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Abstract 

Pancreatic cancer (PC) is one of the most tremendously malignant cancers with a poor prognosis, 
especially when it advances to metastasis. Besides, PC patients have encountered resistance to recent 
therapeutic approaches. In recent work, we effectively determined ANKRD22 by re-analyzing RNA-seq 
datasets from cell lines and human tissues deriving from PC. We demonstrated that ANKRD22 
expression was remarkably high in the PC group compared to the normal group at both gene expression 
and protein levels. ANKRD22 resulted in a worse overall survival (OS) rate of PC patients (HR = 1.7, p 
= 0.0082). Intriguingly, ANKRD22 was statistically highly expressed in the mutated KRAS group relative 
to the wildtype group (p < 0.05). Similarly, compared to the wildtype TP53, in the mutated TP53, 
ANKRD22 also significantly expressed (p < 0.05); their concurrent expression, ANKRD22 and KRAS; 
ANKRD22 and TP53 exacerbated the survival outcome relative to the co-expression of low ANKRD22 
and unaltered genes (p < 0.001; HR > 2.6). We explored the potential pathways and biological processes 
ANKRD22 might not only contribute to promoting PC, including cell-cycle regulation, E2F1 targets, and 
apoptosis but also foster the dissemination of PC by involve in invasion and migration processes. In the 
investigation of drugs that might target ANKRD22, we figured out fostamatinib. Molecular docking and 
molecular dynamic simulation (MDs) techniques provided extensive insights into the binding mode of 
ANKRD22 and fostamatinib. ANKRD22 exhibited strong binding affinity (ΔG = -7.0 kcal/mol in molecular 
docking and ∆Gbind = -38.66 ± 6.09 kcal/mol in MDs). Taken together, ANKRD22 could be a promising 
theragnostic target that might be inhibited by fostamatinib, thereby suppressing PC growth. 
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Introduction 
The 5-year survival rate of PC patients in the US 

is 10% [1], reflecting that PC is one of the most lethal 
and aggressive cancers. Various factors leading to this 
dismal rate include asymptomatic or non-specific 
manifestations, lack of markers or diagnostic methods 

for early detection, drug resistance, and less response 
to the current standard treatment [2, 3]. Metastasis 
refers to the primary tumor migrating from its 
original site to evade and localize at the foreign 
organs [4, 5]. This process is also considered to 
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contribute to the malignancy of PC. Indeed, patients 
diagnosed at metastatic stages have a worse 5-year 
survival rate of only 3% [1]. PC progresses from 
pancreatic intraepithelial neoplasia (PanIN) to 
metastasis, and pancreatic adenocarcinoma (PAAD) is 
the most prevalent and deadliest tumor type itself, 
accounting for 85% of all cases [3, 6]. It has been 
reported that KRAS is the PC-driven gene; its 
mutation contributes to > 90% of PC patients. Despite 
the numerous efforts to explore the underlying 
mechanism of PC coupled with attempts to 
investigate the novel therapeutic approaches that 
have been conducted, PC is still a refractory disease 
[7, 8]. Consequently, there is an urgent need to 
explore a new theragnostic molecule that can benefit 
the diagnosis and target therapy for PC, especially for 
metastatic PC, which exhibits the lowest survival rate. 

Ankyrin repeat domain 22, ANKRD22, has a 
unique structure encompassing four identical 
L-shaped ankyrin motifs, allowing it to interact with a 
wide range of molecules. Therefore, its relevant 
biological pathways and functions can be involved in 
various diseases, including cancer [9-11]. ANKRD22 
plays a dual role in cancer development as a cancer 
suppressor or tumor supporter. For instance, in 
colorectal cancer, ANKRD22 extensively contributed 
to metabolic reprogramming, leading to colorectal 
cancer growth [9]. Similarly, ANKRD22 facilitated the 
proliferation of non-small lung cancer cells, and its 
function might be via the upregulation of E2F1 
transcription factor, which is well related to the cell 
cycle process [10]. In contrast, regarding prostate 
cancer, ANKRD22 is lowly expressed in the tumor 
group relative to the normal group, and the 
unfavorable correlation between ANKRD22 and the 
survival outcome of the patients was identified. This 
study revealed the anti-tumorigenesis role of 
ANKRD22 [11]. Interestingly, ANKRD22 was 
recognized as a promising marker that might help in 
the early diagnosis of PC [12]. ANKRD22 has been 
demonstrated to have a significantly high expression 
in KRAS-addicted cell lines; knockdown ANKRD22 
diminished E-cad expression and elevated Caspade-3, 
one of the markers for apoptosis. These findings 
highlighted the correlation between ANKRD22 and 
aberrant KRAS and indicated the possibility that 
ANKRD22 relates to the epithelial-mesenchymal 
transition process [13]. Unfortunately, the mechanism 
ANKRD22 might exploit in PC progression and 
metastasis remains elusive. As a result, further 
investigation is needed to explore its potential 
contribution to PC. 

Leveraging a well-established drug whose 
function and safety were already known and then 
exploring its extra function to apply that efficacy to 

other targets would save time and be cost-effective. 
Those are the purposes of drug repurposing [14]. 
Recent evidence has shown that fostamatinib 
emerged as a promising candidate for drug 
repositioning, particularly in anti-cancer therapeutics. 
Fostamatinib is initially prescribed for immune 
thrombocytopenia patients to inhibit spleen tyrosine 
kinase (SYK) [15]. In hepatocellular carcinoma (HCC), 
it served as an inhibitor of tumor growth in vitro and 
in vivo. Fostamatinib might regulate the JAK/STAT, 
PI3K/AKT, and MAPK/ERK signaling pathways 
[16]. As observed in glioma cancer, the synergistic 
impact between fostamatinib and temozolomide 
further inhibited the viability of glioma stem cells [17]. 
These results unveiled another function of 
fostamatinib apart from its intended target. 

In this study, we aimed to elucidate the 
oncogenic function of ANKRD22 in PC, provide 
insights into the progression and metastasis of PC to 
which ANKRD22 might contribute, and repurpose 
fostamatinib for treating PC. 

Materials and methods 
Acquisition of RNA expression dataset 

The publicly available PC datasets, GSE149103 
and GSE63124, were downloaded from the GEO 
database [18]. The GSE149103 dataset consisted of 
RNA-sequence data of three distinct properties of 
human PC cell lines: human pancreas normal 
epithelial cells (HPNE), PANC-1 derived from the 
head of the pancreas as primary PC cells, and 
CAPAN-1, the metastatic PC cells (mPC) deriving 
from liver metastasis. In contrast, the GSE63124 
dataset included RNA-sequence data from two mPC 
patients, patient A13 with lung metastasis and patient 
A38 with liver, lung, and peritoneal metastasis [19, 
20]. These organs are the most common destinations 
where PC cells migrate and reside. Hence, analyzing 
this dataset may identify an aggressive gene as a 
critical player in mPC [2, 3]. 

Identification of differentially expressed genes 
(DEGs) 

Identifying DEGs between groups of two 
datasets was conducted using the Galaxy platform 
[21]. Firstly, we evaluated the quality control of the 
raw data by running the FastQC tool vers. 0.12.1, 
followed by the Trimmomatic tool vers. 036 to remove 
any adapters and reads with an average quality score 
of less than 20 [22, 23]. Next, Hisat2 version 2.2.1 
(Hierarchical Indexing for Spliced Alignment of 
Transcripts) was used to map the reads with the 
human reference genome (Gencode, release 38, hg38) 
with the default parameters [24]. Raw counts were 
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then obtained with Featurecounts version 2.0.3 [25]. 
Finally, DEGs were identified between non-metastatic 
(HPNE and PANC-1) and metastatic (CAPAN-1) cell 
lines for the GSE149103 dataset and between each 
pairwise of metastatic sites for the GSE63124 dataset 
(Lung-Liver, Peritoneal-Liver, and Peritoneal-Lung) 
by using Limma version 3.48.0, in which the output 
file of annotateMyIDs vers. 3.16.0 was utilized to 
annotate each gene [26, 27]. The count per million 
CPM value was set at 0.046 and 0.007 for GSE149103 
and GSE63124, respectively, to filter the lowly 
expressed genes. Besides, |log2 fold change| > 1 and 
adjusted (adj.) p-value of < 0.01 were also applied for 
filtering DEGs. DEGs with an FC value > 2 were 
considered upregulated genes, and DEGs with an FC 
value < 2 were considered downregulated. 

Ultimately, the Bioinformatics and Evolutionary 
Genomics web tool created Venn diagrams between 
two datasets to identify overlapped DEGs. 

Analysis of the association of the most 
significant upregulated overlapped genes in 
the PAAD cohort 

GEPIA (Gene Expression Profiling Interactive 
Analysis version 2, a valuable online web tool using 
transcriptomic data from The Cancer Genome Atlas 
(TCGA) and Genotype-Tissue Expression projects 
(GTEx), was employed to investigate the correlation 
between the expression of overlapping upregulated 
genes and the overall survival (OS) rate as well as 
their expressions in different tumor stages in PAAD 
cohort [28]. The Mantel-Cox test was used to examine 
the OS rate with a median cutoff chosen to split the 
PAAD cohort into high and low gene expression 
groups for each overlapping upregulated gene. 
Hazard ratio (HR) > 1 and p-value of < 0.05 were 
considered significantly riskier for patients with high 
gene expression than those with low gene expression. 
The one-way ANOVA test was used to analyze gene 
expression across cancer stages. Furthermore, to 
examine ANKRD22 expression in the PAAD group 
relative to the normal group, the box-plot module was 
used with |Log2FC| cutoff = 1, and the p-value cutoff 
= 0.01 was performed. 

Investigation of ANKRD22 expression at the 
protein level in PAAD patients 

The human protein Atlas (HPA) was used to 
examine ANKRD22 protein expression in PAAD 
patients. Immunohistochemical (IHC) results showed 
protein expressions classified into four categories 
based on the fraction of stained cells (less than 25%, 
25%-75%, and greater than 75%) and staining 
intensity (negative, weak, moderate, and strong). The 
categories were as follows: "not-detected" category 

included negative or weak and less than 25%; "low" 
had weak and either 25%-75% or greater than 75%, 
moderate and less than 25%; "medium" included 
moderate and either 25%-75% or greater than 75%, 
strong and less than 25%; and "high" included strong 
and either 25%-75% or greater than 75% [29] 

Discovering potential pathways or biological 
processes that ANKRD22 might involve in 
mPC initiation 

To examine the potential role of ANKRD22 in 
the development of mPC, we performed Gene Set 
Enrichment Analysis (GSEA) and Ingenuity Pathway 
Analysis (IPA). These two software tools are based on 
existing knowledge or pre-defined gene sets and 
provide potential biological pathways and processes 
[30, 31]. The input files contain two groups, high and 
low ANKRD22 expression groups. These groups were 
obtained from the TCGA database [32]. 

We used Oncogenic Signature, Hallmark, and 
KEGG gene sets for GSEA analysis. The parameters 
chosen were Number of permutations 1000, collapse 
to gene symbols, the chip platform 
"Human_Ensemble_Gene_ID_MSigDB.v2023.2.Hs.chi
p", and Permutation type was "gene_set". The 
significantly enriched hallmarks and signature 
pathways were identified based on a normalized 
enrichment score (NES) > 1, the p-value < 0.05, and 
FDR (false discovery rate) < 5%. Finally, we used 
ImageGP visualization tools to illustrate the pathways 
[33]. 

DEGs between high and low ANKRD22 
expression groups were uploaded to IPA for analysis. 
DEGs met the cutoff of |Log2FC|> 1, and the p-value 
< 0.05 were further analyzed in this software. 

Investigation of potential drugs that might 
interact with ANKRD22 

To explore drugs that might target ANKRD22, 
we accessed two databases, Drugbank and Chembl. 
These two valuable databases provide comprehensive 
information on drugs and their targets [34, 35]. 

Investigation of the interaction between 
ANKRD22 and Fostamatinib 

To further investigate the interaction between 
fostamatinib and ANKRD22, we utilized STITCH 
(Search Tool for Interacting Chemicals, version 5.0). 
This helpful online tool depicts the potential 
interactions of over four hundred thousand chemicals 
with target proteins [36]. ANKRD22 and fostamatinib 
were the input items inserted into STITCH; the 
medium confidence of 0.4 and no more than 10 
interactions for 1st shell and 2nd shell were set to get 
the protein-protein or protein-chemical interactions. 
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Exploring correlations of ANKRD22 and SYK, 
RIPK4 in the PAAD cohort 

TIMER 2.0 is an online tool exploring the 
correlation between genes, especially target genes and 
mutated genes, which might play a crucial role in 
tumor progression [37]. Using TIMER 2.0, we aimed 
to determine the association between ANKRD22 and 
SYK, RIPK4. The purity-adjusted partial Spearman's 
rho value with a statistical significance threshold was 
set as a p-value of < 0.05. 

Identification of ANKRD22 expression in the 
wildtype and mutated KRAS, TP53 groups 

In order to explore the expression of ANKRD22 
in the presence of mutated KRAS, TP53 was 
compared to wildtype groups, TIMER 2.0 was also 
used. The statistical significance computed by the 
Wilcoxon test was identified as a p-value of < 0.05. 

The cBioPortal for Cancer Genomics is a 
multi-function web-based tool for performing genetic 
alteration analyses [38]. We utilized this cBioPortal to 
address information about the proportion of mutated 
KRAS and TP53 and their impact on the OS rate in the 
PAAD cohort. The statistical method used for this 
analysis was the log_rank test; the HRs and 95% 
clearance interval (95% CI) were identified. This 
PAAD cohort was derived from the TCGA database 
with 179 PC patients. 

To broaden the association between ANKRD22 
co-expressing those altered genes and OS rate in the 
PAAD cohort, we performed Kaplan-Mier analysis 
with log_rank test by using GraphPad Prism version 
9.5.0 for Windows, GraphPad Software, San Diego, 
California, USA. Results were regarded statistically 
significant when they met p < 0.05. The input data 
was downloaded from TCGA. 

In silico molecular docking analysis of 
fostamatinib, AV023 bound to ANKRD22 

Molecular docking is a commonly used tool to 
investigate binding poses in the interaction between 
ligands and receptors. The key functions of this 
method are to determine the best pose and calculate 
the affinity [39, 40]. This substantial method has been 
seen as an indispensable part of drug repurposing. 

In order to examine the potential interactions 
between fostamatinib and ANKRD22, first, the 
three-dimensional (3D) predicted structure of 
ANKRD22 (PDB format) was obtained from 
AlphaFold [41]. Besides, due to the lack of crystal 
structure of ANKRD22, we employed Cavityplus 2022 
to determine the potential binding pocket [42]. The 
cavities were ranked based on druggability and drug 
scores (the score for druggability assessment). The 
degree of druggability was classified as strong, with a 

DurgScore of ≥ 600; medium, with 600 > DrugScore ≥ 
-180; and weak, with a DrugScore of < -180 [43]. We 
then prepared the ANKRD22 protein by converting 
the PDB format to PDBQT format; after that, deleting 
H2O molecules, adding Kollman charges, and 
adjusting polar hydrogens were conducted on the 
Autodock tool vers. 1.5.7. 

Noteworthy, a recent study has also conducted 
molecular docking of AV023 compound binding 
ANKRD22 to explore its function in gastric mucosal 
injury [44]. Therefore, to further understand the 
interaction between fostamatinib and ANKRD22, we 
compared this binding to the binding between AV023 
and ANKRD22. The 3D structure of fostamatinib (CID 
11671467) in SDF format and the SMILE format of 
AV023's two-dimensional (2D) structure were 
downloaded from PubChem [45]. This SMILE file was 
converted to 3D structure (SDF format) using an 
online SMILES translator and structure file generator. 
Next, these SDF format files were converted into PDB 
format using Pymol [46], and then Autodock 
transformed these PDB files to PDBQT format. 

Finally, the interactions of ANKRD22, 
fostamatinib, and AV023 were investigated using 
Autodock, and the resultant specific residue lists 
formed predicted binding pockets generated from 
Cativity were used. In addition, spacing was set to 1 
Å, and the numbers of points in the x, y, and z 
dimensions were 40 × 40 × 40 Å, respectively. Pymol 
illustrated the 3D docked ligand-receptor complexes, 
and the 2D was visualized and analyzed using 
BIOVIA Discovery Studio [47]. 

Molecular dynamics simulations analysis of 
fostamatinib, AV023 bound to ANKRD22 

Molecular dynamics simulation (MDs) is a 
technique to visualize molecules' movement at the 
atomic level over time. It can cooperate with 
molecular docking to provide a comprehensive 
interaction between ligands and proteins. MDs can 
avoid atomic perturbation and give more accurate 
results than molecular docking [48, 49]. 

MDs was conducted on GROMACS tool version 
2021.4 for 150 ns [50]. As for ANKRD22 protein 
preparation, the topology of ANKRD22 was explored 
using forcefield CHARMM-27 [51]. The best docking 
score conformation of ligands was exported in MOL2 
format. SwissParam performed the topology of 
ligands using forcefield CHARMM-36 [52]. Finally, 
the topology file of complex protein-ligand was 
created. 

 A dodecahedron simulation box was built with a 
radius of 10 Å from the complex. The system was 
filled with water (TIP3P model) and equilibrium 
electrical by adding Na+ or Cl- (concentration NaCl 
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final was 0.15 M). The system then was energy 
minimized by using the steepest descent with the 
maximum force of 10 kJ/mol in 100 ps. The system 
performed NVT (constant particle number, volume, 
and temperature) equilibration at 100 ps, stabilizing a 
molecular system at a constant number of particles, 
volume, and temperature (300 K) [53]. Subsequently, 
the Parrinello-Rahman barostat algorithm ran NPT 
(constant particle number, pressure, and temperature 
) equilibration at 100 ps to stabilize the system's 
density at the constant temperature and pressure (1 
bar) [54]. The Verlet algorithm performed MD 
simulation at 300 K and 1 bar. To restrict hydrogen 
bonds, the LINCS algorithm was used [55]. The other 
interactions were obtained at a cut-off of 12 Å, and 
electrostatic interactions were calculated using the 
Mesh Ewald method. The trajectories of MD 
simulations were saved every 0.01 ns. 

 Eventually, RMSD (Root Mean Square 
Deviation), RMSF (Root Mean Square Fluctuation), Rg 
(Radius of Gyration), and SASA (Solvent Accessible 
Surface Area) values were calculated based on 
trajectories of MD simulations by gmx_rms, 
gmx_rmsf, gmx_gyrate, and gmx_sasa commands of 
GROMACS to evaluate the stability of complexes. The 
RMSD carbon backbone of protein (RMSD Cbackbone) 
and RMSD heavy atoms of ligand (RMSDnonH) values 
present the protein's and ligand's stability or 
flexibility when bound together [56]. The RMSF 
carbon alpha (RMSF Cα) determines the balance of 
residues. SASA is a value to evaluate protein folding 
and stability [57]. The value of Rg is an index of 
protein density representing the protein's 
compactness [58]. 

 The ∆Gbind value, binding free energy between a 
ligand and a protein, was calculated using the 
MM/GBSA (Molecular mechanics (MM) with 
generalized Born and surface area solvation (GBSA)) 
by gmx_MMPBSA command. The formula for the 
calculation of ∆Gbind is: ∆Gbind = ∆EMM + ∆Gsol - T∆S = 
(∆Eint + ∆EvdW + ∆Eele) + ∆Gsol - T∆S, in which Eint, 
∆EvdW, and ∆Eele are internal energies, Van der Waals 
energies, and electrostatic energies, respectively. ∆Gsol 
includes polar and non-polar solvation energy, while 

T∆S is conformational entropy; thus, the ∆Gbind value 
can be decomposed into relevant interactions to 
identify key residues. The constant solute dielectric, 
temperature, and NaCl concentrations were set at 1.0, 
298 K, and 0.15 M, respectively [59]. 

 The frequency of hydrogen bonds (H-bond) was 
analyzed from the trajectories of MD simulation using 
VMD 1.9.4a55 Open GL216 software [60]. A hydrogen 
bond was defined according to geometric criteria: the 
hydrogen donor (D) - acceptor (A) distance < 3.5 Å, 
and the angle of hydrogen D - A > 1200 [56]. 

 Principal component analysis (PCA) was 
investigated to present the atomic motions of 
apoprotein and protein-ligand complex states [61]. 
PCA was calculated using the g_covar and g_anaeig 
commands of GROMACS [51]. The Cbackbone moments 
of protein were represented by eigenvectors (EVs) 
from the variance matrix data [62]. Projecting the two 
vectors EV1 and EV2 on a diagram showed 
information about the spatial motion of protein. The 
porcupine plot was drawn from EV1 data by PyMOL 
to visualize the direction and magnitude of 
movements [63]. 

 A free energy landscape (FEL) analysis was also 
performed to characterize the protein's stable state. 
The FEL plots were performed and analyzed based on 
the first two EVs of the apo form of ANKD22 and its 
complexes with AV023 and fostamatinib [64]. R 
packages and GROMACS built-in and standalone 
tools were used for all post-MD simulation data 
analyses. 

Results 
Identification of DEGs between metastatic and 
non-metastatic cell lines and across metastatic 
sites of pancreatic cancer 

The gene expression data from RNA-seq of the 
GSE149103 dataset was first analyzed to identify 
DEGs between the human non-metastatic cell lines, 
including normal pancreas cells and primary cells, 
and liver metastatic PC cell lines (detailed as shown in 
Table 1). 

 

Table 1. Details of pancreas cells, PC cell lines, and samples of metastatic sites 

GEO Platform Cell lines/ 
Patient ID 

Property/ 
Metastatic sites 

Replicates/ 
Number of samples 

Group 

GSE149103 GPL20795 HPNE Human pancreas normal epithelial cells 2 NONMETASTATIC 
PANC-1 Primary pancreatic cancer cells 2 
CAPAN-1 Metastatic pancreatic cancer cells 2 METASTASIS 

GSE63124 GPL11154 A38 Liver 2 LIVER 
Lung 2 LUNG 
Peritoneal 2 PERITONEAL 

A13 Lung 2 LUNG 
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The mean difference plot highlighted 
substantially expressed genes encompassing 2213 
upregulated genes and 825 downregulated genes at 
p-value < 0.01 and |log2 fold change| > 1, as shown 
in Fig. 1A. 

Similarly, we analyzed the GSE63124 
transcriptomic dataset of PC from human tissue; the 
information on this dataset is presented in Table 1. By 
using the same cutoff criteria to filter DEGs, Fig. 1B-D 
respectively illustrated 425, 2450, and 1502 
upregulated genes in the pair of metastatic sites, 
namely Lung-Liver, Peritoneal-Lung, and 
Peritoneal-Liver. We also observed 1043, 943, and 
1297 downregulated genes for each pairwise of 
metastatic sites. Next, we performed Venn diagram 
analysis to identify the most upregulated genes across 
these metastatic organs and identified 42 upregulated 
genes (Fig. 1E). 

To get more convincing results for determining 
the most dramatically expressed gene, which was not 
only presented throughout cell lines but also in 
virtually all the most common metastatic sites, we 
then integrated significantly upregulated genes from 
the cell lines dataset and the overlapped upregulated 
genes from the human dataset using Venn diagram 
analysis. As depicted in Figure 1F, we finally 
identified 12 genes. 

 

Table 2. The overlapping upregulated genes with the hazard ratio 
and p-value in the PAAD cohort 

SYMBOL Gene name p-value HR 
EPHX4 Epoxide hydrolase 4 0.0023 1.9 
ANKRD22 Ankyrin repeat domain 22 0.0082 1.7 
KIF13B Kinesin family member 13B 0.013 1.7 
TMPRSS4 Transmembrane serine protease 4 0.015 1.7 
CCL28 C-C motif chemokine ligand 28 0.047 1.5 
 

ANKRD22 might play a crucial role in 
metastatic pancreatic cancer 

Table 2 shows 5 overlapping upregulated genes, 
ranked in order based on the Hazard ratio and 
p-value, including EPHX4, ANKRD22, KIF13B, 
TMPRSS4, and CCL28, remarkably exacerbated the 
OS rate of PC patients when their expression was 
highly exhibited (Fig. S1). The seven remaining genes 
didn't impact the patient outcome (Table S1). The two 
most dramatically different genes were EPHX4 and 
ANKRD22, with HR = 1.9, p = 0.0023, and HR = 1.7, p 
= 0.0082, respectively. Consistent with this finding, 
both genes were highly expressed in the PC group 
compared to the normal group (Fig. 2A-B). 

However, when we investigated EPHX4 and 
ANKRD22 expression in different pathological tumor 
stages, EPXH4 did not statistically significantly 

express across cancer stages, F = 1.06, p > 0.05 (Fig. 
2C), whereas ANKRD22 showed that its presence 
between tumor stages was significant with F = 4.8 and 
p < 0.01. Intriguingly, ANKRD22 expressed the 
highest in stage VI, which has the most dissemination 
potential, as illustrated in Fig. 2D. Additionally, 
leveraging the Human Protein Atlas database, we 
delved into the expression of ANKRD22 at the protein 
level. Fig. 2E demonstrated that ANKRD22 protein 
was presented at a medium level in PC tissues; 
however, it mainly was not detected in normal 
pancreas, as shown in Fig. 2F. 

These results suggest that ANKRD22 might be 
an oncogene that plays a potential role in PC 
progression and metastasis. As a result, we chose 
ANKRD22 as the target gene for subsequent 
investigations. 

ANKRD22 strongly expressed with mutant 
KRAS and TP53, leading to a worse OS rate of 
pancreatic cancer 

The color-coding graph (Fig. 3A) visualizes the 
percentage of KRAS and TP53 mutation in 179 PAAD 
patients derived from the TCGA database; mutated 
KRAS and TP53 accounted for 65% and 60%, 
respectively, and missense mutation was the most 
frequent alternation in both mutant status, resulting 
in the notable decrease of survival time than PC 
patients without mutated KRAS or TP53, HR = 2.34, 
95% CI 1.57 - 3.51, p < 0.00021 and HR = 1.7, 95% CI 
1.14 - 2.53, p < 0.012, respectively (Fig. 3B-C). 

On the contrary, Fig. 3A shows that ANKRD22 
mutation accounted for < 1% of PC cases compared to 
variant KRAS or TP53 in the same cohort. As revealed 
in Fig. 2B and Table 2, ANKRD22 extensively 
increased in PAAD, leading to a higher risk of PC 
patients about the survival time, HR = 1.7 and p = 
0.0082. Together, this observation implies that the 
poor OS rate in the presence of ANKRD22 might be 
well associated with wild-type ANKRD22 rather than 
mutated ANKRD22. Moreover, we explored 
ANKRD22 statistically exhibited in variant KRAS and 
TP53 group compared to the wildtype group (p < 
0.05), as shown in Fig. 3D-E. This prompted us to 
question whether mutated KRAS or TP53 co-express 
ANKRD22 lessens the OS rate. To enclose our 
hypothesis, we used the same mutated KRAS and 
TP53 cohorts, then identified which patients highly 
expressed ANKRD22 and performed Kaplan-Meier 
curve analysis. As expected, their concurrent 
expression remarkably worsened this rate compared 
to unaltered KRAS or TP53 and low ANKRD22 
expression, p < 0.001 and HR > 2.6, as illustrated in 
Fig. 3F-G. 
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Figure 1. Differentially expressed genes (DEGs) in PC datasets. (A) Mean difference plot displaying DEGs between non-metastatic and metastatic PC cell lines. (B-D) MD plots 
presenting DEGs between comparisons of liver (L), lung (Lg), and peritoneal (Peri) metastasis, with upregulated genes (red), downregulated genes (blue), and nonsignificant genes 
(black). (E-F) Venn diagrams depict the overlapped upregulated genes between metastatic sites and cell lines versus human tissues. 
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Figure 2. ANKRD22 and EPHX4 were highly expressed in PAAD cohort. (A-B) The expression of ANKRD22 or EPHX4 in PAAD group compared to the normal group. (C-D) 
The expressions of ANKRD22 or EPHX4 at various PAAD stages. (E-F) ANKRD22 expression in the pancreas and pancreatic cancer tissues at the protein level (HPA database). 
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Figure 3. ANKRD22 was highly associated with the most frequently mutated KRAS and TP53 in PAAD, which inversely correlated with OS rate. (A) The proportion of genetic 
alternation of KRAS, TP53, and ANKRD22. (B-C) Kaplan-Meier plot showed the OS rate in the mutated KRAS or TP53 group compared to the unaltered group. (D-E) 
ANKRD22 was expressed in the mutated KRAS and TP53 compared to the wild-type (WT) group. (F-G) The OS rate of PC patients when high ANKRD22 and mutated KRAS 
or TP53 were simultaneously expressed compared to low ANKRD22 and variant KRAS or TP53. 
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Collectively, these observations indicated the 
possibility that PC patients who harbor mutated 
KRAS or TP53 might have shorter survival times if 
they simultaneously expressed high ANKRD22 
compared to those who expressed lower ANKRD22, 
highlighting the crucial role of ANKRD22 in PC. 

ANKRD22 might contribute to the pathways 
and biological processes of PAAD 

Next, we sought the potential biological 
processes or pathways by which ANKRD22 might 
contribute to PC initiation. 

Regarding Hallmark analysis, KEGG, and 
Oncogenic signatures, 21, 30, and 46 datasets met the 
requirements |NES| > 1, p < 0.05, and FDR < 5%. We 
chose the first 20 biological states or pathways in each 
feature to visualize those ANKRD22 might affect. 
Hallmark results summarized and presented the key 
biological phenomena or pathways derived from 
various sources, including KEGG and Oncogenic 
signatures analyses. As illustrated in Fig. 4A, the 
hallmark E2F targets and G2M checkpoint were the 
most significant figures. TNFα via NF-ĸB, P53 pathway, 
DNA repair, and Apoptosis were either listed. Besides, 
KEGG analysis revealed that Base excision repair is one 
of the pathways involved in the DNA damage repair 
process, and cell_cycle regulation has an impact 
associated with cell proliferation similar to the effect 
of E2F targets or the G2M checkpoint mentioned 
above which might support ANKRD22 in the process 
of tumorigenesis in PC (Fig. 4B). In the Oncogenic 
signature analysis, we notably observed that the 
KRAS dependency signature was the most substantial 
feature driven by high ANKRD22 expression (Fig. 
4C). This compelling finding reinforces the correlation 
between ANKRD22 and variant KRAS previously 
explored (Fig. 3D). 

IPA was exploited to provide valuable insights 
into other processes and pathways under the impact 
of high ANKRD22 expression. Fig. 4D depicts 
biological functions; we specifically observed some 
activated functions that contribute to cancer 
metastasis, such as cell movement, invasion, and 
migration of tumor cells (denoted by green 
rectangles). Other factors, including IL17A, IL1, and 

TNF(denoted by black arrows), were also activated, 
whose functions might initiate tumor progression. 

These described putative pathways and 
biological processes possibly facilitate ANKRD22 in 
forming not only PC but also mPC. 

Fostamatinib might be a potential drug 
targeting ANKRD22 

With the results above, ANKRD22 might be a 
promising theragnostic for mPC. Thus, to examine the 
drugs that might target ANKRD22, Drugbank and 
Chembl were used. Although we could not find drugs 
that directly interact with ANKRD22, we figured out 
RIPK4 could be ANKRD22's target and interact with 
fostamatinib, as shown in Table 3. This result 
indicates that if fostamatinib targets RIPK4, it might 
have some impact on ANKRD22 or its relevant 
pathways. 

In order to verify this hypothesis, we 
investigated the correlation between ANKRD22 and 
RIPK4. As anticipated, ANKRD22 positively 
correlated with RIPK4, rho = 0.3 and p < 0.001 (Fig. 
5A). Furthermore, when ANKRD22 and RIPK4 were 
concurrently expressed, leading to a poorer OS rate 
compared to ANKRD22 expression alone (HR = 1.8, p 
= 0.0056 versus HR = 1.7, p = 0.0082, Fig. 5B and 
Table 2). These findings further supported the ability 
of fostamatinib to target ANKRD22 and prompted us 
to utilize STITCH to determine the potential 
interactions as well as the relevant pathways between 
ANKRD22 and fostamatinib. Fig. 5C shows 21 nodes 
and 59 edges, p = 0.0014. Of note, the majority of 
proteins were the components of the nuclear factor 
kappa B pathway, such as RelA, IKBKG, IKBKB, and 
NFKBIA. This result might relate to the TNFα via 
NF-ĸB pathway we found in the GSEA analysis. In 
particular, we observed that SYK (spleen tyrosine 
kinase), a known target of fostamatinib, was also 
identified in the network. As a result, we investigated 
whether SYK and ANKRD22 are associated. Indeed, 
as shown in Fig. 5D, ANKRD22 had a significant 
favorable association with SYK (rho = 0.36, p < 0.001). 

It is reasonable to conclude that ANKRD22 
might be a target of fostamatinib, and one of the 
putative relevant pathways could be NF-ĸB. 

 

Table 3. ANKRD22 targets and related drugs retrieved from the DrugBank and Chembl databases 

Database ANKRD22 targets UNIPROT ID Drug interactions 
with/Quantity of drugs or 
compounds 

DRUG_ID Actions/ 
Assay description 

Drugbank Receptor-interacting 
serine/threonine-protein kinase 4 (RIPK4) 

P57078 Fostamatinib/01 Drugbank_ID: DB12010 Inhibitor  

Chembl Receptor-interacting 
serine/threonine-protein kinase 4 (RIPK4) 

P57078 Fostamatinib/245 Chembl_ID: CHEMBL475251 Binding constant for 
RIPK4 kinase 
domain 
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Figure 4. The potential biological processes or pathways ANKRD22 might be involved in in PC. (A-C) The significant biological processes or pathways were visualized through 
Hallmark, KEGG, and Oncogenic signature analysis dot plots. (D) The graphical summary represented the major canonical pathways, upstream regulators, diseases, and biological 
functions using different colors in IPA. Orange represented predicted activation (z-score > 2), while blue represented predicted inhibition (z-score < 2). NES: normalized 
enrichment score. 
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Figure 5. ANKRD22 was positively correlated with SYK and RIPK4 and might be a potential target of fostamatinib. (A) The correlation between ANKRD22 and RIPK4. (B) The 
co-expression of ANKRD22 and RIPK4 impacted the OS rate of PAAD. (C) The protein-chemical interaction network of ANKRD22 and fostamatinib. (D) The correlation 
between ANKRD22 and SYK. 

 
Molecular docking emerged as a powerful 

approach to predict the interactions between proteins 
(represented as macromolecular targets) and drugs 
(represented as ligands), especially those interactions 
for which experiments could not be conducted. Using 
this method, we performed the binding between 
fostamatinib and ANKRD22 to understand their 
interactions and obtain more convincing results to 
support our proposed hypothesis. Because of the lack 
of the non-crystal structure of ANKRD22, we utilized 
Alphafold to get the predicted structure of ANKRD22 

and Cavityplus 2022 to generate the proposed binding 
pockets where fostamatinib might target ANKRD22. 
Besides, one recent study has examined the AV023 
compound's interaction with ANKRD22. Comparing 
molecular docking results between AV023-ANKRD22 
and fostamatinib-ANKRD22 might add more 
dimensions to the insights of fostamatinib binds to 
ANKRD22. Thus, we also conducted the molecular 
docking of AV023 targeted ANKRD22. 

Cavityplus yielded four predicted pockets for 
ANKRD22 and one for AV023. The Druggability and 



Int. J. Med. Sci. 2025, Vol. 22 

 
https://www.medsci.org 

1897 

Drug Scores were assessed for each, as shown in 
Table 4. We opted for those whose druggability and 
drug score were the highest for subsequent analysis. 
As shown in Table 4, the first binding pocket was 
chosen (Drug score: -117 and Druggablitiy: medium). 

 

Table 4. Characteristics of predicted binding pockets of 
ANKRD22 with the fostamatinib and AV023 ligands 

 Predicted 
binding pocket 

Pred max 
pKd 

Pred avg 
pKd 

Drug 
Score 

Druggability 

FOSTAMATINIB 1 9.67 5.93 -117.00 Medium 
2 7.48 5.18 -1083.00 Weak 
3 5.83 4.62 -1348.00 Weak 
4 5.59 4.54 -1458.00 Weak 

AV023 1 11.15 6.44 402.00 Medium 

* Pred max pKd: predicted maximum dissociation constant; Pred avg pKd: 
predicted average dissociation constant. 

 
Fig. 6A visualizes the poses and potential 

binding pockets, where fostamatinib or AV023 was 
bound to ANKRD22 in the 3D conformation. 
Compared to the AV023-ANKRD22 complex, 
fostamatinib docked to ANKRD22 with the higher 
binding free energy value (in absolute terms) ΔG = 
-7.0 kcal/mol, indicating the stronger affinity binding 
and formed three hydrogen bonds with MET145 (2.30 
Å), GLU144 (3.44 Å) and LEU178 (3.43 Å), AV023 
generated ΔG = -6.4 kcal/mol and only one hydrogen 
bond to LYS84 (2.08 Å) (Fig. 6B). Furthermore, the 
stability of the fostamatinib-ANKRD22 complex was 
further firmed by eight additional hydrophobic 
interactions within a distance ranging from 3.74 - 5.49 
Å. Conversely, AV023 possessed less hydrophobic 
interactions at residues LYS84 (4.96 Å), LYS84 (4.73 
Å), and TYR90 (3.89 Å) (Fig. 6C). 

Fostamatinib more extensively bound to 
ANKRD22 and yielded better properties 
compared to those AV023 generated in MD 
simulation 

In parallel, we executed molecular dynamics 
(MD) simulations. This allowed us to delve into 
fostamatinib's behavior when interacting with 
ANKRD22 at an atomic level. SASA and Rg values 
presented in Fig. 7A-B depict the stability of protein 
throughout the simulation. The apoprotein 
(ANKRD22) and the complexes' state 
(ANKR22-AV023 and ANKRD22-fostamatinib) had 
similar SASA and Rg values throughout 150 ns 
simulations. As shown in Fig. 7C, RMSD Cbackbone 
protein values demonstrated that ANKRD22 in 
complexes were as stable as apoprotein states. 
RMSDnonH of ligand values showed AV023 was steady 
during the simulations. In contrast, fostamatinib 
fluctuated in the first 30 ns and was stable in the last 
simulations, as illustrated in Fig. 7D. Moreover, Fig. 

7E shows that the fostamatinib-ANKR22 complex 
yielded higher binding energy and number of 
H-bonds relative to those in the AV023-ANKRD22 
complex, ∆Gbind = -38.66 ± 6.09 kcal/mol, 20.65 ± 6.77 
H-bonds and ∆Gbind = -24.38 ± 7.33 kcal/mol, 8.79 ± 
5.36 H-bonds, respectively. Table 5 shows the top ten 
H-bonds possessing the highest occupancy rate. Most 
of the residues were the components of the proposed 
binding site predicted by Cavityplus. Generally, the 
fostamatinib-ANKRD22 complex possessed H-bonds 
whose occupancy rate was greater than the 
AV023-ANKRD22 complex. TYR90 Side-LIG192 Side, 
MET107 Side-LIG192 Side, and PHE85 Side-LIG192 
Side were the identical pairwise residues between the 
complexes. The H-bonds possessing the highest 
occupancy percentage for each complex were PHE85 
Side-LIG192 Side (207.01%) and LIG192 Side-THR111 
Side (113.03%). 

 

Table 5. The occupancy rates of the top ten H-bonds occupying 
the highest occupancy rate in MD simulations of fostamatinib and 
AV023 to ANKRD22 

Ligands  Donor Acceptor Occupancy rates (%) 
FOSTAMATINIB PHE85-Side LIG192-Side 207.01% 

LIG192-Side PHE85-Side 165.33% 
GLN148-Side LIG192-Side 132.02% 
SER149-Side LIG192-Side 125.84% 
TYR90-Side LIG192-Side 114.24% 
LIG192-Side GLY103-Main 96.45% 
ILE93-Side LIG192-Side 92.14% 
MET107-Side LIG192-Side 77.95% 
LYS146-Side LIG192-Side 77.58% 
GLN148-Main LIG192-Side 73.47% 

AV023 LIG192-Side   THR111-Side  113.03% 
LYS84-Side   LIG192-Side  99.27% 
TYR90-Side   LIG192-Side  79.24% 
MET107-Side  LIG192-Side 40.30% 
PHE85-Side   LIG192-Side  38.65% 
LIG192-Side   LYS83-Main  36.85% 
LIG192-Side   TYR90-Side  35.06% 
THR111-Side   LIG192-Side  32.65% 
TYR104-Side   LIG192-Side  32.63% 
LIG192-Side   TYR104-Side  31.50% 

 
Fig. 7G presents the RMSF Cα values of residues 

that fluctuated in MD simulations. The two complexes 
have fluctuating RMSF values in the α-helix PHE87 - 
ILE102 compared to the apoprotein state. PCA results 
(Fig. 7H, left side) show that both complexes 
occupied a minor spatial motion more than the 
apoprotein state; the ANKRD22-Fostamatinib 
complex occupied the smallest one. The porcupine 
plot (Fig. 7H, right side) illustrates that the direction 
and magnitude of movements of the Cbackbone of 
complexes and apoprotein states were similar. The 
residue at α-helix PHE87 - ILE102 fluctuated the most. 
This observation fitted with the RMSF Cα analysis. 
The displacement of ligands in the binding pocket of 
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ANKRD22 was observed at the 150 ns MD 
simulations, as indicated in Fig. 7I, showing that 
fostamatinib changed position after 50 ns simulations 
and then kept this position on during the last 

simulation period. In contrast, AV023 shifted 
significantly at the observation times 0, 50, 100, and 
150 ns. 

 

 
Figure 6. Molecular docking of fostamatinib and AV023 bound to ANKRD22. (A) The 3D complexes of fostamatinib and AV023 docked to ANKRD22's binding pocket. (B) The 
2D diagram of fostamatinib and AV023 in complex with ANKRD22 shows interactions with Hydrogen bonds and binding distances. (C) Hydrophobic interactions between 
fostamatinib and ANKRD22, and AV023 and ANKRD22. 
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Figure 7. Molecular dynamics simulation of fostamatinib and AV023 to ANKRD22. (A) Solvent Accessible Surface Area (SASA), (B) Radius of Gyration (Rg), (C) Root Mean 
Square Deviation (RMSD) Cbackbone of protein, (D) RMSDnonH of ligand, (E) Binding free energy MM/ GBSA, and (F) Number of H-bonds of complex analyzed based on 150 
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ns MD simulation data. (G) RMSF Cα values of ANKRD22 residues in MD simulation 150 ns. (H) 2D projection of ANKRD22 in complex and apoprotein state calculated against 
150 ns MD simulated trajectories, and Porcupine plot of EV1 motion. (I) The displacement of ligands in the binding pocket of ANKRD22 was observed at the 150 ns MD 
simulation. (J) Decomposition energy for the top ten amino acid residues corresponding to each complex. Van der Waals: black; Electrostatic: red; Polar Solvation: blue; 
Non-polar solvation: green and Total: purple). (K) The free energy landscapes were obtained at 150 ns MD simulation for free ANKD22 (left panel), ANKD22-AV023 complex 
(middle panel), and ANKD22-Fostamatinib complex (right panel). 

 
Free energy decomposition analyses were 

performed to determine the key residues in the 
interaction between ANKRD22 and fostamatinib or 
AV023. The residues were considered key when the 
total ∆Gbind was less than -1.5 kcal/mol at their 
position. Fig. 7J visualizes the top ten residues for 
each complex and Table 6 presents eight key residues, 
including ASN147, ASN114, GLN148, LYS110, LYS84, 
LYS146, LYS83 and THR111, in the 
fostamatinib-ANKRD22 complex, while the 
AV023-ANKRD22 complex has four residues: ASN 
147, LYS84, LYS146, and THR111. Among residues, 
ASN147 achieved the highest free energy in both 
complexes. 

 

Table 6. Free energy decomposition for key residues in MD 
simulations of fostamatinib and AV023 to ANKRD22 

Ligands Residue van 
der 
Waals 

Electrostatic Polar 
Solvation 

Non-Polar 
Solv. 

TOTAL 

FOSTAMATINIB ASN 
147 

-7.18 -74.36 -0.15 0.00 -67.17 

ASN 
114 

-6.82 -66.43 -5.03 0.08 -64.79 

GLN 
148 

-6.32 -44.29 -7.18 0.32 -41.67 

LYS 110 -6.11 46.51 -97.04 0.37 -38.46 
LYS84 -5.76 72.16 -115.59 0.59 -31.77 
LYS 146 -6.00 68.71 -116.03 0.69 -29.65 
LYS83 -7.15 92.62 -133.91 0.41 -29.58 
THR 
111 

-3.60 -12.72 -1.20 0.12 -2.12 

AV023 ASN 
147 

-6.06 -68.41 -3.92 0.08 -63.92 

LYS84 -4.77 69.80 -114.24 0.74 -30.78 
LYS 146 -5.55 66.34 -112.78 0.82 -28.78 
THR 
111 

-3.72 -11.97 -2.07 0.18 -2.29 

 
Furthermore, we leveraged the FEL analysis to 

precisely portray a protein's most stable 
conformational ensembles. Fig. 7K displays the FELs 
of the ANKD22, AV023-ANKD22 complex, and 
fostamatinib-ANKD22 complex, where the deeper 
blue indicates the most stable conformational state 
with the lowest energy. Although AV023-ANKRD22 
possessed the lowest range of FEL (0 - 13.2 Kj/mol) 
compared to those of ANKRD22 and 
fostamatinib-ANKRD22 (0 - 13.4 Kj/mol and 0 - 13.7 
Kj/mol, respectively), it had two global minimum and 
two local minimum illustrated by two clear, distinct 
basins (Fig. 7K - middle panel); this indicates that 
when AV023 interacts with ANKRD22 might lead to a 
transition between these two states. 

Fostamatinib-ANKRD22 had a single global 
minimum confined within a single basin smaller than 
the basin in the AV023-ANKRD22 complex. The 
global minimum of the fostamatinib-ANKRD22 
complex also shares a single energy basin with the 
apo form. FEL analysis indicates that the presence of 
AV023 alters both the size and position of ANKRD22's 
energy basin. In contrast, the fostamatinib-ANKRD22 
complex remains largely unaffected. 

These findings suggest that fostamatinib has a 
more stable binding to ANKRD22 and holds potential 
as a promising drug to inhibit PC by suppressing 
ANKRD22. 

Discussion 
Pancreatic cancer is one of the most notorious 

cancers; its malignancy is reflected by the 5-year 
survival rate limited to 10% in the US. Besides 
non-specific markers and symptoms for early 
detection, insufficient standard treatment also 
resulted in this dismal rate. Another factor that might 
contribute to this rate is metastasis. Indeed, the 5-year 
survival rate dramatically drops to 3% when the 
primary tumor metastasizes to foreign organs. 
Gemcitabine is the standard drug for PC therapy so 
far. However, with its versatile characteristics, PC 
easily adapts to the Gemcitabine effects, thereby 
increasing the number of patients harboring 
Gemcitabine-resistant traits [65, 66]. Therefore, more 
attention must be paid to understanding the 
fundamental pathways of tumorigenesis in PC, 
especially for metastasis. Similarly, finding new 
therapeutic approaches to overcome chemo-resistant 
status remains an urgent clinical need. 

In the present study, we successfully identified 
ANKRD22, which might be a novel oncogene in mPC. 
ANKRD22, ankyrin repeat domain 22, is 
characterized by containing repeat 33-amino acid 
length ankyrin motifs. This confers ANKRD22 a wide 
range of interactions with various proteins and might 
contribute to multiple disease-associated 
pathophysiological pathways, even cancer, such as 
lung, colorectal, and ovarian cancer; ANKRD22 
functions in different roles, either as a tumor 
suppressor or supporter. Our study aimed to explore 
the specific functions of ANKR22 in PC. A 
comparison analysis was applied for two distinct 
RNA-seq datasets deriving PC cell lines and 
PC-driven metastatic tissues. Compared to the normal 
group, ANKRD22 was extensively expressed in the 
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PC group and highly impacted the OS rate. Our 
observations implied that ANKRD22 might be the 
potential marker for PC diagnosis. This is in line with 
the results of Caba et al. After profiling transcriptomic 
data sequencing from peripheral blood samples of PC 
patients, the authors identified ANKRD22 as a 
predictor gene for PC [12]. Intriguingly, we found that 
ANKRD22 expression was statistically significantly 
different across tumor stages. Its expression in stage 
IV was the most pronounced, highlighting the 
prognostic potential of ANKRD22. Mutated genes, 
including KRAS and TP53, have been reported to be 
well-involved in PC initiation [67]. Our results 
showed that ANKRD22 was significantly upregulated 
in the variant KRAS or TP53 group compared to the 
wildtype group; when ANKRD22 and these 
oncogenic simultaneously expressed, it substantially 
worsened the OS rate. These findings further 
underscored the crucial importance of ANKRD22 in 
PC. Besides, GSEA analyses indicated that the most 
significant oncogenic signature of ANKRD22 in PC 
was KRAS dependency. Our findings were 
concordant with the observations of Singh et al. They 
revealed that ANKRD22 was highly expressed in 
KRAS-mutant cell lines [13]. The transcription factor 
E2F1 interferes with cell cycle regulation, resulting in 
tumor growth. In association with ANKRD22, E2F1 
was demonstrated to play an oncogenic role in 
non-small lung and glioma cancer progression [10, 
68]. In line with these findings, the hallmark E2F targets 
was the most significant hallmark when ANKRD22 
was highly expressed. Furthermore, the G2M 
checkpoint was also identified in this study. These two 
processes might synergize to get involved in PC 
promotion. Consequently, ANKRD22 might be a 
prospective oncogene not only for diagnosis and 
prognosis but also a candidate for treatment 
modalities. 

With the promising potential of ANKRD22 we 
had found above, we expected to find a specific drug 
that can inhibit PC mediated by ANKD22. Although 
we failed to determine the medicines that interact 
directly with ANKRD22, we figured out RIPK4, a 
target of ANKRD22. Our results showed that RIPK4 
positively correlated with ANKRD22, and their 
co-expression shortened the OS rate in PC. Notably, 
Chembl and Drugbank helped us identify 
fostamatinib, which targets RIPK4. RIPK4 was a 
critical molecule possessing high metastatic potential 
for PC patients characterized by high 
carcinoembryonic antigen (CEA) and cancer antigen 
125-positive (CA125+)/CA19-9 levels. Moreover, 
RIPK4 has been reported to be involved in activating 
RAF1/MEK/ERK, which has promoted metastasis 
[69]. As shown in IPA analysis, we pinpointed that 

upon its high expression, ANKRD22 might activate 
specific metastatic traits encompassing migration and 
invasion of tumor cells. RIPK4 and ANKRD22 have 
similar biological functions and a favorable 
correlation. Therefore, these results suggest that when 
fostamatinib targets RIPK4, it might interact with 
ANKRD22. In order to further investigate the 
interactions between fostamatinib and ANKRD22, the 
STITCH database was utilized. Interestingly, a 
well-known target of fostamatinib, SYK- spleen 
tyrosine kinase, appeared in the 
ANKRD22-fostamatinib network. Singh et al. reported 
that SYK and ANKRD22 were expressed in 
Kras-dependent PC cell lines, while their expression 
was not detected in Kras-independent PC cell lines 
[13]. In our investigation, we found a significant 
correlation between ANKRD22 and SYK. Hence, 
ANKRD22 is likely to be targeted by fostamatinib. 
Fostamatinib is often known by the alternative name 
R406, which has emerged as a prospective candidate 
for drug repurposing, especially for cancer treatment. 
Apart from the original purpose of fostamatinib, 
inhibiting SYK to treat immune thrombocytopenia 
disease, there was one current study that has proven 
that SYK suppression by fostamatinib impacted 
tumor-associated macrophages behavior and 
improved the sensitize PC to gemcitabine [70]. This 
interesting result highlighted the importance of 
fostamatinib in the context of the PC-related immune 
microenvironment and strengthened our hypothesis 
that fostamatinib might hinder PC growth. 
Furthermore, when ANKRD22 was ablated in the 
Kras-dependent cell lines, one of the key enzymes 
associated with the apoptosis process, caspase-3, was 
substantially elevated, as reported in the study of 
Singh et al. [13]. Many major constituents of the NF-kB 
pathway were also presented in STITCH results, 
which might have an association with TNFα via NF-ĸB 
hallmark listed in GSEA. As well-documented, NF-kB 
is an anti-apoptosis leading to uncontrolled 
proliferation of tumor cells, eventually promoting 
cancer [71, 72]. Thus, NF-kB might be a promising 
pathway that ANKRD22 might exploit for PC tumor 
initiation. If fostamatinib suppresses ANKRD22, the 
NF-kB might be impacted the most. It will be crucial 
to conduct experiments to validate this hypothesis. 

Molecular docking and molecular dynamic 
simulation are valuable methods for exploring the 
bound modes between ligands and proteins, 
especially the interaction between drugs and target 
proteins. Our recent work aimed to demonstrate 
whether ANKRD22 was a target of fostamatinib 
owing to these two approaches. While molecular 
docking helped us predict the binding modes 
between ANKRD22 and fostamatinib at static 
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conditions, MDs served to validate the resultant 
molecular docking, particularly at the atomic level, 
where the free energy will be re-scored and give a 
more realistic prediction of the interaction. As 
anticipated, molecular docking and MDs presented 
the same prediction: fostamatinib bound to 
ANKRD22 with a high number of hydrogen bonds 
and a high free energy, ΔG = -7.0 kcal/mol in 
molecular docking and ∆Gbind = -38.66 ± 6.09 kcal/mol 
in MD simulation. Until recently, only one study has 
evaluated ANKRD22 docking with another 
compound, AV023. The comparative analysis showed 
that fostamatinib-targeted ANKRD22 yielded a 
stronger affinity than AV023-ANKRD22 binding, 
which was indicated via the ΔG. As illustrated in the 
MDs, ANKRD22 contained more H-bonds, and their 
occupancy rate was higher than that of AV023. In 
other words, fostamatinib formed with ANKRD22, a 
more stable complex than AV033 generated. Even 
though, throughout the 150s of MDs, fostamatinib 
changed its position in the binding pocket in the first 
30s, it kept the last site until the end, whereas AV023 
changed continuously. These findings reinforced our 
hypothesis that fostamatinib might suppress target 
ANKRD22. As revealed in MD results, the α-helix 
PHE87 - ILE102 residue fluctuated most during the 
MD process. This possibly implies that more 
interactions are likely to occur at this residue. Stated 
differently, α-helix PHE87 - ILE102 might play a 
specific function in ANKRD22 protein. In line with 
the NF-kB pathway explored above, fostamatinib 
likely impacts ANKRD22 at α-helix PHE87 - ILE102, 
leading to the activation of the NF-kB pathway, 
contributing to cell proliferation and apoptosis [73]. 
Besides, for the first time, the key amino acid residues 
of ANKRD22 were identified and described, 
including ASN147, ASN114, GLN148, LYS110, LYS84, 
LYS146, LYS83, and THR111. The presence of these 
residues enhanced the stabilization of fostamatinib 
and ANKRD22. 

Although our study yielded promising findings, 
there were some limitations. The correlations between 
ANKRD22 and RIPK4 or SYK were not extensively 
strong, just at a moderate level. This result might be 
affected by the small sample size, range restriction, or 
outliers. As shown in Fig. 5A, the mean expression of 
ANKRD22 was around 3.5 log2TPM; many other 
values fall far from this point, indicating the outliers. 
These outliers might cause the mispresent in the 
correlation. The unavailable crystal structure of 
ANKRD22 might impact the evaluation of its 
interaction and fostamatinib. Nevertheless, we used 
various approaches such as Drugbank, Chembl, 
STITCH, and Cavityplus 2022, which facilitated us 
rapidly identifying fostamatinib and further 

understanding ANKRD22 structure. In particular, the 
combined use of molecular docking and MD 
simulations provided a comprehensive 
understanding of the interactions between our two 
targets. Despite compelling findings, we utilized 
bioinformatics approaches. Therefore, we will 
conduct corresponding experiments to validate these 
results further. Owing to the results, such as 
ANKRD22 remarkably expressed in the tumor group, 
potentially contributing to the NF-kB pathway and 
metastatic process, the qPCR and western blot could 
be conducted to investigate relevant components. 
Fostamatinib would be used to validate the potency in 
vitro and in vivo. Hopefully, this study will not only 
provide the fundamental concepts of ANKRD22's role 
in PC and even metastatic PC but also place the first 
brick for the invention of ANKRD22-targeted 
anti-cancer therapy. 
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