, multivariate COX and LASSO regression, three SRGs were identified. 
Subsequently, the SRGs-related prognostic signature was constructed. The analysis was further extended 
to clinical feature correlation, GSEA, tumor microenvironment (TME) analysis and chemotherapy 
sensitivity analysis. Finally, the expression and function of the key gene GBP5 in the model were validated 
through in vitro experiments. 
Results: Compared to other sites, SRG scores were highest in ascites, and among different cell types, 
SRG scores were highest in T cells. By integrating scRNA-seq and bulk RNA-seq analysis, three SRGs 
(C5AR1, GBP5, and MARCHF3) were ultimately selected to develop a prognostic model for SRGs. In this 
model, patients with higher risk scores had shorter overall survival, which was validated in the testing 
cohort. Immune infiltration analysis revealed that the risk score was negatively correlated with the 
abundance of CD8+ T cell infiltration and positively correlated with the abundance of M2 macrophage 
infiltration. Chemotherapy sensitivity analysis showed that the high-risk group exhibited increased 
resistance to Oxaliplatin, Gemcitabine, and Sorafenib. In vitro, we demonstrated that knockdown of the 
protective gene GBP5 in HEYA8 and SKOV3 cells enhanced cell viability, proliferation, and invasiveness, 
reduced apoptosis, and increased IC50 values for chemotherapy drugs. 

 
Ivyspring  

International Publisher 



Int. J. Med. Sci. 2025, Vol. 22 

 
https://www.medsci.org 

1959 

Conclusion: Our model effectively identifies high-risk patients and provides a reference for prognosis 
prediction using SRG signature. Moreover, hub gene GBP5 acts as a tumor inhibitory factor and regulates 
the chemosensitivity of oxaliplatin, gemcitabine, and sorafenib in OC. 

Keywords: Ovarian cancer; Sphingolipid metabolism; Immune infiltration; Chemotherapy drug sensitivity; GBP5 

Introduction 
Ovarian cancer (OC) remains the most lethal 

gynaecological malignancy with 314 000 cases and 
207 000 deaths annually worldwide (1). Epithelial OC 
(EOC), comprising 90% of cases, is often diagnosed at 
advanced stages due to nonspecific early symptoms, 
leading to widespread chemoresistance in recurrent 
disease (2). While molecular therapies and 
immunotherapy have improved outcomes for some 
advanced EOC patients (3), treatment efficacy 
remains limited by tumor heterogeneity and an 
immunosuppressive microenvironment (4). 
Consequently, this underscores the urgent need for 
biomarkers that stratify patients by risk and guide 
personalized therapies. 

Sphingolipids are biologically active lipids with 
a sphingoid backbone that maintain the barrier 
function and fluidity of cell membranes (5). 
Sphingolipid metabolism (SM) is increasingly 
recognised as a master regulator of oncogenic 
processes. Central to its function is the enzymatic 
regulation of the ceramide (Cer)-sphingosine-1- 
phosphate (S1P) rheostat — a biochemical switch 
governing cellular apoptosis versus survival (6,7). 
This balance is profoundly disrupted in ovarian 
malignancies, where SM dysregulation has been 
mechanistically linked to ascites-driven metastasis 
and platinum resistance through PD-L1-enriched 
extracellular vesicle signalling (13,14). Elevated 
Cer/S1P ratios in patient ascites and plasma are 
strongly associated with advanced disease (9,14), 
whilst longitudinal cohort data further suggest that 
elevated levels of circulating SMs 3 to 23 years prior to 
diagnosis were associated with an increased risk of 
ovarian cancer, with the correlation being particularly 
pronounced in postmenopausal women (9). Despite 
mounting evidence implicating sphingolipid 
dysregulation in ovarian cancer progression, the 
clinical translation of sphingolipid-related gene (SRG) 
signatures remains hindered by two unresolved 
questions: first, the uncharacterised prognostic value 
of SRG profiles in patient stratification, and second, 
the poorly defined mechanistic interplay between 
SRG-driven tumour microenvironment remodelling 
and emergent chemoresistance phenotypes. 

In this study, we hypothesize that SRGs-based 
molecular subtyping can predict OC outcomes and 
uncover TME-driven therapeutic vulnerabilities. To 
address these gaps, we integrated single-cell and bulk 

RNA sequencing from TCGA and GEO databases to: 
(i) Identify SRGs driving SM pathway dysregulation 
in OC; (ii) Construct a prognostic signature validated 
across independent cohorts; (iii) Conduct drug 
sensitivity analyses and examined changes in immune 
infiltration through cluster analysis; (iv) Functionally 
validate key SRGs in vitro. This study pioneers a 
systematic framework to bridge SM biology with 
clinical translation in OC management. 

To sum up, our findings establish the first 
multi-omics-derived SRGs framework for OC risk 
stratification and therapy personalization. 

Methods 
Bulk RNAseq data collection 

To explore the fundamental molecular drivers of 
chemoresistance in ovarian cancer, we gathered bulk 
RNA-seq data alongside clinical profiles of high-grade 
serous ovarian cancer (HGSOC) patients sourced 
from TCGA (https://portal.gdc.cancer.gov/). 
Patients lacking essential clinical pathological details 
or overall survival (OS) data were systematically 
excluded from our study. Employing the 'limma' 
package effectively minimized potential batch effects. 
Additionally, for robust external validation, matrix 
files from GSE26712 (n=185, Platform = GPL96), 
GSE32062 (n = 260, Platform = GPL6480), and 
GSE14764 (n=80, Platform = GPL96) were obtained 
from the GEO database (https://www 
.ncbi.nlm.nih.gov/geo/), providing diverse and 
independent datasets enriched with comprehensive 
clinical and survival metrics. 

Single-cell RNAseq data acquired and 
processing 

The single-cell dataset GSE180661 of  OC was 
retrieved from the CELLXGENE database, comprising 
156 samples collected from 41 patients diagnosed 
with HGSOC. These samples originated from 
multi-site tissues obtained during pre-treatment 
laparoscopy or primary debulking surgeries. 
Specifically, the dataset includes untreated samples 
encompassing primary adnexal tumors (ovary and 
fallopian tube), metastatic sites (omentum, bowel, 
pelvic peritoneum, upper quadrants), and ascites. 
Quality control of the single-cell RNA sequencing 
(scRNA-seq) data was conducted using the 'scanpy' 
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Python package, resulting in a normalized and scaled 
gene-by-cell matrix for each sample. Cells included 
for subsequent analysis exhibited expression of at 
least 500 genes and 1,000 unique molecular identifier 
(UMI) counts, while maintaining mitochondrial gene 
expression below 25%. Cell cycle phase assignment 
utilized the Seurat CellCycleScoring function, with 
Scrublet (version 0.2.1) employed to identify and 
exclude cells with a doublet score exceeding 0.25. 
Patient-level sample matrices were merged and 
subsequently re-normalized and scaled using default 
Seurat functions, resulting in a total of 929,690 eligible 
cells for further investigation. Principal component 
analysis (PCA) was applied to the filtered 
feature-by-barcode matrix, with uniform manifold 
approximation and projection (UMAP) embeddings 
generated based on the first 50 principal components, 
encompassing cohort-level and patient-level 
embeddings for major cell types. UMAP embeddings 
of major cell type supersets were constructed based 
on 50 batch-corrected harmony components, with six 
distinct supersets identified: (1) T cells; (2) B cells and 
plasma cells; (3) myeloid cells, dendritic cells (DCs), 
and mast cells; (4) fibroblasts; (5) endothelial cells; and 
(6) ovarian cancer cells. Batch correction using the R 
package harmony (version 0.1) was applied to each 
superset to mitigate patient-specific effects, ensuring 
robust downstream analyses. 

The acquisition of sphingolipid-related genes 
The gene set related to the sphingolipid pathway 

was curated from the Sphingolipid metabolism 
pathway (hsa00600), based on the KEGG pathway 
database. 

Expression signature analysis 
To determine the enrichment of sphingolipid- 

related genes in the single-cell dataset, we used the 
Scanpy function scanpy.tl.score_genes() to score the 
gene signature for each cell. 

Single sample gene set enrichment analysis 
To calculate the precise score of a gene set 

enriched in a sample, the ssGSEA function of “gsva” R 
package was utilised. In this study, ssGSEA analysis 
was used to determine the SM scores for each 
TCGA-OV patient. 

Weighted co-expression network analysis 
The 'WGCNA' package within the R 

environment was employed to execute the Weighted 
Gene Co-expression Network Analysis (WGCNA), a 
systems biology methodology utilized for the 
construction of the TCGA-OV gene co-expression 
network. Leveraging the interconnectedness among 

gene sets and their correlation with phenotypic 
attributes, WGCNA facilitated the detection of gene 
sets exhibiting high covariance and offers insights into 
potential biomarker genes or therapeutic targets. This 
study utilized WGCNA to delineate gene modules 
linked to the SRGs score in OC and to pinpoint the 
corresponding associated genes. 

Risk signature associated with sphingolipid 
metabolism 

Initially, a univariate Cox analysis was 
employed to identify sphingolipid-related genes 
(SRGs) with prognostic significance. Subsequently, a 
prognostic model was constructed through Lasso 
regression to refine the selection of prognostic SRGs. 
Subsequent to model construction, each ovarian 
cancer case was assigned a risk score utilizing the 
developed algorithm. Utilizing the median risk score 
as a threshold, patients within the TCGA-OV cohort 
were stratified into high-risk and low-risk categories. 
Subsequent, to evaluate the impact of clinical features 
and risk scores on prognosis, multivariate analysis 
(including race, age, and pathological stage) was 
conducted for each risk group. Then, the results were 
represented and quantified using a column chart, 
which calculated the survival probabilities of OC 
patients at 1, 3, and 5 years. Use decision curve 
analysis (DCA) to determine overall clinical benefits, 
which compares the net benefits provided by risk 
scores and clinical features. 

Immune infiltration analysis 
We conducted an investigation into the 

correlation between prognostic models and tumor 
immunity alongside immunotherapy. The extent of 
immune infiltration among OC patients within the 
TCGA database was ascertained utilizing the TIMER 
2.0 database, which encompasses outcomes from 
seven distinct evaluation methodologies. Heatmaps 
were subsequently generated to depict the relative 
proportions of immune cell infiltration within the 
tumor microenvironment (TME) based on these data. 
Following this, single-sample Gene Set Enrichment 
Analysis (ssGSEA) was performed on genes within 
the prognostic risk assessment model utilizing the R 
package GSEABase, focusing on immune-related 
properties. Utilizing the "estimate" R package, users 
were able to discern the relative abundance of stromal 
cells, immune cells, and tumor cells, thereby 
facilitating comparisons across different risk strata. 

Mutation landscape and drug sensitivity 
analysis 

The "maftools" software was employed to derive 
the genetic mutation profiles of OC patients sourced 
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from the TCGA database. Subsequently, the 
comprehensive genetic mutation datasets were 
integrated with the risk score. Moreover, the 
half-maximal inhibitory concentrations (IC50) of 
prevalent chemotherapeutic agents were computed 
utilizing the calcPhenotype function of "oncoPredict" 
R package enabling the investigation of the 
association between the risk score and drug 
responsiveness. The IC50 values were juxtaposed 
between the distinct risk cohorts through Wilcoxon 
signed-rank tests. 

Online database analysis 
The association between GBP5 gene expression 

and overall survival (OS) and staging of ovarian 
cancer was analyzed using the Gene Expression 
Profiting Interactive Analysis (GEPIA) database, 
which includes TCGA and GTEx samples (13). 

Cells and cell culture 
A human normal ovarian epithelial cell line 

(IOSE-80) and ovarian cancer cell lines (A2780, 
OVCAR8, SKOV3, HEYA8 and CAOV3) were 
purchased from EK-Bioscience (Shanghai, China). 
These cell lines are all derived from epithelial tissue 
and have been studied within the sphingolipid 
metabolism pathway (Table S3). A2780 OVCAR8 cells 
were maintained in RPMI 1640 (Hyclone, Cytiva, UT, 
USA) supplemented with 10% fetal bovine serum 
(FBS) at 5% CO2 at 37°C. SKOV3 was cultured in 
McCoy's 5a (Hyclone, Cytiva, UT, USA) medium and 
10% FBS. HEYA8 and CAOV3 were cultured in 
DMEM medium (Hyclone, Cytiva, UT, USA) and 10% 
FBS. OVCAR3 were cultured in 1640 medium 
(Hyclone, Cytiva, UT, USA), 10% FBS and 0.01mg/ml 
insulin (Beyotime, Shanghai, China). 

Immunohistochemistry (IHC) 
Tissue samples from 10 cases of early-stage (I-II) 

and late-stage (III-IV) ovarian tumours were collected 
from the Gynaecologic Oncology Department of the 
First Affiliated Hospital of the University of Science 
and Technology of China (West District). The tumour 
samples were classified as high-grade serous ovarian 
cancer by experienced pathologists and staged by 
gynaecologic oncology specialists. None of the 
patients had received any treatment prior to surgery 
and all signed informed consent forms. All tissues 
were frozen in liquid nitrogen within 30 minutes after 
resection and stored at -80 °C. Tumor tissues were 
fixed in 10% formalin, embedded in paraffin, and 
sectioned into 4-6 µM sections. After 
deparaffinization, rehydration, and microwave 
antigen retrieval, slides were incubated with GBP5 
antibody (1:500, Proteintech, China). This study was 

approved by the First Affiliated Hospital of the 
University of Science and Technology of China (West 
District) (2023-FLK-01). 

Reverse transcription quantitative PCR assay 
(RT-qPCR) 

Total RNA was extracted from cells or plasma 
using TRIZOL reagent (Invitrogen, Waltham, MA, 
USA). The RNA was reverse transcribed into cDNA 
using a PrimeScript RT Reagent Kit (Beyotime, 
Shanghai, China). qPCR was performed using SYBR 
Green qPCR Master Mix (Beyotime, Shanghai, China) 
on a ftc-3000p PCR instrument (fungyn biotechinc, 
Canada). cDNA was synthesized from total RNA 
(500ng) at 48°C for 30 min and 95°C for 10 min. cDNA 
(1 μg) was subjected to polymerase chain reaction 
(PCR) for 45 cycles of 94°C for 45 seconds, 56°C for 30 
seconds, and 72°C for 30 seconds. Primers were 
synthesized by RiboBio (Guangzhou, China). Primer 
sequences were as follows (5′→ 3′): GBP5 forward: 
CTGTCTGCCATTACGCAACCTG, GBP5 reverse: 
GTGTGAGACTGCACCGTAGATG, GAPDH 
forward: GAACGGGAAGCTCACTGG, GAPDH 
reverse: GCCTGCTTCACCACCTTCT. 

RNA interference 
SiRNA against OLFML1 was provided by 

GeneAdv (Suzhou, China). Si-NC was used as a 
negative control. Transfection was performed with 
GA-RNA Transfection Kit (GeneAdv, China) 
according to the manufacturer's instructions. The 
siRNA sequences as follows: 

 

Table 1. siRNA sequences. 

siRNA ID Sense Strand (5'→3') Antisense Strand (3'→5') 
si NC UUCUCCGAACGUGUCACGU GUGACACGUUCGGAGAATT 
si GBP5#1 GCAGCACCUUUGUGUACAA GCAGCACCUUUGUGUACAA 
si GBP5#2 CUAUCGACCUACUGCACAA UUGUGCAGUAGGUCGAUAG 
si GBP5#3 GGUCAAUGGAUCUCGUCUA UAGACGAGAUCCAUUGACC 

 

Western blot analysis 
The proteins were quantified by the BCA Protein 

Assay Kit (Beyotime, Shanghai, China). The Western 
blotting was performed according to the standard 
protocol using GBP5 antibody (1:2000, Proteintech, 
China) and GAPDH antibody (1: 10000, Protintech, 
China) and blots was detected using the ECL assay kit 
(Thermo Scientific, Waltham, MA, USA). 

Cell counting kit-8 (CCK-8) assay 
The Cell Counting Kit-8 (CCK-8; BestBio, 

Nanjing, China) was used to detect cell proliferation. 
We seeded the cells in 96-well plates at 2×103 cells per 
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well. The plate was then incubated with 10 ml CCK-8 
labeling reagent (A311-01, Vazyme, Nanjing, China) 
per well for 2 hours in the dark at 37 ° C. The 
absorbance of the cells was measured at 450 nm 
wavelength with the enzyme-labeled meter (A33978, 
Thermo, USA) to analyse the viability of the cells. It 
was detected for 0, 24, 48, 72 and 96 hours. For drug 
sensitivity testing, the sensitivity of the above drugs 
was evaluated by treating oxaliplatin, gemcitabine, 
and sorafenib in a 96 well plate for 48 hours before 
adding CCK-8 solution. 

Colony formation 
We transfected 1000 cells and kept them in 6-well 

plates for approximately 14 days. Two weeks later, we 
saw the cell clones with the naked eye. Next, the cells 
were rinsed and fixed for 15 minutes in 4% 
paraformaldehyde (Biosharp, China). Crystal violet 
(Beyotime, China) staining was performed for 20 
minutes, dried at room temperature, and counted per 
well. 

Transwell assay 
Migration and invasion assays were performed 

using Corning 24 well inserts with or without 
Matrigel (BD Biosciences, USA). 1×105 cells without 
FBS were seeded into the upper part of the chamber 
while medium plus 10% FBS was loaded to the lower 
side. The migrated and invased cells were fixed, 
stained, and then counted after 24 h or 48 h. The cells 
were fixed with 4% paraformaldehyde (Biosharp, 
China), stained with 0.1% crystal violet (Beyotime, 
China), and counted under a light microscope. 

Wound healing assay 
1.5×105 cells were seeded in a 24 well plate. After 

the cells were cultured to 80–90% confluence, they 
were replaced with serum-free medium and 
incubated for 8 h. Scratches were made using a sterile 
pipette tip. The cell healing was regularly observed.  

Apoptosis analysis 
To study apoptosis, an Annexin V-FITC/PI 

(MULTI SCIENCES, China) kit was used. After 
washing the tumor cells with PBS twice, 1×106 cells 
were suspended in 500 μL 1× binding buffer and 
incubated in the dark with 5 μL Annexin V-FITC for 
10 min then 10 μL PI was added for 5 min. 
Immediately measured by flow cytometry 
(LSRFortessa, BD Biosciences, USA), and 10,000 
signals were collected from each sample. FlowJo 
software was used for further analysis. 

Statistical analysis  
All analyses were executed through R (version 

4.1.2), GraphPad Prism (version 8.0), and FlowJo 
(version 10.7.2). All experimental data were presented 
as means ± standard deviation (SD). P-value < 0.05 
was considered significant. 

Results 
Research process and single-cell sequencing 
data analysis 

The flowchart of this work is shown in graphical 
abstract. Firstly, our study centres on the enrichment 
of sphingolipid metabolism at the single-cell level. 
After rigorous quality control and sample integration, 
we retained multi-site tissue biopsy samples (n=160) 
from 42 patients with newly diagnosed OC. Cells 
retained for analysis had a minimum of 500 expressed 
genes and 1,000 UMI counts and had less than 25% 
mitochondrial gene expression, ensuring there were 
no discernible batch effects. Major cell type 
assignments were computed for each patient with 
CellAssign (version 0.99.2) using a set of curated 
marker genes (14). Drawing on the expression of cell 
type marker genes from prior research conducted by 
Vázquez-García et al., we classified these clusters into 
ten distinct cell types, including B cells, dendritic cells, 
endothelial cells, fibroblasts, macrophages, 
monocytes, epithelial cells, stromal cells, T cells, and 
other cells (Figure 1A) (15). Subsequently, we 
illustrated that the anatomical sites of sample 
collection primarily originated from the adnexal 
region (encompassing both the left and right ovaries), 
non-adnexal regions (such as the omentum, 
peritoneum, intestine and other internal abdominal 
sites), and ascites (Figure 1B). We further evaluated 
the scores of SRGs and discovered that T cells 
exhibited higher scores. This may suggest that 
abnormalities in sphingolipid metabolism within T 
cells are particularly pronounced in the ovarian 
cancer tumour microenvironment. High SRGs scores 
could potentially disrupt antitumour immune 
responses by modulating T cell activity (16) (Figure 
1A-D). Interestingly, the activity of SRGs in ascites 
was significantly increased (P<2.2e-16), indicating 
that we can more sensitively detect the level of 
sphingolipid metabolism by collecting ascites from 
ovarian cancer patients (Figure 1E). 

Weighted co-expression network analysis 
(WGCNA) 

Subsequently, we aim to uncover potential gene 
modules that are significantly linked to sphingolipid 
metabolism. By leveraging the power of WGCNA, we 
can explore the intricate reltionships between genes 
and their regulatory networks, which may provide 
insights into the biological processes underlying 



Int. J. Med. Sci. 2025, Vol. 22 

 
https://www.medsci.org 

1963 

sphingolipid metabolism. When the soft threshold 
value is set to 9, the data demonstrates heterogeneity 
in relation to power-law distribution, with the 
average connectivity tending to stabilize (Figure 2A). 
After merging modules with similarity below 0.25 and 
setting the minimum number of modules to 100 and 
deepSplit to 2, 12 non-gray modules were generated 
(Figure 2B). Among them, MEblue (COR=0.37, 
P<2.2e-31) and MEbrown module (COR=0.36, 
P<4.3e-25) are closely related to SRGs, among which 
MEblue contains 922 genes and MEbrown contains 
777 genes are correlated with SRGs (Figure 2C-D). 
Therefore, we selected a total of 1699 genes from the 
two modules mentioned above for further analysis 
(Table S1). 

Construction and validation of sphingolipid 
related prognostic model 

To further explore the relationship between 
SRGs and the prognosis of OC patients, differentially 
expressed genes (calculated by categorizing tumor 

cells into high-expression and low-expression SRG 
groups, with genes defined as upregulated if p < 0.01 
and Log2FoldChange > 0, totaling 620 genes) 
identified through single-cell analysis were 
intersected with the 1,340 genes most strongly 
associated with sphingolipid metabolism activity 
obtained from WGCNA. Ultimately, 359 overlapping 
genes were selected for subsequent analysis (Figure 
3A) (Table S1-3). A univariate Cox regression analysis 
was performed to identify prognostic genes linked to 
sphingolipid metabolism. Subsequently, LASSO 
regression analysis was utilised for dimensionality 
reduction (Figure 3B-C). A prognostic risk evaluation 
model based solely on 11 SRGs was constructed using 
the optimal penalty parameter (λ) derived from the 
aforementioned 24 SRGs in the training group. A 
multivariate Cox regression analysis identified three 
genes for model construction: C5AR1, GBP5, and 
MARCHF3 (Fig. 3D). We summarized the currently 
available studies in OC for the three differential genes 
mentioned above (Table 2). The study used the 

 

 
Figure 1. Annotation of cell subsets and identification of differentially expressed genes. (A) The results of the dimension reduction cluster analysis are shown in the UMAP 
diagram. Cells were annotated into 10 different types of cells. (B-D) All cells were scored according to sphingolipid-associated genes (SRGs) and were divided into high and low 
groups. (E) Analyzing the expression differences of genes related to sphingolipid metabolism in different tissue sources, the results showed that in ascites, genes related to 
sphingolipid metabolism were significantly higher than those in the attachment and non-attachment regions, P<2.2e-16. 
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𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠 = ∑ (𝐶𝐶𝑠𝑠𝑠𝑠𝐶𝐶𝑖𝑖𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖)𝑛𝑛=𝑖𝑖𝑖𝑖  formula to construct a 
prognostic model, Coefi and Expi represented the 
coefficient and expression of each model gene, 
respectively, and the risk score for each sample was 
calculated by the above formula. Calculate the risk 
score of sphingolipid metabolism for each patient 
based on the expression of three genes, and divide 
them into high and low risk groups according to the 
median. Of the three genes used to construct the 
model, two were risk factors and one was protective 
factors (Figure 3D). In the TCGA-OV and GSE26712 
cohorts, Kaplan Meier survival curves showed that 
patients in the high-risk group had significantly 
poorer prognosis compared to the low-risk group 
(P<0.001) (Figure 3G-H). Unfortunately, there was no 
significant difference in overall survival between the 
two groups in the GSE32062 cohort (P=0.0629) (Figure 
3I). Furthermore, the ROC curves indicate that this 
model demonstrates commendable AUC values in 
both cohorts, with the TCGA-OV cohort recording 
AUCs of 0.674 at 1 year, 0.634 at 2 years, and 0.716 at 5 
years (Figure 3G). In the GSE26712 cohort, the AUCs 
are 0.663 at 1 year, 0.635 at 2 years, and 0.685 at 5 years 
(Figure 3G). These findings suggest that the 
sphingolipid-related prognostic model possesses 
impressive accuracy in predicting the outcomes for 
ovarian cancer patients. 

 

Table 2. The discovered functions and prognostic value of three 
differentially expressed SRG related genes in ovarian cancer.  

Gene Gene name Functions in OC Reference 
C5AR1 Complement 

Component 5 Receptor 
1 

High expression indicates poor 
prognosis and facilitates the 
infiltration of Tregs and M2 
macrophages, leading to the 
formation of an 
immunosuppressive tumor 
microenvironment. 

(26,27) 

MARCHF3 Membrane-Associated 
RING Finger Protein 3 

None  None 

GBP5 Guanine 
Nucleotide-Binding 
Protein 5  

Inducing cell pyroptosis through 
the JAK2-STAT1 signaling 
pathway and enhancing 
polarization of M1 macrophages 
in the tumor microenvironment. 

(31) 

 

Diagnostic nomogram model establishment  
To assess the potential clinical utility of 

prognostic features, a nomogram was developed 
based on the patients' clinical characteristics 
(including age and FIGO stage) as well as risk factors 
(Figure 4A). This nomogram could help more 
accurately determine the risk for ovarian cancer 
patients, ultimately providing valuable insights for 
future treatment decisions and improvements. The 
nomogram can help determine patient risk more 
accurately and direct future treatment decisions. The 
calibration plot is used to testify that the nomogram is 

consistent with our prediction, which showed good 
agreement with the actual outcome (Figure 4B). A 
heatmap was also generated showing the correlation 
between risk score prognostic features and clinical 
disease characteristics. According to the heatmap, the 
risk score presented is positively correlated with 
clinical staging (P<0.05, Figure 4B), while no statistical 
differences were found between other clinical features 
such as age and race. Then compare the distribution 
of various clinical features in each group and display 
it in a bar chart (Figure 4D-F). 

Mutation landscape analysis 
To determine the differences in cancer-related 

gene mutations between high-risk and low-risk 
groups, we counted the gene mutations in each group. 
The general information of two representative gene 
mutations is shown in Figure 5A, among which the 
most common mutation type was a missense 
mutation. The top 3 most frequent mutant genes were 
TP53, TTN, and MUC16 (Figure 5A). We also 
examined representative gene variants in the groups 
at high and low risk (Figure 5B) and further plotted 
the mutation landscape (Figure 5C). Genessuch as 
FLG, EFCAB6, GPR98, LAMA2, PLXNA4 and USP34 
had the top six mutation frequencies in the high-risk 
group. The top three genes with the highest mutation 
frequencies in the low-risk group were CENPF, NF1 
and PLCH1 respectively. Furthermore, we examined 
the mutation symbiosis of the top 25 genes and 
discovered that PIK3CA and NEB, MAP3K1, KMT2C, 
GATA3, CDH1, and TP53 all shared a mutation 
symbiosis (P<0.05, Figure 5C-E). Unfortunately, there 
was no significant difference in tumor mutation 
burden (TMB) between the high and low-risk groups 
(P=0.25) (Figure 5F). 

Pathway enrichment analysis 
To begin with, we constructed a volcano plot to 

delineate the differential genes between the high-risk 
and low-risk groups (Figure 6A) (Table S2). 
Furthermore, we conducted KEGG enrichment 
analysis on the differential genes from each group to 
investigate the potential functions of sphingolipid 
metabolism-related genes. The findings revealed that 
SRGs-high may be implicated in the regulation of 
transmembrane receptor protein serine/threonine 
kinase signaling pathways and the development of 
the vascular system, whereas SRGs-low appears to be 
associated with the positive regulation of fluid 
immune responses, T cell migration and chemotaxis 
(Figure 6B-C). In addition, we performed GSEA 
analysis to identify the most significantly enriched 
pathways distinguishing the two groups. Our 
analysis indicated that genes within the high-risk 
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group were markedly enriched in extracellular 
matrix-receptor interactions and the complement and 
coagulation cascades signaling pathways (Figure 6D). 
Conversely, genes in the low-risk group exhibited 

significant enrichment in cytoplasmic translation and 
the biogenesis of ribosomal small subunits (Figure 
6E). 

 

 
Figure 2. WGCNA analysis. (A-D) Weighted co-expression network analysis searched for the modules most associated with SM activity. 
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Figure 3. Construction and validation of sphingolipid-related prognostic model. The intersection of genes obtained in single-cell analysis and bulk-RNA analysis. (B)Genes 
significantly associated with prognosis after univariate regression. (C, D) Model genes and coefficients identified by Lasso regression and multivariate analysis. (E) Kaplan-Meier 
prognostic analysis of signatures in the TCGA-OV and GSE26712 cohorts. (F) The ROC curve was employed to assess the performance of the model in the training cohorts 
TCGA-OV, GSE26712, GSE32062.  
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Figure 4. The Construction of a nomogram. (A) Nomogram to assess the risk of OC patients. (B) Calibration curves for 3- and 5-year specific survival rates. (C) Heat map 
incorporating clinical data, model genes. (D-F) The proportion of multiple clinical features between high-risk and low-risk groups: * P < 0.05. 

 
Immune landscape and analysis of drug 
sensitivity 

Tumor growth is severely affected by the tumor 
microenvironment, and due to the complexity of the 
immune microenvironment, OC is classified as a "cold 
tumor". Exploring the immune microenvironment 
landscape of high-risk and low-risk patients with 
SRGs may reveal potential mechanisms underlying 
survival differences between the two groups of 
patients. We used the CIBERSORT R script and 
analyzed using seven different algorithms to 
determine the degree of immune cell infiltration in 
each sample (Figure 7A). The results showed that the 
low-risk group tended to have increased infiltration of 
B cells, M1 macrophages, and CD8(+) T cells, 
compared to the high-risk group, which had increased 
infiltration of monocytes, M2 macrophages, and 
neutrophils (Figure 7B-M). Previous studies have 
shown that M2 macrophages accelerate the 
progression and metastasis of OC, while in contrast, 

high infiltration of M0 and M1 macrophages is 
associated with improved prognosis and therapeutic 
efficacy (17). In addition, Due to changes in certain 
gene levels of sphingolipid metabolism that may 
affect the effectiveness of chemotherapy, we further 
compared the differences in chemotherapy drug 
sensitivity between the two groups. We found that the 
IC50 values of Oxaliplatin, Gemcitabine, and 
Sorafenib (Figure 8N-P) were lower in the SRGs low 
group of patients, and these drugs may be candidate 
drugs for treating low-risk populations in clinical 
practice. 

The expression of key genes and the effect of 
knocking out GBP5 on cell proliferation 

The UMAP plots illustrate the distribution of 
two genes, C5AR1 and MARCHF3, in the high 
sphingolipid metabolism scoring group, as well as the 
gene GBP5 in the low scoring group (Figure 8A-C). 
Referring to the cell subtype annotation results in Fig. 
1B, C5AR1 exhibits a significant increase in expression 
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within monocytes, while MARCHF3 is predominantly 
expressed in monocytes, fibroblasts, and T cells. 
Notably, GBP5 shows markedly elevated expression 
in both monocytes and T cells. Our attention was 
particularly drawn to GBP5, prompting us to utilise 
an online database (http://gepia.cancer-pku.cn/) to 

explore the correlation between GBP5 expression 
levels and survival outcomes in OC patients. The 
results indicated that patients with high GBP5 
expression experience significantly prolonged OS 
(Figure 8D).   

 

 
Figure 5. Landscape of OC sample mutation profiles. (A) Description of the statistical measurement mutation details, among which the most common mutation type was a 
missense mutation. SNP occupied an absolute proportion compared with insertion or deletion, and C>T occurred more frequently than in other classifications of forms. (B-C) 
Comparison of mutated genes and mutation landscape between high and low risk groups. (D) Forest map of mutated genes in different risk groups. (E) Co-mutation or 
co-exclusion relationships among model genes of the top 25 genes. (F) Comparison of TMB between different risk groups. 
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Subsequently, we found that early-stage (Stage 
I-II) OC patients exhibited significantly higher GBP5 
expression levels compared to those with late-stage 
(Stage III-IV) ovarian cancer. Moreover, early-stage 
patients also demonstrated superior 
immunohistochemical scores relative to their 
late-stage counterparts (Figure 8E-G). We assessed 
GBP5 expression across several ovarian cancer cell 
lines compared to the normal ovarian epithelial cell 
line IOSE80 using RT-qPCR, revealing that GBP5 is 
relatively upregulated in the SKOV3 and HEYA8 cell 
lines (Figure 8H). Consequently, we conducted gene 
knockout of GBP5 using siRNA in these two cell lines. 
When compared to the si control group, GBP5 levels 
in SKOV3 and HEYA8 cells transfected with si 

GBP5#1 and si GBP5#2 were significantly suppressed 
at both the mRNA and protein levels (P<0.05) (Figure 
8I-K). To further elucidate the impact of GBP5 on 
ovarian cancer phenotypes, we evaluated cell viability 
using the CCK8 assay. The results indicated that the 
absorbance values of GBP5 knockdown cell lines were 
higher than those of the control group. In contrast, the 
absorbance of the si-GBP5 transfected cell lines 
exceeded that of the control group (Figure 8A, 8E). In 
colony formation assays, both GBP5 knockdown cell 
lines demonstrated an increase in the number and 
volume of colonies formed compared to the control 
group (P<0.05), suggesting that GBP5 plays a role in 
suppressing ovarian cancer cell proliferation (Figure 
8L-N). 

 
 
 

 
Figure 6. DEGs and pathway enrichment analysis. (A) Volcanic diagram of differentially expressed genes related to sphingolipid metabolism. (B-C) KEGG enrichment analysis of 
SRGs high and SRGs low. (D-E) GSEA studies of the biological processes and pathways enriched in SRGs high and SRGs low populations. 
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Figure 7. Immune infiltration and analysis of drug sensitivity. (A) There were significant differences in N stage, T stage, total stage, and survival between high and low-risk groups. 
(B) The age difference of patients between high and low-risk groups. (C) M stage difference of patients between high and low-risk groups. (D) N stage difference of patients 
between high and low-risk groups. (E) Total stage difference of patients between high and low-risk groups. (F–I) Potential drug screening in high-risk patients. 
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Figure 8. The expression of GBP5 in tissue samples and the verification of its knockdown in OC cell lines. (A-C) UMAP of key genes (C5AR1, MARCHF3, GBP5) with molecular 
characteristics related to sphingolipid metabolism in ovarian cancer. (D) Exploring the prognostic value of GBP5 expression in ovarian cancer using the GEPIA database 
(http://gepia.cancer-pku.cn/). (E) Exploring the value of GBP5 expression in clinical staging of ovarian cancer using GEPIA database (http://gepia.cancer-pku.cn/). (F-G) 
Immunohistochemistry (IHC) stain of GBP5 in clinical samples. (H) Expression of GBP5 gene in ovarian cancer cell lines. (I-K) Verification of the Knockdown Effect of GBP5 in 
SKOV3 and HEYA8 cell lines. (L-M) Cloning experiments after knocking down GBP5 in SKOV3 and HEYA8 cell lines. (N) CCK8 proliferation experiment after knocking down 
GBP5 in SKOV3 and HEYA8 cell lines (*P<0.05, **P< 0.01, ***P<0.001). 
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Knockdown of GBP5 promotes migration and 
leads to chemotherapy resistance 

Firstly, to ascertain the effect of GBP5 on the 
invasion and migration abilities of OC cell lines, 
Transwell assays revealed that the motility of 
GBP5-downregulated cells was significantly greater 
than that of the control group (Figure 9A). Similarly, 
the wound healing assay, designed to evaluate the 
migration capacity of OC cells, demonstrated that the 
healing rate of GBP5-downregulated cells was 
markedly higher than that of the control group 
(Figure 9B). In summary, these findings suggest that 
GBP5 knockdown promotes cell invasion and 
migration in vitro. Furthermore, to further investigate 
the impact of GBP5 on sensitivity to chemotherapeutic 
agents, we selected three drugs from Figure 7N-P that 
exhibited a significant reduction in IC50 in the 
SRGs-low group compared to the SRGs-high group: 
Oxaliplatin, Gemcitabine, and Sorafenib. After 
exposing HEYA8 cells transfected with GBP5 
knockdown fragments and control fragments to 
various drug concentrations for 48 hours, we 
employed the CCK-8 assay to measure absorbance at 
450 nm. As the drug concentrations increased, both 
groups displayed an elevation in proliferation 
inhibition rates. Notably, the IC50 of the GBP5 
siRNA-transfected group was significantly higher 
compared to the control group (P<0.05). The IC50 
values for the three drugs in the HEYA8 cell line were 
calculated as follows: for oxaliplatin treatment, the si 
GBP5#1 transfected group (207.47 ± 13.40) and si 
GBP5#2 transfected group (172.37 ± 8.06) were 
significantly higher than the control group (112.43 ± 
16.25). For gemcitabine treatment, the values for the 
transfected and control groups were (27.75 ± 2.65), 
(25.47 ± 2.41), and (14.90 ± 4.08), respectively. 
Similarly, for sorafenib treatment, the control group 
showed a value of (16.94 ± 1.00), while the knockdown 
groups exhibited (23.22 ± 3.70) and (29.82 ± 3.29), 
indicating statistically significant differences (*P<0.05, 
**P<0.01, ***P<0.001). After 48 hours of induction with 
three drugs, flow cytometry analysis showed that 
knocking down GBP5 reduced the percentage of 
apoptotic cells in the HEYA8 ovarian cancer cell line 
(Figure 9C-E).  

Discussion  
Ovarian cancer is the deadliest gynaecological 

malignancy, marked by significant tumour 
heterogeneity, a poor prognosis, and high mortality 
(18). At present, there are no reliable biomarkers to 
predict patient outcomes or assess treatment response 
effectively. Sphingolipids play a vital role as 
components of cell membranes and signalling 

molecules, influencing a range of biological processes, 
including apoptosis, proliferation, ageing, and stress 
responses (19). The involvement of sphingolipid 
metabolism in regulating the biological behaviour and 
heterogeneity of tumour cells is well established (20). 
Comparative studies of OC tissues against normal 
tissues have revealed numerous gene expression 
changes within the sphingolipid pathway. Ovarian 
cancer cells undergo metabolic reprogramming, 
resulting in an increased production of sphingolipid 
metabolism-related components, which alters their 
microenvironment and affects their sensitivity to 
chemotherapy drugs (21). These findings suggest that 
sphingolipid metabolism is a promising area of 
research in ovarian cancer therapeutics. Identifying 
specific sphingolipid metabolism-related targets and 
exploring the potential mechanisms across different 
tumour types is crucial. The aim of our study is to 
integrate the research linking sphingolipid-related 
genes with ovarian cancer prognosis, examine their 
potential clinical relevance, and provide new 
theoretical and practical frameworks for personalised 
treatment approaches.  

In our study, we identified three hub genes: two 
risk hub genes, C5AR1 and MARCHF, and one 
protective hub gene, GBP5. C5aR1 and its ligand C5a 
are pivotal molecules within the complement system, 
and their interaction has been shown to regulate 
tumor growth and immune suppression in various 
cancers (22,23). Studies have revealed that C5a, within 
the tumor, binds to its receptor C5aR1 on 
myeloid-derived suppressor cells (MDSCs), which, 
through the recruitment of MDSCs into the tumor 
microenvironment, further suppresses CD8+ and 
CD4+ T cell-mediated anti-tumor immune responses, 
thereby promoting tumor growth (24,25). In OC, it has 
been observed that C5aR1 independently predicts 
poor prognosis and correlates with the infiltration of 
immunosuppressive cells within the tumor micro-
environment, characterized by increased infiltration 
of pro-tumor cells (Treg cells, M2 polarized 
macrophages, and neutrophils) and impaired CD8+ T 
cell function, leading to poor responses to immune 
checkpoint inhibitors (ICIs) (26). Identification of 
C5aR1+ on tumor-associated macrophages (TAMs) 
indicates polarization towards an immunosuppres-
sive phenotype; blocking the C5a/C5aR axis restores 
TAM anti-tumor responses and activates cytotoxic T 
cells, alleviating tumor progression (27). These 
findings are consistent with the gene characteristics 
we identified. On one hand, C5aR1, as a marker gene 
for high-risk groups, indicates poor prognosis in OC 
patients when highly expressed; on the other hand, 
there is increased infiltration of suppressive immune 
cell phenotypes in high-risk groups.  
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Figure 9. The effect of GBP5 knockdown on OC cell migration and sensitivity to chemotherapeutic drugs. (A) Transwell migration and invasion assays of si-GBP5 and control 
cells, with HEY cells observed for 12 hours and SKOV3 cells for 24 hours. (B) Wound healing assay of si-GBP5 and control cells, with HEY cells observed for 24 hours and SKOV3 
cells for 48 hours. (C) Flow cytometry analysis of the effect of GBP5 knockdown on the percentage of HEYA8 cell apoptosis induced by oxaliplatin (50 μM, 48 h), gemcitabine 
(10 μM, 48 h), and sorafenib (10 μM, 48 h). The data shown represent mean ± standard deviation (*P<0.05, **P< 0.01, ***P<0.001). 

 
Therefore, targeting C5aR1 holds clinical 

potential, and combination therapy of anti-PD-1 
antibodies with C5aR1 inhibitors may be a promising 

personalized treatment strategy. MARCHF is a 
subfamily of ubiquitin ligases that has been shown to 
play a role in immune responses and transmembrane 
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transport (28). In colorectal cancer, MARCHF inhibits 
the activation of the IL-6 signaling pathway by 
ubiquitinating and degrading the IL-6 receptor, 
thereby attenuating the development of colitis and 
inflammation-associated tumor progression (29). In 
hepatocellular carcinoma, MARCHF regulates 
anti-tumor immune responses by degrading PARP1 
and activating the cCAS-STING pathway in dendritic 
cells (DCs) (30). Specifically, the degradation of 
PARP1 promotes immune activation in dendritic cells, 
stimulating the STING (stimulator of interferon 
genes) pathway, thereby enhancing T cell-mediated 
anti-tumor immune responses. This process provides 
new molecular mechanisms for immunotherapy in 
hepatocellular carcinoma and suggests that MARCHF 
could be a potential target for anti-tumor immunity 
(30). However, no studies on MARCHF have been 
conducted in ovarian cancer to date. Our research 
shows that MARCHF is one of the high-risk genes 
associated with poor prognosis in OC. In the future, 
we look forward to further studies exploring the role 
of MARCHF in OC and its impact on prognosis. GBP5 
is an important regulatory factor in the immune 
system, especially in regulating antimicrobial 
immunity and inflammatory responses. High 
expression of GBP5 in tumor cells may affect the 
immune environment by promoting autophagy and 
modulating anti-tumor immune responses. Zou et al. 
discovered that GBP5 serves as a protective gene in 
OC. On one hand, it inhibits ovarian cancer 
proliferation and metastasis by inducing classical 
pyroptosis via the JAK2/STAT1 pathway; on the 
other hand, GBP5 reprograms macrophages in the 
tumor-suppressive microenvironment towards M1 
polarization, and its high expression increases the 
expression of programmed cell death ligand 1 
(PD-L1), making it a potential survival marker for 
tumor patients receiving anti-PD1 and anti-PD-L1 
therapy (31). Similarly, in our model, GBP5 is a 
protective gene, with its upregulation observed in the 
tumor tissues of early-stage OC patients compared to 
late-stage patients. Knockdown of GBP5 increases the 
proliferation, migration, and invasion capabilities of 
HEYA8 and SKOV3 cells, decreases sensitivity to 
chemotherapeutic agents such as oxaliplatin, 
gemcitabine, and sorafenib, and reduces apoptosis 
after treatment with these chemotherapy drugs. 
Further preclinical and clinical studies are needed to 
explore the impact of GBP5 on OC function and its 
tumor microenvironment. 

Our findings indicate that increased expression 
of the risk hub genes correlates with a higher risk of 
OC, while the protective hub gene is associated with a 
reduced risk. Our investigation began with an 
in-depth analysis of single-cell heterogeneity, 

followed by the identification of key genes related to 
sphingolipid metabolism, complemented by bulk 
RNA sequencing analysis and the development of 
prognostic models for these three key genes. We 
constructed a nomogram to predict patient prognosis 
in ovarian cancer. Additionally, our study explored 
the expression of associated genes across different cell 
types and sphingolipid metabolism scores, examining 
immune infiltration and sensitivity to chemoresis-
tance. Notably, our results suggest that the low-risk 
group exhibits greater sensitivity to oxaliplatin, 
gemcitabine, and sorafenib. We observed that GBP5, 
the most significantly different gene in the low-risk 
group, holds significant implications for ovarian 
cancer. 

It is noteworthy that our model revealed an 
intriguing observation: in ovarian cancer, the 
high-risk group stratified by SRGs (sphingolipid- 
related genes) exhibited a strong correlation with an 
immunosuppressive tumour microenvironment 
characterised by elevated M2-polarised TAMs and 
reduced CD8+ T cell infiltration. A parallel 
phenomenon was observed in malignant melanoma 
by Mrad et al., who demonstrated that inhibition of 
SPHK1 (the key enzyme catalysing sphingosine 
conversion to S1P) decreased M2 macrophage 
prevalence while increasing M1 macrophage 
proportions within the tumour niche. This M1 
dominance enhanced CD8+ T cell infiltration and 
activation through augmented IL-12/TNF-α 
secretion, ultimately manifesting as elevated IFN-γ 
production and intensified tumour cell apoptosis (32). 
Some studies have uncovered potential mechanisms 
behind this phenomenon. On one hand, S1P, by 
binding to the S1PR1 receptor on macrophage 
surfaces, activates STAT3 phosphorylation, inducing 
the expression of anti-inflammatory factors such as 
IL-10, Arg1, and TGF-β, thereby driving M2 
polarization (33). On the other hand, S1P upregulates 
HIF-1α, enhancing glycolytic capacity and promoting 
metabolic adaptation in M2 macrophages (34). 
Additionally, in breast cancer, increased enzymatic 
conversion of ceramide to sphingosine has been 
shown to reinforce M2 macrophage 
immunosuppression via PI3K-AKT-mTOR pathway 
activation (35). Collectively, these findings underscore 
that sphingolipid metabolism may establish an 
immunosuppressive niche through synergistic 
mechanisms. Overall, sphingolipid metabolism may 
establish an immunosuppressive niche through 
various synergistic mechanisms, and targeting 
specific nodes within this network is worth further 
investigation as part of combination immunotherapy 
strategies. 
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Overall, our study has contributed to a deeper 
understanding of the biological processes involved in 
sphingolipid metabolism in ovarian cancer, providing 
insights for diagnosis, treatment, and potential 
combination therapies. However, several limitations 
of this study warrant acknowledgment. Firstly, the 
origins of OC are diverse, and our research focused 
solely on epithelial-derived OC samples, making it 
challenging to generalise the model to other OC types. 
Secondly, due to the lack of available data, a critical 
clinical feature—TNM staging—was not incorporated 
into the prognostic model. TNM staging is a key factor 
in evaluating tumor progression and prognosis, and 
the absence of this data limits our ability to perform a 
more comprehensive analysis of the relationship 
between the studied biomarkers and clinical 
outcomes based on tumor staging. Furthermore, we 
did not conduct in vitro or in vivo functional studies on 
the high-risk central genes, which constrains our 
understanding of their precise mechanisms of action. 
Additionally, the relatively small sample size used in 
our study may affect the robustness and stability of 
our models. It is crucial to note that this study is 
primarily retrospective and did not utilise prospective 
data to test the model's performance. It is also 
important to note that this study was predominantly 
retrospective and did not utilise prospective data to 
test the performance of the model. This introduces 
potential biases, such as selection bias and reliance on 
existing medical records, which may not always be 
complete or consistently collected. Therefore, 
prospective studies with more controlled 
methodologies are necessary to confirm the observed 
associations and further explore their clinical 
relevance. Larger prospective datasets are required to 
validate the features identified in this study and 
enhance their accuracy and reliability. Future research 
could also delve into the specific characteristics and 
genetic features of these subtypes, contributing to a 
more comprehensive understanding of ovarian cancer 
heterogeneity in its broader context and extending 
applicability to different OC types. 

Conclusion 
Conclusively, we developed and validated a 

novel prognostic signature comprising of 3 SRGs 
marker genes by integrated analysis of single-cell and 
bulk RNA-sequencing, which outweighs other 
well-established signatures in predicting the 
prognosis of OC patients and might predict patients' 
response to chemotherapy in OC. Our analysis of 
indicated their potential roles in the prognosis value 
and tumor immune microenvironment. Furthermore, 
we have verified the function of GBP5 in OC through 
cellular experiments and its impact on chemotherapy 

sensitivity after altering GBP5 expression in ovarian 
cancer cells. These results might offer useful 
information for creating fresh OC treatment plans. 
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