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Abstract 

Objectives: Despite significant advancements in medical treatments, the creation of a successful 
treatment strategy for acute kidney injury (AKI) remains a pressing concern. Given the well-documented 
clinical benefits of canagliflozin in renal protection, our research focused on exploring the possible 
therapeutic benefits of canagliflozin in treating AKI, with a focus on its underlying mechanisms of action. 
Methods: To induce AKI, we utilized lipopolysaccharide (LPS) in the presence of canagliflozin, allowing 
us to assess the drug's effects on kidney function and structure.  
Results: Our results indicate that canagliflozin lowered blood urea nitrogen and serum creatinine 
concentrations while enhancing tubular architecture in rodents with LPS-triggered septic AKI. It 
additionally diminished inflammation, oxidative damage, and tubular cell apoptosis. In vitro, canagliflozin 
maintained mitochondrial functionality in LPS-exposed HK-2 cells by stabilizing membrane potential, 
reducing ROS generation, and normalizing respiratory chain activity. Its benefits were facilitated through 
the AMPKα1/PGC1α/NRF1 axis, promoting mitochondrial regeneration. Importantly, blocking this 
pathway or employing AMPKα1-deficient animals negated canagliflozin’s protective effects, highlighting 
the essential role of AMPKα1 in its kidney-protective mechanisms. 

Conclusion: Our investigation implies that canagliflozin might represent a viable treatment strategy for 
septic AKI, operating through the stimulation of the AMPKα1/PGC1α/NRF1 axis to preserve kidney 
performance and structural integrity. These findings warrant further investigation into the clinical 
potential of canagliflozin in this context. 

Keywords: SGLT2i, LPS-mediated kidney damage, mitochondria, AMP. 

Introduction 
AKI’s clinical manifestations vary depending on 

the underlying reasons while this condition is 
typically characterized by three primary features [1]. 
The AKI’s occurance is significant, affecting 
approximately 14% of hospitalized patients, with a 
substantially higher prevalence of 50% observed in 
individuals with pre-existing renal dysfunction [2]. 
Consequently, there exists an urgent necessity to 
investigate innovative treatment options which may 
effectively treat LPS-caused renal dysfunction, with 

the ultimate goal of reducing mortality rates among 
affected patients.  

Canagliflozin is a novel SGLT2 inhibitor that 
reduces glucose accumulation through elevating 
urinary glucose release [3]. Beyond the heart, research 
data also support its renoprotective effects, such as 
reducing proteinuria and maintaining glomerular 
filtration rate, thereby improving outcomes in 
patients with renal failure. [4]. These clinical 
protective effects have been further explored and 
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confirmed by basic research, showing that 
Canagliflozin can alleviate renal fibrosis, improve 
tubular injury, and reduce glomerular damage under 
hyperglycemic conditions [5]. By mitigating 
inflammatory responses and facilitating metabolic 
reprogramming, it exerts beneficial effects on the 
cardio-renal syndrome [6]. By mitigating 
inflammatory responses and facilitating metabolic 
reprogramming, it exerts beneficial effects on the 
cardio-renal syndrome. 

Mitochondrial dysfunction is increasingly 
recognized as a central player in the pathophysiology 
of AKI. Mitochondria, as the energy powerhouse of 
cells, are critical for tubular cell survival and function. 
Insults such as ischemia-reperfusion or sepsis disrupt 
mitochondrial homeostasis, leading to ATP depletion, 
oxidative stress, and activation of apoptotic pathways, 
which collectively exacerbate tubular damage. 
Mitochondrial biogenesis, a process that replenishes 
the mitochondrial pool, has emerged as a key defense 
mechanism against these injuries. Recent studies 
suggest that enhancing mitochondrial biogenesis 
could alleviate AKI by restoring energy balance and 
reducing oxidative damage, making it a promising 
therapeutic target. 

Recent findings highlight a complex interplay 
among AMPK, LPS-related kidney damage, and 
SGLT2 inhibitors (SGLT2i), offering insights into their 
potential therapeutic connections. AMPK, a key 
metabolic regulator, mitigates LPS-induced kidney 
damage by reducing inflammation, oxidative stress, 
and fibrosis while promoting autophagy and energy 
homeostasis [7, 8]. LPS, a major driver of 
sepsis-related acute kidney injury, activates TLR4 
signaling, leading to systemic inflammation, oxidative 
damage, and microvascular dysfunction, which 
exacerbate renal injury [9, 10]. SGLT2 inhibitors, 
traditionally used for glucose control, have 
demonstrated renoprotective effects by lowering 
intraglomerular pressure, enhancing mitochondrial 
function, and attenuating inflammation and oxidative 
stress. Notably, recent studies suggest that SGLT2i 
may indirectly activate AMPK or share overlapping 
protective pathways, such as reducing inflammation 
and metabolic stress [11-13]. This emerging interplay 
indicates that targeting AMPK activation and 
leveraging the anti-inflammatory and metabolic 
effects of SGLT2i could synergistically counteract 
LPS-induced renal damage, providing a promising 
strategy for managing sepsis-associated kidney 
dysfunction.  

Building on this foundation, using 
lipopolysaccharide (LPS)-induced septic AKI in mice 
and human proximal tubular cells (HK-2), we 
investigated the effects of canagliflozin on 

mitochondrial homeostasis, tubular cell survival, and 
renal function. We further evaluated the dependency 
of these effects on AMPKα1 by employing genetic 
knockout models and pharmacological inhibitors. 

Here, we demonstrate that canagliflozin 
significantly alleviates LPS-induced renal dysfunction 
by restoring mitochondrial biogenesis and reducing 
oxidative stress, inflammation, and apoptosis in 
tubular cells. These outcomes are facilitated via the 
stimulation of the AMPKα1/PGC1α/NRF1 pathway, 
as AMPKα1 inhibition abolished the mitochondrial 
protective effects of canagliflozin. Our findings not 
only uncover a novel mechanism underlying 
canagliflozin’s renoprotective effects but also 
establish the AMPKα1 as as an essential treatment 
focus for alleviating septic AKI. 

Our study addresses a critical gap in AKI 
research by linking the pharmacological benefits of 
canagliflozin to mitochondrial biogenesis and 
AMPKα1 activation, providing a molecular basis for 
its therapeutic potential in septic AKI. By integrating 
cellular, molecular, and functional analyses, our work 
lays the groundwork for future clinical investigations 
aimed at translating these findings into effective 
therapies for AKI [14, 15]. 

Materials And Methods 
Ethics approval  

All animal experiments were approved by the 
Nanfang Hospital, Southern Medical University (NO. 
GSE148702). Animals were handled following the US 
National Institutes of Health Guide for the Care and 
Use of Laboratory Animals. 

Mice 
WSeptic AKI was induced by administering 12 

mg/kg lipopolysaccharide via injection, following a 
previously established protocol. Mice were assessed 
24 hours post-treatment. In an independent study, 
mice received a daily dose of 10 mg/kg canagliflozin 
for a week prior to the onset of septic acute kidney 
injury [16, 17]. Furthermore, to suppress AMPKα1 
function, animals were pretreated with compound C 
(10 mg/kg) 3 hours prior to canagliflozin 
administration, and this dosing schedule was 
maintained for a week preceding the onset of septic 
acute kidney injury [18-20].  

Immunofluorescence 
A standardized immunofluorescence staining 

procedure was used to prepare samples for 
microscopy, enabling the detection and localization of 
target proteins and structures [21-23]. 
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ELISA 
The levels of Scr and BUN were quantified using 

ELISA kits specifically designed for mouse samples. 
To evaluate the degree of programmed cell death, 
caspase-3 activity was quantified employing a 
commercially available immunoassay [24, 25]. This kit 
provided a sensitive and quantitative means of 
detecting caspase-3 activity, which is a key indicator 
of apoptotic cell death [26, 27]. The concentrations of 
various antioxidant enzyme were determined in the 
culture media of HK-2 cells using ELISA kits. 
Nonetheless, these ELISA kits were used according to 
the manufacturers' protocols to ensure accurate and 
reliable results [28-32].  

Evaluation of mitochondrial performance and 
oxidative stress visualization 

The mitochondrial potential wasevaluated with 
a fluorescent probe, following a previously 
established protocol. To evaluate the levels of ROS 
within the mitochondria and the cell as a whole, two 
specialized kits were employed. The MitoSOXTM Red 
Mitochondrial ROS Kit (#M36008, Invitrogen) was 
used to specifically measure mitochondrial ROS, 
while the Image-ITTM LIVE Green ROS Kit (#I36007, 
Invitrogen) was utilized to detect cellular ROS [33]. 
These kits provided a sensitive and quantitative 
means of assessing ROS levels, allowing for a 
comprehensive understanding of oxidative stress 
within the cell. The production of adenosine 
triphosphate (ATP), a key indicator of cellular energy 
metabolism, was determined. This kit enabled the 
accurate measurement of ATP levels [27, 34, 35]. By 
using these specialized kits, a detailed understanding 
of mitochondrial function, ROS levels, and cellular 
energy metabolism could be obtained, facilitating the 
investigation of complex cellular processes and the 
evaluation of potential therapeutic strategies [30, 36, 
37]. 

Evaluation of cell viability  
The HK-2 cell line was maintained in a 

controlled environment and treated with LPS to 
induce septic AKI-like conditions [38, 39]. 
Canagliflozin was added to the cells to investigate its 
potential protective effects, and AMPKα1 activity was 
inhibited using compound C to examine its 
involvement in canagliflozin's effects. Cell viability 
was measured using a CCK-8 assay, facilitating the 
assessment of canagliflozin's protective effects on 
HK-2 cells under septic AKI-like conditions [40, 41]. 
This study utilized an in vitro model to elucidate the 
mechanisms of canagliflozin's potential protective 
effects and the contribution of AMPKα1 to these 
effects [42, 43].  

qRT-PCR analysis 
The expression of target genes was assessed 

through a multi-step process involving RNA 
extraction, reverse transcription, and quantitative 
PCR analysis [44]. The data were subsequently 
normalized to an internal control and subjected to a 
comparative quantification method to determine the 
fold changes in transcript levels, with a focus on genes 
involved in inflammatory responses [45, 46]. 

TUNEL staining 
Apoptotic cells in kidney tissue were identified 

using TUNEL staining, a reliable method that 
involves labeling fragmented DNA [47, 48]. 

Western blot analysis 
The analysis of protein expression involved a 

sequential process, comprising cell disruption, protein 
quantification, gel electrophoresis, and 
antibody-mediated detection [49]. The resulting 
protein profiles were subsequently visualized using a 
chemiluminescent detection system and analyzed 
using a digital imaging platform, yielding a precise 
and reliable assessment of protein abundance [50, 51]. 

Measurement of ATP and lactate 
A multifaceted experimental strategy was 

devised to investigate the bioenergetic properties of 
HK-2 cells. Following a 24-hour cultivation period, 
the cells' energetic state was evaluated through the 
quantification of ATP content using a specialized 
assay, while the accumulation of lactate in the 
surrounding medium was also monitored [52]. To 
ensure the accuracy and reliability of the results, the 
data were calibrated to account for any discrepancies 
in cellular density, thereby yielding a detailed and 
nuanced portrayal of the cells' metabolic landscape 
[53]. 

Statistical analysis 
IBM SPSS Statistics 25.0 was used for data 

analysis, with t-tests, ANOVA, and post hoc tests 
applied to determine significance at P < 0.05 [54]. 

Results 
Canagliflozin protects renal function in 
lipopolysaccharide kidney injury 

Administering canagliflozin for seven days 
before AKI induction enhanced kidney performance, 
demonstrated by decreased blood urea nitrogen 
(BUN) and serum creatinine (Scr) concentrations. 
(Figure 1A-B). LPS-triggered AKI additionally 
elevated pro-inflammatory cytokines, such as IL-6, 
Ccl2, and TNFα (Figure 1C-E), while Inhibiting 
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antioxidant enzymes like GSH, SOD, and GPX (Figure 
1F-H), resulting in oxidative stress and kidney 
damage. Canagliflozin pretreatment lowered cytokine 
expression and restored antioxidative defenses, 
demonstrating its protective effects through 
anti-inflammatory and antioxidative mechanisms. 

Canagliflozin protects against tubular cell 
death in AKI 

Tubular cell death, a hallmark of acute kidney 
injury (AKI), was assessed by measuring caspase-3 
activity in lipopolysaccharide (LPS)-treated kidneys. 
LPS significantly increased caspase-3 activity, 
indicating heightened apoptosis, while canagliflozin 
reduced it to near-normal levels (Figure 2A). Western 
blot analysis showed that LPS LPS increased the 
expression of pro-apoptotic Bax and decreased 

anti-apoptotic Bcl-2, disrupting the Bax/Bcl-2 balance 
and promoting cell death (Figure 2B-C). Canagliflozin 
restored this balance, enhancing cell survival. In vitro 
studies using HK-2 cells further confirmed these 
effects (Figure 2D). These results demonstrate that 
canagliflozin prevents tubular cell death in AKI by 
modulating apoptosis and promoting cell viability. 

Canagliflozin mitigates mitochondrial 
dysfunction in AKI 

Maintaining mitochondrial integrity is essential 
for tubular cell survival, as mitochondrial damage 
often precedes cell death. To assess whether 
canagliflozin supports tubular cells by preserving 
mitochondrial function, we evaluated its impact on 
mitochondrial health in HK-2 cells. ATP production, a 
key mitochondrial activity, was significantly reduced 

 

 
Figure 1. Canagliflozin preserves kidney function in lipopolysaccharide-induced AKI. WT mice were injected with lipopolysaccharide (12 mg/kg body weight) to 
induce septic AKI, and were evaluated after 24 hours. Canagliflozin (10 mg/kg/day) was administered to the mice for seven days prior to the induction of septic AKI. (A, B) ELISAs 
were used to determine BUN and Scr levels in mice with septic AKI. (C-E) RNA was isolated from the kidneys after septic AKI, and qRT-PCR was used to assess the 
transcription of IL-6, Ccl2 and TNFα. (F-H) ELISAs were used to measure the activities of anti-oxidative enzymes such as GSH, SOD and GPX in kidney tissues. #p<0.05. 
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in lipopolysaccharide (LPS)-treated cells, 
accompanied by elevated lactic acid levels (Figure 
3A-B). Canagliflozin restored ATP synthesis and 
reduced lactic acid, suggesting improved 
mitochondrial function. Further analysis revealed that 
LPS suppressed the activity of complexes I/III, critical 
for ATP production, while canagliflozin reversed this 
inhibition (Figure 3C-D). Similarly, LPS disrupted 
mitochondrial membrane potential, as measured by 
JC-1 staining, whereas canagliflozin stabilized it, 
highlighting its protective role (Figure 3E). 
LPS-induced mitochondrial dysfunction also 
triggered an accumulation of mitochondrial reactive 
oxygen species (ROS), but canagliflozin effectively 
prevented this oxidative stress (Figure 3F). 
Collectively, these findings demonstrate that 
canagliflozin safeguards mitochondrial function and 
homeostasis in LPS-treated tubular cells, promoting 
their survival under stress. 

AMPK and mitochondria function as the 
downstream of canagliflozin 

Our investigation into the downstream effects of 
canagliflozin involved the analysis of a publicly 
available dataset, GSE148702, which comprised data 

from diet-induced obesity (DIO) C57BL/6J mice 
treated with canagliflozin. These mice were compared 
to both high-fat diet (HFD) controls and 
weight-matched controls subjected to caloric 
restriction. Through differential gene expression 
analysis utilizing the limma package, we identified a 
significant upregulation of genes encoding AMPK 
subunits, specifically Prkaa1 and Prkaa2 (Figure 4A). 
The expression profiles of the AMPK gene family 
were visualized through heatmaps (Figure 4B), while 
violin plots illustrated the expression distribution of 
Prkaa1 and Prkaa2 between the canagliflozin-treated 
and HFD groups (Figure 4C). 

To further elucidate the functional implications 
of these findings, we conducted a GO analysis. Within 
the molecular function (MF) category, terms such as 
vitamin B6 binding, pyridoxal phosphate binding, 
and oxidoreductase activity were highly enriched. 
The cellular component (CC) analysis predominantly 
highlighted enrichment in mitochondrial 
protein-containing complexes, mitochondrial matrix, 
and inner mitochondrial membrane protein 
complexes (Figure 4D-G). 

 

 
Figure 2. Canagliflozin reduces tubular death during AKI. WT mice were injected with lipopolysaccharide (12 mg/kg body weight) to induce septic AKI, and were 
evaluated after 24 hours. Canagliflozin (10 mg/kg/day) was administered to the mice for seven days prior to the induction of septic AKI. To establish an in vitro model of septic AKI 
in tubular cells, HK-2 cells were challenged with lipopolysaccharide (10 μg/mL) for 24 hours. Control cells were treated with PBS. Canagliflozin (10 μM) was added to the HK-2 
cell culture medium 24 hours before lipopolysaccharide treatment. (A) ELISA was used to determine the activity of caspase-3. (B-C) Proteins were isolated from HK-2 cells, and 
Western blotting was used to assess the expression of Bax and Bcl-2. (D) A CCK-8 assay was used to analyze cell viability. #p<0.05. 
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Figure 3. Canagliflozin ameliorates AKI-induced mitochondrial dysfunction. To establish an in vitro model of septic AKI in tubular cells, HK-2 cells were challenged 
with lipopolysaccharide (10 μg/mL) for 24 hours. Control cells were treated with PBS. Canagliflozin (10 μM) was added to the HK-2 cell culture medium 24 hours before 
lipopolysaccharide treatment. (A, B) ELISAs were used to measure ATP production and lactic acid levels in HK-2 cells treated with lipopolysaccharide. (C, D) ELISAs were used 
to analyze alterations in mitochondrial respiratory complex I and III activity. (E) A JC-1 probe was used to measure the mitochondrial membrane potential. (F) 
Immunofluorescence staining was used to display mitochondrial ROS accumulation in HK-2 cells. #p<0.05. 

 
KEGG analysis showed enrichment in pathways 

associated with peroxisome, and cholesterol 
metabolism. By analyzing enriched BP and CC 
categories directly associated with mitochondrial 
processes, we were able to provide a focused 
visualization of mitochondrial-related pathways. 
These results collectively underscore the pivotal role 
of differentially expressed genes (DEGs) in 
modulating mitochondrial function (Figure 4D-G). 

A more in-depth analysis of 
mitochondrial-enriched biological processes (Figure 
4H) was conducted to gain deeper insights into how 
canagliflozin influences mitochondrial biogenesis and 
functionality. The bar chart illustrates the most 
significantly enriched mitochondrial-related 
biological processes. The intensity of bar colors 
denotes the significance level (FDR), the bar length 
reflects the enrichment ratio, and the bar width 
indicates the number of genes involved in each 
process. Notable enriched processes included 
mitochondrial RNA processing, mitochondrial DNA 
replication, mitochondrial translation regulation, 
electron transport chain assembly, ATP synthesis, 
cytochrome c release regulation, mitochondrial 
autophagy, and calcium ion transport. These findings 

emphasize the critical function of mitochondria in 
energy generation, metabolic control, and cellular 
equilibrium. 

Similarly, the bar chart in Figure 4I illustrates the 
most significantly enriched mitochondrial cellular 
components. The x-axis represents the enrichment 
ratio, while the y-axis lists specific cellular 
components. The color intensity of the bars reflects 
the FDR significance, bar length denotes the 
enrichment ratio, and bar width represents the 
number of genes associated with each component. 
The analysis highlights the significant enrichment of 
various mitochondrial structures, including the outer 
membrane protein complex, mitochondrial ribosome, 
tricarboxylic acid cycle enzyme complex, TIM23 
translocase complex, respiratory chain complexes, 
ATP synthase complex, ribosomes, mitochondrial 
matrix, cristae, and mitochondria-associated 
endoplasmic reticulum membranes. 

Together, these enriched processes and 
structural components underscore the central role of 
mitochondrial regulatory mechanisms in maintaining 
cellular energy metabolism and homeostasis. The data 
strongly suggest that canagliflozin exerts its 
therapeutic effects, at least in part, through the 
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modulation of key mitochondrial functions, thereby 
highlighting its potential in managing obesity-related 

metabolic dysfunctions.  

 

 
Figure 4. AMPK And mitochondria funciton downstream of Canagliflozin. (A) Volcano plot showing differential gene expression. The x-axis represents the log2 fold 
change in gene expression, while the y-axis indicates the -log10 adjusted p-value. Genes with greater negative log2 fold changes are significantly downregulated in the treatment 
group. The higher the position of a point, the stronger its statistical significance, and the farther from zero, the larger the expression change. (B) Circular heatmap displaying the 
expression patterns of seven AMPK subunit genes (Prkaa1, Prkaa2, Prkab1, Prkab2, Prkag1, Prkag2, Prkag3) in the canagliflozin-treated group (red, n=4) and HFD group (blue, n=4). 
Each ring represents a sample, with color intensity reflecting gene expression levels (range: 4–8). (C) Violin plots illustrating the expression distributions of Prkaa1 and Prkaa2 
between the control and treatment groups. The y-axis represents gene expression levels, while the violin shape indicates probability density. Internal boxplots denote the median 
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and interquartile range. Statistical analysis by t-test showed no significant differences for Prkaa1 (p=0.41) or Prkaa2 (p=0.14). (D) Bar chart showing the top 20 enriched biological 
processes (BPs), primarily related to mitochondrial function, energy metabolism, and amino acid metabolism. The x-axis represents the enrichment ratio, and the y-axis lists 
biological processes. Bar color intensity indicates FDR significance, length reflects the enrichment ratio, and width represents the number of genes involved. (E) Bar chart of the 
top 20 enriched cellular components (CCs), predominantly mitochondrial structures, protein complexes, and lipoprotein particles. Key components include mitochondrial 
ribosomes, intermembrane spaces, inner membrane protein complexes, and various lipoprotein particles. (F) Top 20 enriched molecular functions (MFs), focusing on translation 
regulation, oxidoreductase activity, and cofactor binding. Functions such as ribosome binding, initiation factor activity, and binding of cofactors (e.g., FAD, NAD, and vitamin B6) 
are significantly enriched. (G) Bar chart of the top 20 enriched KEGG pathways, including energy metabolism, lipid metabolism, and amino acid metabolism. Significant pathways 
include the TCA cycle, cholesterol metabolism, proteasome, and branched-chain amino acid degradation. Important pathways such as peroxisome, autophagy, and endoplasmic 
reticulum protein processing are also enriched. (H) Enriched mitochondrial biological processes. The x-axis shows the enrichment ratio, and the y-axis lists specific processes. 
Bar color intensity reflects FDR significance, bar length represents the enrichment ratio, and bar width indicates the number of genes involved. Key processes include 
mitochondrial RNA processing, DNA replication, translation regulation, electron transport chain assembly, ATP synthesis, cytochrome c release, mitochondrial autophagy, and 
calcium ion transport, emphasizing the role of mitochondria in energy metabolism and homeostasis. (I) Enriched mitochondrial cellular components. The x-axis represents the 
enrichment ratio, and the y-axis lists components. Bar color intensity denotes FDR significance, length reflects the enrichment ratio, and width indicates the number of genes 
involved. Significantly enriched structures include mitochondrial ribosomes (small and large subunits), outer membrane complexes, the TIM23 translocase complex, respiratory 
chain complexes (I/III/IV), the ATP synthase complex, cristae, and mitochondria-associated ER membranes, reflecting the diverse functional regions of mitochondria. 

 
Canagliflozin promotes mitochondrial 
generation through the 
AMPKα1/PGC1α/NRF1 axis 

Generation of mitochondria is essential for 
replenishing damaged mitochondria and mitigating 
dysfunction. To evaluate whether canagliflozin’s 
mitochondrial protection involves biogenesis, we 
examined key regulators of this process. 
Immunofluorescence showed that lipopolysaccharide 
(LPS) significantly suppressed AMPKα1 and PGC1α 
abundance, while canagliflozin restored their levels 
(Figure 5A-B). Similarly, NRF1 was negatively 
controlled by LPS and reversed through canagliflozin 
(Figure 5C), indicating activation of this axis. 
Lipopolysaccharide exposure disrupted the 
expression of key mitochondrial transcripts, including 
those encoding the alpha subunit of the mitochondrial 
respiratory complex I and the core subunit of the 
mitochondrial cytochrome c oxidase, reducing 
mitochondrial mass and viability in HK-2 cells (Figure 
5D-F). Canagliflozin reversed these effects, restoring 
ND1 and COX1 expression and increasing 
mitochondrial population and health. Overall, 
canagliflozin enhances mitochondrial gene 
transcription and increases functional mitochondria, 
reducing damage caused by LPS. This highlights the 
canagliflozin-induced activation of the 
AMPKα1/PGC1α/NRF1 cascade is a crucial 
determinant of its mitochondrial-protective effects, 
underscoring the importance of this signaling axis in 
maintaining mitochondrial integrity and function. 

AMPKα1 Inhibition blocks canagliflozin’s 
mitochondrial protective effects 

To validate the involvement of the 
AMPKα1/PGC1α/NRF1 pathway, we used 
compound C (CC), a selective AMPKα1 antagonist, to 
assess its impact on mitochondrial function. 
Pre-treatment with CC in HK-2 cells abolished the 
beneficial effects of canagliflozin. While canagliflozin 
elevated ATP levels in LPS-treated cells, CC 
pre-treatment negated this improvement (Figure 6A). 
Similarly, canagliflozin reduced mitochondrial ROS 

accumulation induced by LPS, but CC reversed this 
effect, showing that AMPKα1 is essential for its 
antioxidant action (Figure 6B). Canagliflozin also 
restored mitochondrial respiratory complex activity 
(Figure 6C-D) and prevented LPS-induced caspase-3 
activation (Figure 6E), both of which were disrupted 
by CC. TUNEL staining further confirmed that 
canagliflozin reduced apoptosis in tubular cells, an 
effect nullified by CC treatment (Figure 6F). These 
results demonstrate that AMPKα1 inhibition prevents 
canagliflozin from maintaining mitochondrial 
integrity and reducing cell death under LPS-induced 
stress. In summary, the mitochondrial and cellular 
protective effects of canagliflozin depend on AMPKα1 
activation. Blocking AMPKα1 with CC disrupts 
mitochondrial homeostasis, highlighting the pivotal 
role of the pathway in mitigating LPS-induced 
damage and promoting tubular cell survival. 

Discussion 
Our study builds on the growing body of 

research highlighting the therapeutic potential of 
SGLT2i, particularly canagliflozin, in renal and 
cardiovascular protection. Unlike earlier 
investigations focusing on diabetic nephropathy or 
cardiorenal syndrome, we explored the effects of 
canagliflozin in septic AKI, a condition with complex 
pathophysiology involving inflammation, oxidative 
stress, and mitochondrial dysfunction [55, 56]. 
Notably, previous studies demonstrated that 
canagliflozin alleviates renal oxidative stress and 
fibrosis in diabetic patients via anti-inflammatory and 
antioxidative mechanisms ings extend this knowledge 
by revealing a novel pathway: canagliflozin protects 
renal tubular cells in septic AKI through the 
AMPKα1/PGC1α/NRF1 axis, which restores 
mitochondrial regeneration and homeostasis. 

In contrast to studies emphasizing systemic 
metabolic improvements, such as reductions in 
glucolipotoxicity, we provnce at the molecular level, 
showing that canagliflozin maintains ATP 
production, stabilizes mitochondrial potential, and 
inhibits ROS. This is particularly significant because 
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mitochondrial dysfunction has been implicated as a 
pivotal driver of tubular cell death in AKI [57, 58]. 
Additionally, odependency of canagliflozin’s 
protective effects on AMPKα1 activation, which has 
been identified in other contexts, such as 
ischemia-reperfusion injury and cisplatin-induced 
nephrotoxicity [59-61]. Our study is the first to 
confirm thiy in the context of septic AKI. 

 A key novelty of our study lies in the 
demonstration that canagliflozin’s mitochondrial 
protective effects can be abolished by AMPKα1 
inhibition [62-64]. The use of pharmacological 

inhibitor compound C conclusively demonstrated 
that the pathway is indispensable for mediating 
canagliflozin’s benefits. Additionally, we showed that 
canagliflozin reverses the suppression of complexes 
I/III caused by lipopolysaccharide (LPS), restoring 
mitochondrial function and promoting tubular cell 
survival [65, 66]. This contrasts with prior studies that 
largely focused on canagliflozin’s systemic 
anti-inflammatory properties, without delving into 
the specific molecular pathways driving 
mitochondrial recovery. 

 

 
Figure 5. Canagliflozin restores mitochondrial biogenesis through the AMPKα1/PGC1α/NRF1 pathway. To establish an in vitro model of septic AKI in tubular cells, 
HK-2 cells were challenged with lipopolysaccharide (10 μg/mL) for 24 hours. Control cells were treated with PBS. Canagliflozin (10 μM) was added to the HK-2 cell culture 
medium 24 hours before lipopolysaccharide treatment. (A-B) Expression of AMPKα1 and PGC1α levels in HK-2 cells. (C-E) qRT-PCR was used to analyze the transcription of 
AMPKα1, NRF1, ND1 and COX1 in HK-2 cells treated with lipopolysaccharide. (F) Immunofluorescence staining was used to display the number of mitochondria in HK-2 cells. 
#p<0.05. 
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Figure 6. Inhibition of AMPKα1 abolishes the mitochondrial protective effects of canagliflozin in tubular cells. To establish an in vitro model of septic AKI in 
tubular cells, HK-2 cells were challenged with lipopolysaccharide (10 μg/mL) for 24 hours. Control cells were treated with PBS. Canagliflozin (10 μM) was added to the HK-2 cell 
culture medium 24 hours before lipopolysaccharide treatment. To inhibit the activity of AMPKα1, HK-2 cells were treated with CC (10 mg/kg) three hours before canagliflozin 
treatment. (A) ELISAs were used to measure ATP production in HK-2 cells treated with lipopolysaccharide. (B) Immunofluorescence staining was used to detect mitochondrial 
ROS accumulation in HK-2 cells. (C-E) An ELISA was used to analyze the activity of caspase-3 and mitochondrial respiration complex I/III. (F) TUNEL staining was used to 
determine the number of dead HK-2 cells upon lipopolysaccharide treatment. #p<0.05. 

 
While our findings prov, several limitations 

warrant discussion. First, our study relied heavily on 
animal models and in vitro systems [67-69]. Although 
these models closely mimic the pathophysiology of 
septic AKI, they cannot fully replicate the complexity 
of human disease. Future clinical study is necessary to 
confirm the translatability of these findings to patients 
with septic AKI [70-72]. Second, while we focused on 
the AMPKα1/PGC1α/NRF1 axis, other pathways 
may also contribute to canagliflozin’s protective 
effects [73-75]. For instance, SGLT2i-mediated benefits 
have been linked to improved endothelial function 
and enhanced autophagy. Investigating the interplay 
between these mechanismside a more 
comprehensinding of canagliflozin’s mode of action 
[76-78]. Third, the study did not explore potential 
off-target effects of canagliflozin or compound C. 
Although the dependency on AMPKα1 was 
rigorously established, future studies should examine 

whether other cellular components, such as AMPKα2 
or alternative PGC1α regulators, play supplementary 
roles in mediating these effects [79-82]. 

Several avenues for future research emerge from 
our findings. First, Investigations in a clinical setting 
are warranted to assess the potential risks and 
benefits of canagliflozin treatment in individuals 
suffering from septic acute kidney injury. This could 
include randomized controlled trials comparing 
canagliflozin with standard AKI treatments, such as 
supportive care and hemodialysis. Second, the 
mechanisms underlying AMPKα1 activation by 
canagliflozin require further exploration. Although 
our study implicates AMPKα1 as a critical mediator, 
the upstream signals that link canagliflozin to 
AMPKα1 activation remain unclear. Investigating 
these upstream regulators could reveal novel 
therapeutic targets for AKI. Third, given the 
multifaceted nature of AKI, it is essential to examine 
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how canagliflozin interacts with other potential 
therapies. For instance, combining canagliflozin with 
NRF2 activators or autophagy enhancers could 
amplify its mitochondrial protective effects [83-88].
 Fourth, future studievestigate the long-terf 
canagliflozin on kidney function and structure 
post-AKI. Understanding whether canagliflozin 
prevents chronic kidney disease progression 
following septic AKI would provide valuable insights 
into its therapeutic potential. Finally, our study raises 
the intriguing possibility that other SGLT2 inhibitors 
may similarly activate the AMPKα1/PGC1α/NRF1 
pathway. Comparative studies examining the efficacy 
of different SGLT2 inhibitors in septic AKI could help 
identify the most effective agent and optimize 
treatment strategies. 

Conclusion 
Our study highlights the therapeutic potential of 

canagliflozin in septic AKI, emphasizing its role in 
preserving mitochondrial function and promoting 
tubular cell survival through the 
AMPKα1/PGC1α/NRF1 axis. By addressing the 
limitations of the current study and exploring the 
proposed future directions, we can further elucidate 
the role of SGLT2 inhibitors in renal protection and 
develop more effective treatments for AKI. 
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