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Abstract 

As effectors of interactions between genes and the environment, plasma proteins can monitor 
homeostasis and reflect the aging state of an organism. However, biomarkers of aging that are associated 
with homeostasis are still unclear. This study investigates the phenotype-related plasma proteome 
profiles of healthy individuals and to identify proteins that are specifically related to aging and physiological 
indices and their expression patterns across the lifespan. From September 2020 to March 2021, 71 
participants aged over 20 to 100 years were enrolled in this cross-sectional study. Data were analyzed 
from April 2021 to December 2023. The plasma proteome was analyzed to identify proteins that are 
specifically related to aging and their expression patterns across the lifespan. Then, hub proteins were 
screened through correlation of aging proteins with physiological and biochemical phenotypes. Based on 
levels of plasma proteins, physiological indices are associated with age. Additionally, these differences in 
protein expression correlate with age and physiological indices. Finally, we identified 20 hub proteins that 
correlate with both physiological indices and age, and these proteins are involved in oxidative stress, 
inflammation and metabolism. Bibliometric analysis confirmed that 8 hub proteins (CD44, CD14, IGF2, 
CFD, LBP, IGFBP3, EFEMP1, and AHSG) associated with age affect organ function by mediating 
homeostasis. Plasma proteins associated with both age and physiological indices are involved in oxidative 
stress, inflammation, and metabolism. This is the first investigation to link aging and homeostasis based on 
plasma proteins. 
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Introduction 
Aging is a time-dependent systematic 

degenerative physiological process that is influenced 
by interactions between genes and the environment 
[1, 2]. The influence of interactions between genes and 

the environment on the body gradually increases with 
age, leading to an imbalance in the homeostasis of the 
internal environment. This induces a reduction or loss 
of tissue or organ function and results in a state of 
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disease [3, 4]. Aging and uncontrollable 
environmental factors are inevitable, but homeostasis 
can be effectively monitored by physiological indices. 
When the body is under external environmental 
pressure, a series of internal environmental regulatory 
molecules, such as inflammatory factors, metabolic 
factors and oxidative stress products, are activated to 
maintain internal environmental homeostasis [5] 
(Figure 1). Epidemiological studies have shown a 
marked increase in pro-inflammatory cytokines in 
aged individuals. Numerous studies have suggested 
that C-reactive protein (CRP) is connected with 
age-related conditions and diseases [6, 7]. The 
immune system has evolved to initiate powerful and 
acute responses to effectively eliminate pathogens 
and protect tissue integrity [8]. Therefore, CRP is an 
important factor reflecting immune inflammatory 
homeostasis and healthy aging. 

Metabolism is a crucial and complex biochemical 
process involved in energy storage and the 
maintenance of normal biological functions [9, 10]. 
Various interventions involving diet, drugs, genetics, 
and surgery that affect lipids can prolong the lifespan 
of model organisms. In humans, blood lipid levels, 
except high-density lipoprotein cholesterol (HDL-C), 
tend to increase with age. Blood lipids may be a rich 
source of biomarkers of aging in humans [11]. 

Moreover, fasting blood glucose levels increase over 
the human lifespan. Higher glucose levels are 
associated with higher mortality, suggesting a link 
between blood glucose and aging [12]. 

Oxidative stress is generally considered to be the 
main mechanism that limits lifespan. Reactive oxygen 
species (ROS), which are the main byproducts of 
oxygen metabolism and adenosine triphosphate 
(ATP) production, can be successfully cleared by 
superoxide dismutase (SOD) and other radical 
scavengers. Therefore, SOD is an effective indicator 
that indirectly reflects ROS in the human body [13]. 
When external stress causes ROS to exceed 
antioxidant capacity, oxidative stress is induced, 
which is directly related to the development of many 
diseases that limit healthy aging [14]. 

With the aging of the population, an increasing 
number of researchers have applied genomics, 
transcriptomics and proteomics to studies of aging. 
Proteins are direct effectors of cells, body fluids and 
tissues after gene modification and expression, 
reflecting changes in expression of genes affected by 
the environment. Aging leads to changes in protein 
composition, which helps to understand complex 
biological processes. Specifically, blood, which 
includes proteins from nearly all cells and tissues, has 
been studied to discover biomarkers and comprehend 

 

 
Figure 1. Schematic diagram of this study. 
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homeostasis [1], and plasma proteins can be separated 
from plasma through a feasible and convenient 
collection procedure [15]. Therefore, plasma proteins 
can be used as convenient and accurate sources for 
identifying biomarkers of aging. However, 
biomarkers of aging that are associated with 
homeostasis are still unclear. 

For this reason, our study aimed to determine 
proteins related to aging that have associations with 
physiological indices (blood pressure, blood glucose, 
blood lipids, CRP, SOD, liver function and renal 
function) in young individuals and centenarians to 
gain a preliminary understanding of homeostasis 
through these proteins. We employed a 
data-independent acquisition (DIA) liquid 
chromatography – tandem mass spectrometry (LC –
MS/MS) technique to enhance protein coverage and 
minimize variation in sample preparation. By 
employing this technique alongside statistical 
analysis, we examined the plasma proteome to 
pinpoint proteins specifically associated with aging 
and their expression patterns throughout the lifespan. 
We subsequently correlated aging-related proteins 
with physiological and biochemical phenotypes to 
screen for hub proteins. Finally, we validated these 
hub proteins by integrating the findings of previous 
studies. 

Methods 
Study cohort 

Seventy-one participants aged >20–100 years 
and without adverse outcomes [16] were recruited 
from September 2020 to March 2021. The patients 
were grouped according to 10-year intervals in an 
equal distribution of sample number and sex. The 
Ethics Committee of Beijing Hospital approved the 
study protocol (2019BJYYEC-118-02). The study was 
conducted in accordance with the Declaration of 
Helsinki and its amendments. All study participants 
(or their caregivers) provided written informed 
consent prior to enrollment. 

Sample preparation and protein extraction for 
DIA-seq 

Using venipuncture, blood treated with EDTA 
was collected, and plasma was separated. The 
extraction of total proteins was performed with the 
cold acetone method. Samples were dissolved in 2 mL 
of lysis buffer containing 8 M urea, 2% sodium 
dodecyl sulfate, and a protease inhibitor cocktail from 
Roche Ltd., Switzerland. They underwent sonication 
on ice for 30 minutes and were then centrifuged at 
13,000 rpm for 30 minutes at 4 °C. The supernatant 
was placed into a new tube, and proteins for each 

sample were precipitated with ice-cold acetone at -20 
°C overnight. Following three acetone cleanings, the 
precipitates were redissolved in 8 M urea through 
sonication on ice. SDS‒PAGE (sodium dodecyl sulfate 
- polyacrylamide gel electrophoresis, SDS-PAGE) was 
employed to analyze the quality of the protein. 
Following the manufacturer's instructions, a BCA 
protein assay kit (Beyotime, China) was used to 
determine protein concentrations. 

High-pH reversed-phase fractionation 
The protein sample was re-dissolved in buffer A, 

which consists of 20 mM ammonium formate in water 
at pH 10, adjusted with ammonium hydroxide, and 
then separated by high-pH fractionation using an 
Ultimate 3,000 system (Thermo Fisher Scientific, USA) 
linked to a reverse-phase column (XBridge C18 
column, 4.6 mm × 250 mm, 5 μm; Waters Corporation, 
USA). A high-pH fractionation was conducted with a 
linear gradient ranging from 5% B to 45% B over 40 
minutes, using 20 mM ammonium formate in 80% 
ACN at pH 10, adjusted with ammonium hydroxide. 
The column underwent re-equilibration to its original 
conditions for 15 minutes. The column's flow rate was 
consistently 1 mL/min, and the temperature was 
controlled at 30 °C. Ten fractions were obtained, and 
each was dried in a vacuum concentrator for further 
steps. 

Nanohigh-performance liquid 
chromatography‒mass tandem spectrometry 
(HPLC‒MS/MS) analysis 

After being redissolved in 30 μL of solvent A 
(0.1% formic acid in water), the peptides were 
analyzed through on-line nanospray LC‒MS/MS 
with an Orbitrap Fusion Lumos linked to an 
EASY-nLC 1200 system (Thermo Fisher Scientific, 
USA). The analytical column (Acclaim PepMap C18, 
75 μm × 25 cm) was loaded with a 3 μL peptide 
sample and separated over 120 minutes with a 
gradient from 5% to 35% B (0.1% formic acid in ACN). 
The column was maintained at a temperature of 40 °C 
with a flow rate of 200 μL/min. A 2 kV electrospray 
voltage was applied relative to the mass 
spectrometer's inlet. The mass spectrometer was set to 
data-independent acquisition mode, switching 
automatically between MS and MS/MS modes. 

Data analysis 
Using default parameters, Spectronaut X 

(Biognosys AG, Switzerland) processed and analyzed 
the raw DIA data. For retention-time prediction, 
dynamic interactive response technology (iRT) was 
applied. Spectronaut X handled data extraction, 
utilizing extensive mass calibration. Spectronaut 
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Pulsar X identified the optimal extraction window 
size based on iRT calibration and gradient stability, 
applying a 1% FDR cutoff at both precursor and 
protein levels. Decoy generation was configured to 
mutate, much like scrambling, but it was executed 
with a random number of amino acid (AA) position 
swaps (min = 2, max = length/2). Quantification was 
performed using all the selected precursors that 
passed through the filters. The major group quantities 
were calculated by averaging the top 3 filtered 
peptides that met the 1% Q-value threshold. A 
Student's t-test was conducted, and DEPs with a Q 
value < 0.05 and an absolute AVG log2 >0.58 were 
excluded. The extent of missing data was assessed 
using the 'mice' package in R version 4.0.3 
(2020-10-10). For further analyses, we focused on 
proteins found in at least half of the samples. We used 
the R package gmodels (http://www.r-project.org/) 
to conduct principal component analysis (PCA). PCA 
is a statistical technique that changes a large number 
of correlated variables, like gene expression, into a set 
of linearly uncorrelated variables called principal 
components. It is mainly employed to identify 
relationships among samples. 

Age-related protein clustering 
We conducted cluster analyses of age-related 

proteins to identify patterns linked to age. Age-related 
intervals were used to visualize trends. 

1. Plots were divided into age groups of 0–40, 
41–60, 61–80, and 81–100 years. 

2. Plots for groups for an age span of 10 years 
each. 

After calculating the mean protein intensity for 
each cluster, the average was taken for each age 
interval. The protein data were scaled for clustering, 
and Euclidean distance was used to calculate the 
distance between protein observations. The 
observations were clustered using complete linkage. 

Age-related proteins 
The “limma” R package was used for differential 

expression analyses. To study the proteins with 
differential abundance, the following models were 
utilized: *Basic model* protein ~ Age. 

Waves of age-related proteins 
Differential expression sliding window analysis 

(DEswan 1) was used to identify waves of aging 
plasma proteins. Using the DEswan function from the 
DEswan package, an age span of 20 to 100 years with 
10-year intervals was chosen for sliding window 
analyses. In these DEswan analyses, sex was included 
as a covariate. 

Considering a vector l of k unique ages, we 
iteratively used lk as the age and compared the protein 
levels of individuals in parcels below and above 
lk (𝑖𝑖. 𝑒𝑒. , [𝑙𝑙𝑘𝑘 − 10𝑦𝑦; 𝑙𝑙𝑘𝑘[𝑣𝑣𝑣𝑣]𝑙𝑙𝑘𝑘; 𝑙𝑙𝑘𝑘 + 10𝑦𝑦]) . To test for 
differential expression, we used the following linear 
model: 

Protein level ~ 𝛼𝛼 + 𝛽𝛽1 age𝐿𝐿𝐿𝐿𝐿𝐿/𝐻𝐻𝐻𝐻𝐻𝐻ℎ + 𝛽𝛽2 sex + 𝜀𝜀 

with age binarized according to the parcels. For 
each lk, q values were estimated using the Benjamini–
Hochberg correction. Using the ANOVA function in 
the R package, the type II sum of squares was 
determined. A volcano plot was produced utilizing 
the R package 'EnhancedVolcano'. 

UpSet plot and gene interaction network 
construction 

The UpSet technique provides a new way to 
visualize and quantitatively analyze interaction sets 
[17]. We used these data to analyze the intersection 
between groups with an age span of 10 years each. 
The R package “ComplexHeatmap” was used to 
perform the analysis and visualization. 

Scatter plots and Circos plots showing 
correlations between proteins and phenotypes 

The screening method used for physiological 
index-related proteins was the same as that used for 
age-related proteins. Figures were created in the R 
statistical software environment using two graphics 
packages, ggplot2 and circ.plot. The threshold for 
statistical significance was p < 0.05. 

Bibliometric analysis 
We conducted a literature search of the Web of 

Science database in July 2023. The search terms used 
were [(“AHSG” OR “APOA2” OR “BCHE” OR 
“VCAM1” OR “CD14” OR “SERPINA3” OR “CD44” 
OR “ORM1” OR “CFD” OR “LRG1” OR “LBP” OR 
“CNDP1” OR “CST3” OR “EFEMP1” OR “ITIH3” OR 
“IGFBP3” OR “IGFALS” OR “FETUB” OR “GPLD1” 
OR “IGF2”) AND (“aging”)]. A total of 7,069 items 
that met the search criteria were found and analyzed 
further. Synonymous keywords and search terms, 
which affect the analysis results of research hotspots, 
were avoided. Generic words equivalent to research 
were deleted first, and then the keywords that 
appeared as search terms were deleted. The 
synonymous keywords were combined, and finally, 
the keywords with word frequencies greater than 15 
were selected for mapping. Of the 24,791 keywords, 
794 met the threshold. VOSviewer9 (version 1.6.18) 
was used to perform bibliometric analysis and 
visualization. 
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Results 
Characteristics of the plasma proteome 

A total of 71 plasma samples from healthy 
individuals aged >20 to 100 years were collected in 
our study. A total of 1,351 proteins were identified 
and quantified after analyzing the proteomic data 
through data-independent acquisition (DIA). After 
excluding proteins with more than 50% missing 
values across samples, the final list comprised 666 
proteins (Table 1 in the Supplement). According to the 
protein expression data, the overall sample exhibited 
good clustering in the principal component analysis 
(PCA) plot (Figure 2A). The proportions of explained 
variance for PC1 and PC2 were 76.80% and 11.30%, 
respectively (88.10% in total). 

Clustering of plasma proteome trajectories 
Genes were divided into four clusters according 

to the age interval 10 years (Figure 2B). Cluster 1 
represented a group of conserved proteins (257 
proteins) that did not change with age (Figure S1A in 
Supplement). Cluster 2 (238 proteins) showed a 
stepwise decreasing trajectory with age (Figure 1B in 
the Supplement), and Cluster 3 (152 proteins) showed 
a gradual increase with age (Figure S1C in the 
Supplement). Another 19 proteins in Cluster 4 

exhibited irregular wave-like changes with age 
(Figure S1D in Supplement). 

Physiological indices associated with age based 
on protein expression 

The characteristics of the physiological indices 
are shown in Figure S2 in the Supplement. According 
to the association rule algorithm and protein 
expression, age was the leading factor in the 
association rule. Physiological indices, including 
blood pressure, blood glucose, blood lipids, 
C-reactive protein (CRP), superoxide dismutase 
(SOD), liver function examination items and renal 
function examination items, were the consequents of 
the association rule. A total of 37 strong association 
rules were identified by the Apriori algorithm, with 
support and confidence thresholds of 72.73% and 
100%, and a lift greater than 1. The results showed 
that FPG, DBIL, ALT, HDL, SOD, GOT, DBP, TBIL, 
and TC were strongly associated with the 30-year-old 
age group (Table 1). There were 7 indices (HDL, SOD, 
GOT, DBP, TC, Cr, and GGT) that could be used as 
predictors in the 40-year-old age group, with three 
indicators (DBP, TBIL, and SBP) as predictors of the 
50-year age group and five indicators (HDL, SOD, 
GOT, TBIL, and SBP) as predictors of the 60-year-old 
age group. 

 

Table 1. Physiological indexes associated with age. 

Antecedents Consequents Antecedent support Consequent support Support Confidence Lift 
age30 FPG 0.149  0.797  0.135  0.909  1.140  

DBIL 0.149  0.851  0.135  0.909  1.068  
ALT 0.149  0.851  0.135  0.909  1.068  
HDL 0.149  0.622  0.122  0.818  1.316  
SOD 0.149  0.649  0.122  0.818  1.261  
GOT 0.149  0.689  0.122  0.818  1.187  
DBP 0.149  0.757  0.122  0.818  1.081  
TBIL 0.149  0.811  0.122  0.818  1.009  
TC 0.149  0.608  0.108  0.727  1.196  

age40 TC 0.135  0.608  0.122  0.900  1.480  
SOD 0.135  0.649  0.122  0.900  1.388  
DBP 0.135  0.757  0.122  0.900  1.189  
Cr 0.135  0.892  0.122  0.900  1.009  
GGT 0.135  0.595  0.108  0.800  1.345  
HDL 0.135  0.622  0.108  0.800  1.287  
GOT 0.135  0.689  0.108  0.800  1.161  

age50 TBIL 0.135  0.811  0.122  0.900  1.110  
SBP 0.135  0.865  0.122  0.900  1.041  
DBP 0.135  0.757  0.108  0.800  1.057  

age60 TBIL 0.135  0.811  0.122  0.900  1.110  
SBP 0.135  0.865  0.122  0.900  1.041  
HDL 0.135  0.622  0.108  0.800  1.287  
SOD 0.135  0.649  0.108  0.800  1.233  
GOT 0.135  0.689  0.108  0.800  1.161  
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Figure 2. Plasma proteome profiling of healthy individuals with age. (A) Principal component analysis plot showing the distribution of each sample based on protein quantity. (B) 
Plasma protein clusters and their trajectories plotted against age in years (x-axis). (C) DEswan analysis of proteins at 10-year intervals. (D) UpSet plot depicting significant proteins 
at 10-year intervals (×30, ×40, ×50, ×60, ×70, ×80, ×90 and ×100). (E) Volcano plot depicting protein correlations with age. Red dots represent proteins that correlated 
significantly with age at an adjusted p <0.05 and an effect size cutoff >/<0.01. Blue dots represent significant proteins based only on an adjusted p value < 0.05. Green dots 
represent proteins for which the effect size cutoff was >/<0.01. Gray dots are proteins with expression that did not significantly change or with an effect size not significantly 
different. 

The correlation of plasma proteins with age 
To better understand how the proteome changes 

with age, we employed the DEswan algorithm, which 
offers important insights into protein alterations at 
particular life stages. Overall, the number of 
significant proteins that changed increased with age. 
Three age groups with peaks at ages 40, 60 and 90 
years were identified (Figure 2C). The UpSet plot also 
verified the number of significant proteins that were 
unique or shared between age groups (Figure 2D). 
There were 14 unique proteins related mainly to 
signal transduction at age 40 years (Table 2). There 
were also 14 and 19 unique proteins related mainly to 
metabolism at ages 60 and 90 years, respectively 
(Table 2). Two common proteins (integrin subunit 
alpha 2b, ITGA2B, and vinculin, VCL) were identified 
in the 40-, 80- and 90-year-old groups (Table 2). Five 
common proteins (carbonic anhydrase 1, CA1; 
hemoglobin subunit alpha 2, HBA2; hemoglobin 
subunit beta, HBB; hemoglobin subunit delta, HBD; 
and von Willebrand factor, VWF) were identified in 
the 60-, 70-, 90- and 100-year-old groups (Table 2). In 
addition to carbonic anhydrase 1 (CA1), which is 
associated with metabolism, common proteins are 
associated with the immune response. 

To further discriminate between up- and 
downregulated proteins, the effect size was assessed 
using log2-transformed protein intensity. For every 
year of age, there was a 0.01 rise in the 

log-transformed protein intensity at this threshold. 
Twenty-six age-associated proteins were 
downregulated and 19 upregulated, as shown in a 
volcano plot (Figure 2E). Among these upregulated 
proteins, complement factor D (CFD), fibrinogen 
alpha chain (FGA), vascular cell adhesion molecule 1 
(VCAM1), CD14 (CD14), CD44 (CD44), complement 
factor H related 2 (CFHR2), vinculin (VCL), and 
lipopolysaccharide-binding protein (LBP) are related 
to the immune response (Table 3). The downregulated 
proteins, except for several immunoglobulins and 
alpha 2-HS glycoprotein (AHSG) associated with the 
immune response, are related to metabolism and 
included insulin-like growth Factor 2 (IGF2), 
insulin-like growth factor binding protein acid labile 
subunit (IGFALS), insulin-like growth factor binding 
protein 3 (IGFBP3), apolipoprotein L1 (APOL1), 
butyrylcholinesterase (BCHE), carnosine dipeptidase 
1 (CNDP1), apolipoprotein A2 (APOA2), 
glycosylphosphatidylinositol specific phospholipase 
D1 (GPLD1) and lecithin-cholesterol acyltransferase 
(LCAT) (Table 3). 

Correlations of proteins with both 
physiological indices and age 

In the present dataset, only one protein, APOL3, 
which is a member of the apolipoprotein L gene 
family, correlated negatively with SBP but not with 
age (Figure 3A, 3B and Table S2 in the Supplement). 
Twenty-seven proteins correlated significantly with 
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SOD activity, including 14 proteins that correlated 
negatively and 13 proteins that correlated positively 
with SOD activity (Figure 3A and Table S2 in the 
Supplement). Among these proteins, 14 proteins 
(BCHE, ITIH3, IGF2, FETUB, LRG1, AHSG, IGFALS, 
ORM1, EFEMP1, GPLD1, LBP, APOA2, SERPINA3, 
and CFD) correlated significantly with age but 
showed the opposite correlation with SOD (Figure 
3B). Four proteins, but not PROZ, correlated 
positively with Cr (Figure 3A and eTable 2 in the 
Supplement). Among these 4 proteins, CFD, CST3 and 
EFEMP1 correlated significantly with age, and the 
correlation was consistent with that of Cr (Figure 3B). 
All 6 proteins correlated negatively with HDL 
cholesterol (Figure 3A and Table S2 in the 
Supplement). Among these 6 proteins, both GPLD1 
and BCHE also correlated significantly negatively 
with age. Nine proteins correlated significantly with 
GGT levels, including 3 proteins that correlated 

negatively and 6 proteins that correlated positively 
with GGT levels (Figure 3A and Table S2 in the 
Supplement). PRSS3 and FBLN1 correlated positively 
with GGT. However, the other six proteins (EFEMP1, 
IGFALS, IGF2, CFD, IGFBP3, CD14, and CD44) 
correlated significantly with age, and these 
correlations were consistent with those for GGT 
(Figure 3B). Eleven proteins correlated significantly 
with GOT, including 5 proteins that correlated 
negatively and 6 proteins that correlated positively 
with GOT (Figure 3A and Table S2 in the 
Supplement). Nine proteins (EFEMP1, IGFALS, CD14, 
CD44, IGF2, VCAM1, ITIH3, CNDP1, and BCHE), but 
not PRSS3 or KLKB1, correlated significantly with 
age, and the correlation was consistent with that of 
GOT (Figure 3B). All 12 proteins and 11 proteins 
correlated negatively with DBIL and TBIL, 
respectively, but did not correlate with age (Figure 
3A, 3B and Table S2 in the Supplement). 

 

Table 2. Protein changes at specific stages of life. 

Age 
group 

Protein Description KEGG_A_class KEGG_B_class 

Age_40
× 

ABI3BP ABI family member 3 binding 
protein 

- - 

ACTG1 actin gamma 1 Human Diseases; Cellular Processes; 
Organismal Systems; Environmental 
Information Processing 

Transport and catabolism; Infectious diseases; Cardiovascular 
diseases; Cellular community - eukaryotes; Cell motility; Cancers; Cell 
growth and death; Immune system; Signal transduction; Infectious 
disease: bacterial; Endocrine system; Environmental adaptation; 
Digestive system 

CAP1 cyclase associated actin 
cytoskeleton regulatory protein 1 

- - 

FLNA filamin A Cellular Processes; Human Diseases; 
Environmental Information Processing 

Cellular community - eukaryotes; Cancers; Infectious diseases; Signal 
transduction 

HSPA8 heat shock protein family A 
(Hsp70) member 8 

Cellular Processes; Organismal Systems; 
Environmental Information Processing; 
Genetic Information Processing 

Transport and catabolism; Immune system; Signal transduction; 
Folding, sorting and degradation; Infectious diseases; Endocrine 
system; Transcription; Aging 

ICAM2 intercellular adhesion molecule 2 Environmental Information Processing; 
Organismal Systems 

Signaling molecules and interaction; Immune system 

IGLV8-61 - - - 
KRT10 keratin 10 Human Diseases; Organismal Systems Infectious diseases; Endocrine system 
LDHB lactate dehydrogenase B Metabolism; Environmental Information 

Processing; Human Diseases; Organismal 
Systems 

Global and overview maps; Carbohydrate metabolism; Signal 
transduction; Cancers; Endocrine system; Amino acid metabolism 

LTBP1 latent transforming growth 
factor beta binding protein 1 

Environmental Information Processing Signal transduction 

RAP1B RAP1B, member of RAS 
oncogene family 

Cellular Processes; Organismal Systems; 
Environmental Information Processing; 
Human Diseases 

Cellular community - eukaryotes; Immune system; Signal 
transduction; Digestive system; Nervous system; Endocrine and 
metabolic diseases; Cancers 

TF transferrin Environmental Information Processing; 
Cellular Processes; Organismal Systems 

Signal transduction; Cell growth and death; Digestive system 

TNXB tenascin XB Environmental Information Processing; 
Cellular Processes; Human Diseases 

Signal transduction; Cellular community - eukaryotes; Signaling 
molecules and interaction; Infectious diseases; Cancers 

YWHAZ tyrosine 
3-monooxygenase/tryptophan 
5-monooxygenase activation 
protein zeta 

Environmental Information Processing; 
Human Diseases; Cellular Processes 

Signal transduction; Cancers; Cell growth and death; Infectious 
diseases 

Age_60
× 

APMAP adipocyte plasma membrane 
associated protein 

- - 

CLC Charcot-Leyden crystal galectin - - 
ENO1 enolase 1 Metabolism; Environmental Information 

Processing; Genetic Information 
Processing 

Global and overview maps; Carbohydrate metabolism; Signal 
transduction; Folding, sorting and degradation 

ESD esterase D - - 
GAPDH glyceraldehyde-3-phosphate 

dehydrogenase 
Metabolism; Human Diseases; 
Environmental Information Processing 

Global and overview maps; Infectious diseases; Neurodegenerative 
diseases; Carbohydrate metabolism; Signal transduction 
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Age 
group 

Protein Description KEGG_A_class KEGG_B_class 

IGHV3-16 - - - 
IGKV2-30 - - - 
MIF macrophage migration 

inhibitory factor 
Metabolism Global and overview maps; Amino acid metabolism 

MSN moesin Cellular Processes; Human Diseases; 
Organismal Systems 

Cell motility; Cancers; Immune system; Cellular community - 
eukaryotes; Infectious diseases 

PFN1 profilin 1 Human Diseases; Cellular Processes; 
Environmental Information Processing 

Infectious diseases; Cell motility; Signal transduction 

PNP purine nucleoside phosphorylase Metabolism Global and overview maps; Nucleotide metabolism; Metabolism of 
cofactors and vitamins 

SH3BGRL
3 

SH3 domain binding glutamate 
rich protein like 3 

- - 

TXN thioredoxin Human Diseases; Organismal Systems Infectious diseases; Immune system; Cardiovascular diseases 
YWHAB tyrosine 

3-monooxygenase/tryptophan 
5-monooxygenase activation 
protein beta 

Environmental Information Processing; 
Human Diseases; Cellular Processes 

Signal transduction; Cancers; Cell growth and death; Infectious 
diseases 

Age_90
× 

APOE apolipoprotein E Human Diseases; Organismal Systems Neurodegenerative diseases; Digestive system 
B2M beta-2-microglobulin Human Diseases; Organismal Systems Infectious diseases; Immune system 
CALR calreticulin Cellular Processes; Human Diseases; 

Organismal Systems; Genetic Information 
Processing 

Transport and catabolism; Infectious diseases; Immune system; 
Folding, sorting and degradation 

CNDP1 carnosine dipeptidase 1 Metabolism Global and overview maps; Amino acid metabolism; Metabolism of 
other amino acids 

FAH fumarylacetoacetate hydrolase Metabolism Global and overview maps; Amino acid metabolism 
FCGR3A Fc fragment of IgG receptor IIIa Human Diseases; Cellular Processes; 

Organismal Systems 
Immune diseases; Transport and catabolism; Infectious diseases; 
Immune system; Development 

G6PD glucose-6-phosphate 
dehydrogenase 

Metabolism; Human Diseases Global and overview maps; Carbohydrate metabolism; Metabolism of 
other amino acids; Cancers 

GPLD1 glycosylphosphatidylinositol 
specific phospholipase D1 

Metabolism Global and overview maps; Glycan biosynthesis and metabolism 

IGF2 insulin like growth factor 2 Environmental Information Processing; 
Human Diseases 

Signal transduction; Cancers 

IGFALS insulin like growth factor 
binding protein acid labile 
subunit 

Organismal Systems Endocrine system 

IGHA2 immunoglobulin heavy constant 
alpha 2 (A2m marker) 

Human Diseases; Environmental 
Information Processing; Cellular 
Processes; Organismal Systems 

Immune diseases; Signal transduction; Transport and catabolism; 
Infectious diseases; Cardiovascular diseases; Immune system; Cancers 

LYVE1 lymphatic vessel endothelial 
hyaluronan receptor 1 

- - 

PCOLCE procollagen C-endopeptidase 
enhancer 

- - 

SEMA4B semaphorin 4B Organismal Systems Development 
TAGLN2 transgelin 2 - - 
TGFBI transforming growth factor beta 

induced 
- - 

VCAM1 vascular cell adhesion molecule 1 Environmental Information Processing; 
Human Diseases; Organismal Systems 

Signaling molecules and interaction; Infectious diseases; Immune 
system; Signal transduction; Cardiovascular diseases; Endocrine and 
metabolic diseases 

WDR1 WD repeat domain 1 - - 
ZYX zyxin Cellular Processes Cellular community - eukaryotes 

Age_40
×_80×
_90× 

ITGA2B integrin subunit alpha 2b Environmental Information Processing; 
Human Diseases; Cellular Processes; 
Organismal Systems 

Signal transduction; Cardiovascular diseases; Cellular community - 
eukaryotes; Cancers; Immune system; Cell motility; Signaling 
molecules and interaction; Infectious diseases 

VCL vinculin Human Diseases; Cellular Processes; 
Organismal Systems 

Infectious diseases; Cellular community - eukaryotes; Cell motility; 
Immune system 

Age_60
×_70×
_90×
_100× 

CA1 carbonic anhydrase 1 Metabolism Global and overview maps; Energy metabolism 
HBA2 hemoglobin subunit alpha 2 Human Diseases Infectious diseases 
HBB hemoglobin subunit beta Human Diseases Infectious diseases 
HBD hemoglobin subunit delta - - 
VWF von Willebrand factor Environmental Information Processing; 

Cellular Processes; Organismal Systems; 
Human Diseases 

Signal transduction; Cellular community - eukaryotes; Immune 
system; Signaling molecules and interaction; Infectious diseases 
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Table 3. Proteins associated with age. 

Protein EffectSize AveExpr t P.Value adj.P.Val B Sig 
EFEMP1 0.023 19.318  9.336  4.389E-14 2.918E-11 21.366  Up 
ITIH3 0.015 21.520  5.299  1.185E-06 1.314E-04 4.413  Up 
CFD 0.019 19.049  5.240  1.498E-06 1.423E-04 4.184  Up 
FGA 0.010 27.256  4.951  4.612E-06 2.788E-04 3.087  Up 
VCAM1 0.021 16.362  4.381  3.880E-05 0.001  1.021  Up 
LRG1 0.017 22.611  4.364  4.135E-05 0.001  0.959  Up 
CST3 0.017 19.691  4.187  7.797E-05 0.002  0.348  Up 
IGFBP7 0.143 6.961  4.092  1.170E-04 0.003  0.015  Up 
CD14 0.011 19.467  4.045  1.285E-04 0.003  -0.132  Up 
CD44 0.013 18.668  3.910  2.050E-04 0.004  -0.579  Up 
SERPINA3 0.011 25.506  3.791  3.067E-04 0.006  -0.963  Up 
CFHR2 0.014 19.939  3.626  5.291E-04 0.009  -1.482  Up 
SHBG 0.019 19.612  3.315  0.001  0.019  -2.418  Up 
PCOLCE 0.041 16.489  3.256  0.002  0.021  -2.588  Up 
SERPINA3_1 0.016 18.083  3.237  0.002  0.022  -2.643  Up 
VCL 0.116 11.115  3.223  0.002  0.022  -2.680  Up 
LBP 0.014 21.549  3.184  0.002  0.024  -2.795  Up 
ORM1 0.010 27.227  3.118  0.003  0.027  -2.980  Up 
IGFBP2 0.053 15.528  2.903  0.005  0.045  -3.562  Up 
IGFALS -0.033 20.389  -8.756  5.354E-13 1.780E-10 18.872  Down 
IGF2 -0.016 20.236  -6.904  1.570E-09 3.481E-07 10.940  Down 
APOL1 -0.016 20.987  -6.607  5.527E-09 9.189E-07 9.695  Down 
IGFBP3 -0.028 20.337  -5.405  7.804E-07 1.038E-04 4.822  Down 
BCHE -0.014 20.101  -5.112  2.475E-06 1.928E-04 3.694  Down 
AHSG -0.012 26.196  -5.092  2.669E-06 1.928E-04 3.620  Down 
IGHM -0.020 26.980  -5.071  2.900E-06 1.928E-04 3.539  Down 
CD5L -0.019 23.299  -4.878  6.097E-06 3.119E-04 2.815  Down 
CNDP1 -0.019 19.758  -4.825  7.454E-06 3.305E-04 2.619  Down 
FETUB -0.015 20.286  -4.636  1.518E-05 6.308E-04 1.929  Down 
F12 -0.013 21.280  -4.251  6.214E-05 0.002  0.567  Down 
APOA2 -0.010 27.621  -3.792  3.052E-04 0.006  -0.958  Down 
IGKV1.17 -0.012 21.374  -3.764  3.355E-04 0.006  -1.049  Down 
IGLV2.8 -0.012 21.234  -3.603  5.704E-04 0.010  -1.553  Down 
IGKV2D.28 -0.010 23.622  -3.574  6.278E-04 0.010  -1.643  Down 
IGLV2.18 -0.014 20.745  -3.572  6.319E-04 0.010  -1.650  Down 
IGKV1.16 -0.015 20.623  -3.556  6.663E-04 0.010  -1.700  Down 
TTR -0.012 22.022  -3.547  6.860E-04 0.010  -1.727  Down 
ELP3 -0.016 20.868  -3.429  9.984E-04 0.014  -2.082  Down 
GPLD1 -0.013 20.140  -3.407  0.001  0.015  -2.149  Down 
LCAT -0.016 20.336  -3.259  0.002  0.021  -2.580  Down 
IGKV1.5 -0.011 22.617  -3.228  0.002  0.022  -2.669  Down 
IGKV2.24 -0.011 21.839  -2.989  0.004  0.037  -3.334  Down 
IGKV2D.24 -0.011 21.839  -2.989  0.004  0.037  -3.334  Down 
IGKV3D.7 -0.092 13.362  -2.850  0.006  0.049  -3.701  Down 
IGKV3OR2.268 -0.092 13.362  -2.850  0.006  0.049  -3.701  Down 

 
Hub proteins involved in homeostasis 

Based on the correlation analysis, 20 proteins 
were identified as hub proteins (BCHE, ITIH3, IGF2, 
FETUB, LRG1, AHSG, IGFALS, ORM1, EFEMP1, 
GPLD1, LBP, APOA2, SERPINA3, CFD, CST3, 
IGFBP3, CD14, CD44, VCAM1, and CNDP1) that 
correlate with both physiological indices and age. As 
of July 2023, there were 7,069 articles related to the 
hub proteins associated with aging, including 198 
reviews and 6,871 articles. Keywords denote the main 
theme of a paper, and analyzing their co-occurrence 
can quickly highlight trending research topics in a 

certain sector. The high frequency of occurrence of 
hub proteins associated with aging (CD44, CD14, 
IGF2, CFD, LBP, IGFBP3, EFEMP1, and AHSG) and 
the top 20 high-frequency keywords are shown in 
Table S3 in the Supplement. Among them, 
inflammation occurred 490 times; thus, inflammation 
is a hot topic for identifying the hub proteins involved 
in aging and homeostasis. Disease, health, age and 
aging were keywords that closely followed 
inflammation. The sixth most common keyword was 
obesity, which also involves homeostasis. Although 
oxidative stress was low on the list, it also had a place 
on the top list. Using VOSviewer, the keywords were 
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analyzed and visualized (Figure 3C), with a minimum 
threshold of 15 occurrences. 

The identification of protein clusters has 
significant implications for understanding specific 
physiological processes. Protein clustering is a 
fundamental aspect of cellular organization, 
providing an intermediate level of structure between 
individual molecules and the larger cellular 
architecture. These clusters can influence a variety of 
cellular functions, including signal transduction, 
cellular communication, and metabolic regulation. 
Moreover, protein clusters are integral to the 
regulation of gene expression and cellular dynamics. 
These clusters have the potential to affect processes 
such as RNA metabolism and splicing, which are 
essential for preserving cellular homeostasis and 
functionality. In our study, a total of 295 keywords 
were identified, and they were divided into 6 clusters 
of different colors representing different research 
directions. The keywords in the red cluster are related 
mainly to age and health, including age, adulthood, 
disability, and disorders. The keywords in the green 
cluster are related mainly to immunity, including 
antigen, antibody, activation, and monocyte. The 
keywords in the blue cluster are related mainly to 
metabolism, including obesity, metabolic syndrome, 
and insulin resistance. The keywords in the yellow 
cluster are related mainly to cell differentiation and 
expression, including expression, differentiation and 
proliferation. The keywords in the purple cluster are 
related mainly to diseases, including inflammation, 
infection, stroke, and cholinesterase. The keywords in 
the cyan cluster are related mainly to metabolic 
proteases, including AHSG, butyrylcholinesterase, 
apolipoprotein-e, and fetuin-a. 

Discussion 
The interaction between genetic and 

environmental factors alters the homeostasis of cells 
or tissues, which, with cumulative effects over time 
and dose, leads to adaptive changes in the structure 
and function of the body's organs and systems, as 
reflected in alterations at the physiological and 
biochemical levels and ultimately leading to an aging 
phenotype[18]. Because of the multifactorial process 
of aging, devising effective explanations of senescence 
as a whole is a challenge[19]. 

Studies have shown that homeostasis can be 
monitored by plasma proteins, and due to the 
cumulative effect on physiological and biochemical 
indicators, these proteins can ultimately reflect the 
aging phenotype [20-23] (Figure 1). However, it is 
unclear which plasma proteins can be used as 
biomarkers of homeostasis and influence aging. 

Recent studies have shown that plasma proteins 
are differentially expressed across the lifespan [1]. 
Four protein clusters were found in our study, and 
these clusters exhibited different expression trends 
with age (Figure 2B). Furthermore, we identified 45 
age-related proteins. The proteins that were 
upregulated with age are related mainly to the 
immune response, whereas the proteins that were 
downregulated with age are related mainly to 
metabolism (Table 3). As demonstrated in previous 
studies, the increase in the immune response with age 
is reflected in the increased susceptibility to infectious 
diseases and increased prevalence of chronic diseases 
characterized by a pro-inflammatory state [24], and 
basal energy metabolism is thought to decline linearly 
with age [25]. Three age groups with peaks at 40, 60 
and 90 years were identified (Figure 2C). The unique 
proteins at ages 60 and 90 years are mainly related to 

 
Figure 3. Phenotype-related plasma proteome profiling (A) Plasma proteins significantly associated with physiological indices. Red represents a positive correlation, and blue 
represents a negative correlation. (B) Circos plot showing correlations between plasma proteins and age and physiological indices and the association between the two variables. 
(C) The cluster map of keywords in proteomics and aging research. The color of the nodes denotes the cluster. 
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metabolism. Common proteins of the 60-, 70-, 90- and 
100-year-old groups are mainly associated with the 
immune response and metabolism (Table 2). A large 
number of studies have also suggested that metabolic 
balance is a crucial requirement for cellular 
homeostasis. Changes associated with aging stimulate 
the innate immune system, leading to low-level 
inflammation and metabolic disorders [26]. Our 
results confirm the findings of previous studies. 

Several biochemical indices have a strong 
connection with physical function, morbidity and 
mortality, indicating that the changes in these indices 
are related to health and indirectly reflected the aging 
process [27, 28]. Our protein expression data showed 
that different biochemical indices are reflected in 
different age intervals (Table 1). By further identifying 
and validating proteins that correlate with 
physiological indices and age, we found that 
aging-related studies have linked mainly CD44, 
CD14, IGF2, CFD, LBP, IGFBP3, EFEMP1, and AHSG 
to inflammation and metabolism. Among them, 
CD44, CD14, IGF2, CFD, and EFEMP1 are mainly 
associated with liver function; CFD and EFEMP1 are 
mainly associated with renal function; and IGF2, CFD, 
LBP, EFEMP1, and AHSG are mainly associated with 
oxidative stress. 

Hub proteins associated with liver function 
influence healthy aging through homeostasis 

CD44 is a cell membrane-bound surface receptor 
that mediates inter-cellular and extracellular matrix 
(ECM) communication [29]. It is considered a 
potential biomarker of aging in healthy brains 
through immune inflammatory responses [30, 31]. In 
addition, CD44 is involved in the relationship 
between hepatocyte lipotoxicity and inflammatory 
cell infiltration [32], which suggests a potential link 
between CD44 and lipid metabolism. CD14 is a 
membrane glycoprotein anchored by 
glycosylphosphotidylinositol, found on neutrophils 
and mononuclear cells/macrophages, and also exists 
in a soluble form known as sCD14 [33, 34]. CD14 
plays a key role in the chronic inflammatory response 
in elderly people and chronic kidney disease (CKD) 
patients and has a direct relationship with the 
development of CVD [35]. High levels of circulating 
soluble CD14 (sCD14) mediate the onset and 
development of atherosclerosis by stimulating 
macrophages to produce pro-inflammatory molecules 
[36]. As for other acute-phase inflammatory 
biomarkers, sCD14 predicts the onset of CVD and 
independently predicts all-cause mortality in older 
adults [37]. According to extensive literature, CD14 
and CD44 play important roles in adipose tissue 
inflammation, which in turn enhances insulin 

resistance and hepatic function damage and even 
affects aging [38, 39]. CD44 interacts with the 
PI3K-AKT-mTOR pathway, which is crucial for cell 
survival, growth, and metabolism, thereby influen-
cing cellular aging and homeostasis [40]. CD14's 
regulation of inflammation is vital for homeostasis 
and preventing aging-related chronic inflammation 
[41]. Our results also confirmed the associations 
between CD14/CD44 and GGT/GOT, which are 
indicators of liver function, and age (Figure 3B).  

IGF2, a member of the insulin family of 
polypeptide growth factors, is involved in glucose 
metabolism in adipose tissue, the liver, and aging 
[42-44]. Research has demonstrated that higher IGF2 
levels enhance memory in healthy animals and 
mitigate numerous symptoms in laboratory aging 
models [45]. It influences cell growth and 
specialization, with its imbalance linked to diseases 
like cancer and metabolic disorders. IGF2 engages 
with the IGF pathway, affecting aging and lifespan by 
regulating cell growth and metabolism [46]. This was 
confirmed by the correlation between IGF2 and 
GOT/GGT, which are representative indicators of 
liver function or age (Figure 3B), in our study. 

EFEMP1 is a member of the fibulin family of 
extracellular matrix glycoproteins. Studies have 
shown that elevated levels of circulating EFEMP1 are 
associated with an increased risk of all-cause and AD 
dementia [47]. It may influence cognitive decline 
through its effects on brain structure and function, 
highlighting its role in aging and homeostasis [48]. 
Efemp1 knockout mice were reported to age faster 
and die earlier than wild-type mice did, and they 
displayed early aging phenotypes [49]. EFEMP1 is 
also a crucial gene involved in the development of 
nonalcoholic steatohepatitis (NASH) via extracellular 
matrix (ECM)-related pathways or immunity-related 
pathways [50]. It has been suggested that EFEMP1 
correlates with liver function, which is consistent with 
our results (Figure 3B). 

Complement factor D (CFD), a type of serine 
protease, facilitates the cleavage of complement factor 
B, which is the rate-limiting step in the alternative 
complement activation pathway [51]. CFD activates 
the alternative complement pathway in the immune 
system, influencing inflammation and immune 
surveillance. Its dysregulation can contribute to 
age-related diseases and disrupt tissue homeostasis. 
This protein also functions as an adipokine. 
Adipocyte differentiation and lipid accumulation are 
influenced by CFD via C3a signaling [52]. Our results 
revealed an association between CFD and an indicator 
of liver function (GGT) (Figure 3B). However, the 
specific molecular mechanisms of CFD in organ 
damage and aging need to be further explored. 
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Insulin-like Growth Factor Binding Protein 3 
(IGFBP-3) is a member of the IGFBP family. IGFBP3 
modulates the activity of IGF1 and IGF2 by binding to 
them and regulating their interaction with IGF 
receptors. It plays a role in cell growth, survival, and 
apoptosis, and its expression is associated with aging 
and age-related diseases. IGFBP3 can influence the 
IGF signaling pathway, which is critical for regulating 
cellular aging and homeostasis [53]. A study on the 
relationship between the insulin-like growth factor 
axis and plasma lipid levels in elderly individuals 
revealed that age was inversely associated with 
IGFBP-3 levels, body mass index, and lipid levels. 
IGFBP-3 correlates significantly positively with 
HDL-C and ApoA1 [54]. In our study, the plasma 
level of IGFBP-3 correlated significantly with the level 
of GGT, which is associated with lipid metabolism 
(Figure 3B). Animal experiments have shown that 
overexpression of human IGFBP-3 or its mutant 
devoid of IGF-binding ability leads to glucose 
intolerance with different effects on insulin secretion, 
insulin sensitivity, and lipid homeostasis in aging 
mice [55]. Therefore, IGFBP-3 is closely related to liver 
function and lipid homeostasis. 

Hub proteins associated with renal function 
influence healthy aging through homeostasis 

According to previous studies, EFEMP1 is an 
extracellular matrix protein involved in both cellular 
structure and signaling. Additionally, it was 
associated with worse eGFR cross-sectionally, with a 
longitudinal ΔeGFR, with prevalent chronic kidney 
disease (CKD), and with a rapid decrease in eGFR. A 
study also confirmed that there is a putative causal 
relationship between the EFEMP1 concentration and 
the estimated glomerular filtration rate (eGFR), 
suggesting a relationship between EFEMP1 and renal 
function [56]. In addition, it has been shown that 
higher levels of circulating CFD are associated with a 
lower risk of developing diabetes in middle-aged 
adults [57], and deficiency in complement factor D is 
closely related to inflammation [58]. Patients with 
chronic kidney disease (CKD) have been found to 
have high levels of CFD in plasma microparticles [59]. 
Inhibiting CFD may help to prevent amplification of 
the alternative pathway and thereby limit systemic 
inflammation, organ damage, and disease progression 
[51]. Therefore, in addition to liver function, kidney 
function is related to both EFEMP1 and CFD. 

Hub proteins associated with SOD influence 
healthy aging through homeostasis 

A recent report on adult neuronal 
culture-derived cell lines demonstrated that IGF2 
increases mitochondrial functional activity by 

reducing oxidative stress, which affects aging [60]. 
This was confirmed by the correlation between IGF2 
and SOD, which are representative indicators of 
oxidative stress (Figure 3B), in our study. These 
results reveal the key role of IGF2 in homeostasis and 
aging; thus, IGF2 may serve as a promising biomarker 
for predicting physical health and aging. 

In addition to its effect on liver and kidney 
function, EFEMP1 (fibulin-3) is able to alleviate the 
changes in ROS levels in the low-dose fibulin 3 
groups. Studies have also indicated that fibulin-3 may 
reduce the level of oxidative stress during 
hypertensive vascular remodeling [61, 62]. Moreover, 
fibulin-3 may be related to oxidative stress, as 
indicated by our results (Figure 3B). 

Furthermore, CFD has the potential to prevent 
oxidative stress-induced cell death without evident 
toxicity [63]. Our results revealed an association 
between CFD and an indicator of oxidative stress 
(SOD) (Figure 3B). However, the specific molecular 
mechanisms of CFD in organ damage and aging need 
to be further explored. 

Lipopolysaccharide-binding protein-1 (LBP) is 
the main component of the outer membrane of 
gram-negative bacteria. It can increase production of 
various inflammatory cytokines and chemokines and 
subsequently induce innate immunity in the liver [64]. 
LBP aids the immune response to bacterial infections 
by binding LPS, enabling its detection by CD14 and 
Toll-like receptors, which initiate inflammation. While 
crucial for pathogen removal, this can lead to chronic 
inflammation and aging if unchecked [41]. A 
relationship between and physical function has been 
reported in healthy older adults. Epidemiological 
analysis revealed that LBP-1 was positively associated 
with inflammatory factors and that LBP-1 was 
negatively associated with physical function [65]. 
Furthermore, LBP mediates lysosomal signaling, 
which acts in parallel to regulating longevity [66]. 
Current findings suggest that a significant decrease in 
liver LBP levels promotes liver oxidative stress and 
inflammation, aggravating nonalcoholic 
steatohepatitis (NASH) progression under 
physiological and pathological nonobesogenic 
conditions [67]. Therefore, LBP is involved not only in 
inflammation and metabolism but also in oxidative 
stress and affects lifespan.  

AHSG (alpha-2-HS-glycoprotein, fetuin-A), a 
liver-derived plasma protein, modulates 
inflammation, reduces insulin sensitivity, and 
promotes weight gain following a high-fat diet or 
aging [68]. Clinical studies have shown that the serum 
fetuin A concentration correlates with age and 
increases with age [69]. Moreover, low levels of 
fetuin-A may promote crystal deposition and 
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subsequently induce cell injury and oxidative stress 
[70]. Nevertheless, further investigations in elderly 
individuals are needed to validate the correlations 
between LBP and fetuin-A levels and oxidative stress 
and age found in our study, and subsequent 
functional studies may help to clarify the role of LBP 
and fetuin-A. AHSG's interaction with FGF23 
suggests a role in modulating bone and vascular 
pathology, which are important aspects of aging and 
homeostasis. 

Conclusions 
To conclude, in the present global plasma 

proteomic study of a cohort of 71 healthy individuals 
(aged>20–100), we identified and quantified 666 
proteins. Different bioinformatics approaches were 
used to investigate proteins that correlated 
significantly with age and physiological indices. 
Furthermore, the identified hub proteins associated 
with both age and physiological indices are involved 
in oxidative stress, inflammation, and metabolism. To 
our knowledge, this is the first investigation to link 
aging and homeostasis based on plasma proteins. 
However, the specific molecular mechanisms 
underlying the role of these proteins in homeostasis 
and aging need to be further explored and validated 
in future studies. 
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