
Int. J. Med. Sci. 2025, Vol. 22 
 

 
https://www.medsci.org 

604 

International Journal of Medical Sciences 
2025; 22(3): 604-615. doi: 10.7150/ijms.103834 

Research Paper 

Glycosphingolipids-Dependent Phospholipid 
Metabolism Enhances Cancer Initiation and Progression 
through SMPD1/GLTP/B3GALT4/ST8SIA6 Signaling 
Axis: A Novel Therapeutic Target 
Liangpan Shi, Nanqi Mao, Zhihua Zheng, Jiangrui Liu, Hao Zhou, Jianbin Hou, Yibin Su 

Department of Gastrointestinal Surgery, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, 362002, China. 

 Corresponding author: Yibin Su, email: syb3266@sina.com. Department of Gastrointestinal Surgery, The First Hospital of Quanzhou Affiliated to Fujian 
Medical University, Quanzhou, 362002, China.  

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). 
See https://ivyspring.com/terms for full terms and conditions. 

Received: 2024.09.18; Accepted: 2024.12.14; Published: 2025.01.06 

Abstract 

Colorectal cancer (CRC) is a prevalent malignancy with high morbidity and mortality rates globally. 
Advances in single-cell sequencing technology have enabled comprehensive analyses of tumor cells at 
single-cell resolution, providing valuable insights into the molecular mechanisms underlying CRC 
initiation and progression. In this study, we integrated single-cell sequencing data with the TCGA 
database to identify key molecular pathways involved in CRC pathogenesis. Our analysis revealed that 
dysregulation of phospholipid metabolism, particularly sphingolipid metabolism, plays a crucial role in 
CRC development. Specifically, we observed aberrant expression of genes involved in sphingolipid 
biosynthesis and degradation, as well as altered levels of various sphingolipid metabolites in CRC cells. 
Furthermore, we identified several potential therapeutic targets, including SMPD1, GLTP, B3GALT4, and 
ST8SIA6, within the sphingolipid metabolism pathway that could be exploited for the development of 
novel CRC treatments. Overall, our findings provide novel insights into the molecular mechanisms 
underlying CRC and highlight the importance of targeting phospholipid metabolism, specifically 
sphingolipid metabolism, as a potential therapeutic strategy for CRC. 
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Introduction 
Cancer remains a major health challenge for 

humanity, with colon cancer being a common 
gastrointestinal tumor. Due to anatomical continuity, 
colon cancer data is often reported together with 
rectal cancer[1]. In 2020, colorectal cancer ranked third 
in global cancer incidence and mortality rates were 
also among the highest. Since the mid-1990s, rectal 
cancer has exhibited a long and sharp increase, with 
an annual increase of 1.3% in adults aged 40-49 and 
0.5% in adults aged 50-54[2]. The treatment of 
colorectal cancer mainly involves surgery and 
chemotherapy, with a significant disparity in 5-year 
survival rates and prognosis based on different stages. 
The 5-year survival rate for stage IV colon cancer can 

be as low as 10%, posing a significant burden on 
human health and resulting in substantial 
socio-economic costs[3]. Therefore, there is crucial 
clinical significance in seeking new screening and 
treatment methods at an early stage. 

The etiology of colorectal cancer is not yet fully 
understood, and most cases are the result of multiple 
risk factors acting together. In addition to gender, age, 
and genetic factors, the influence of lifestyle factors 
cannot be ignored, such as alcohol consumption, 
smoking, high-fat and low-fiber diets, and lack of 
physical activity[4, 5]. Various factors disrupt the 
intestinal microbiota, leading to intestinal 
permeability and affecting the integrity of the 

 
Ivyspring  

International Publisher 



Int. J. Med. Sci. 2025, Vol. 22 

 
https://www.medsci.org 

605 

intestinal epithelium. Consequently, they alter 
intestinal mucosal barrier immunity, reduce nutrient 
absorption, and regulate secondary bile acid 
metabolites[6]. Due to the metabolic changes 
mentioned above, an excess of free radicals derived 
from secondary bile acid metabolites is produced, 
leading to an imbalance between endogenous 
antioxidants and free radicals[7]. The intestinal 
mucosa and epithelium undergo severe stress 
responses, resulting in local and even systemic 
inflammatory reactions and infiltration. All these 
factors ultimately contribute to various 
gastrointestinal diseases, including colorectal cancer, 
inflammatory bowel disease, and gastritis[8].  

In summary, there are many factors contributing 
to the development of colon cancer, making its 
pathogenesis highly complex. In recent years, with the 
continuous optimization and development of genetic 
engineering techniques, high-throughput sequencing, 
and single-cell sequencing technologies, a large 
number of metabolism-related genes associated with 
colon cancer have been discovered, participating in 
crucial signaling pathways of colorectal cancer. In 
2018, Wataru Sakamoto and his research team found 
that neutral ceramidase (nCDase), which regulates 
sphingolipid metabolism, is located in the Golgi 
apparatus of colon cancer cells and protects cells from 
ceramide-induced apoptosis[9]. More recently, 
researchers have identified specific genes, GSTA1, 
TONSL, and AGA, through a mixed-effect scoring 
test, confirming their involvement in 
homocysteine-related amino acid metabolism and 
folate interaction, thus impacting the occurrence and 
development of colorectal cancer[10]. Results from a 
study by Professor Dong Ho Lee and his team at Seoul 
National University in Korea showed a positive 
correlation between the total sum of metabolic 
syndrome (MetS) components and the risk of 
early-onset distal colon and rectal cancer, but no 
influence on proximal colon cancer[11]. Based on the 
researchers' continuous studies in recent years, the 
treatment of colorectal cancer not only involves early 
surgical intervention and traditional radiotherapy 
and chemotherapy but also includes targeted therapy 
and immunotherapy, which have shown significant 
efficacy. By combining comprehensive treatments and 
developing precise personalized treatment plans 
based on tumor characteristics, we aim to alleviate the 
physical and economic burdens on patients 
throughout the disease progression and treatment 
process. Therefore, in-depth research and exploration 
of relevant targets involved in the disease 
development process remain integral to our daily 
work, providing more possibilities for the diagnosis, 
treatment, and evaluation of the disease. 

Methods  
Ethical statement 

This study was approved by the Ethics 
Committee of the First Hospital of Quanzhou 
Affiliated to Fujian Medical University, QuanZhou 
(No. GSE163974).  

Single-cell sequencing data analysis 
To analyze the single-cell sequencing data of 

colon cancer from GSE163974 using the R language, 
you can follow these steps: (1) Data downloading and 
import: Start by downloading the GSE163974 dataset 
from GEO database (https://www.ncbi.nlm.nih.gov/ 
geo/query/acc.cgi)[12], and import it into the R 
environment. The R packages of `GEOquery` and 
`Seurat` were included for this purpose[13, 14]. (2) 
Data preprocessing: Apply quality control and 
preprocessing steps to the single-cell sequencing data. 
This involves removing low-quality cells, 
low-expressed genes, and outliers. Packages of 
`Seurat` provide useful functions like `FilterCells()`, 
`NormalizeData()`, and `ScaleData()` for this step. (3) 
Data visualization and exploratory analysis: Use 
scatter plots, box plots, heatmaps, and other 
visualization techniques to explore the single-cell 
data. This plot could observed cell distributions, 
clustering patterns, and differential gene expression. 
The `Seurat` package offers functions of `DimPlot()` 
and `FeaturePlot()` for visualization. (4) Cluster 
analysis: Utilize clustering algorithms to group 
similar cells together and assign cluster labels. 
Common clustering algorithms include k-means, 
DBSCAN, and hierarchical clustering. The `Seurat` 
package's `FindClusters()` function used for this 
analysis. (5) Differential analysis: Perform differential 
expression analysis to identify genes with significant 
differential expression among different clusters. The 
`Seurat` package's `FindMarkers()` function were 
applied. (6) Cell type annotation: Based on the results 
of differential analysis, annotate the cell types for each 
cluster using a reference genome or cell type-specific 
gene set. Tools of `SingleR` package and `Seurat` 
package's `AddModuleScore()` function used for this 
purpose[15]. (7) Dynamic analysis and pseudotime 
trajectory: If your dataset includes time-series 
measurements, apply dynamic analysis methods and 
pseudotime analysis algorithms to study the 
developmental patterns of colon cancer cells. The 
`Seurat` package provides methods of `Monocle` and 
`PAGA` for dynamic simulation and pseudotime 
analysis[14]. Herein, these methods for analyzing the 
GSE163974 colon cancer single-cell sequencing data 
using the R language.  
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Gene function and pathway enrichment 
analysis  

Gene function and pathway enrichment analysis 
plays a crucial role in understanding the biological 
significance of differentially expressed genes. In this 
methodology, (a) Gene Ontology (GO) Enrichment 
Analysis: (1) Retrieving GO annotation data: 
Download and import the required GO annotation 
files or use pre-existing ones from DAVID databases 
(https://david.ncifcrf.gov)[16]. (2) Mapping gene 
identifiers: Use R packages of org.Hs.eg.db to perform 
mapping and annotation, to ensure that the gene 
identifiers in the annotation file match those in the 
expression dataset[17]. (3) Performing GO enrichment 
analysis: Utilize R packages of clusterProfiler and 
GOstats to identify significantly enriched GO terms 
among differentially expressed genes (DEGs). 
Perform statistical tests of Bonferroni to calculate the 
enrichment significance of each term with the B-H 
adjusted p-value less than or equal 0.05. (b) Pathway 
Enrichment Analysis: (1) Retrieving pathway 
annotation data: Download or retrieve the relevant 
pathway annotation files, which can be obtained from 
KEGG database (https://www.kegg.jp); (2) Mapping 
gene identifiers: Ensure the gene identifiers in the 
pathway annotation file match those in the expression 
dataset. Use R packages of clusterProfiler to perform 
mapping and annotation[18]. (3) Utilizing statistical 
approaches of Bonferroni to identify the enriched 
pathway with the B-H adjusted p-value less than or 
equal 0.05. 

Colon cancer TCGA database analysis  
Here, this methodology outlines the steps 

involved in analyzing COAD from The Cancer 
Genome Atlas (TCGA) database using the R language. 
(1) Accessing TCGA data: Obtain colon cancer data 
from TCGA through the Genomic Data Commons 
(GDC) Data Portal or using R package of 
TCGAbiolinks[19, 20]. Download relevant data 
files[21], including gene expression and clinical 
information[22]. (2) Data Preprocessing: (a) Data 
quality control: Perform quality assessment and 
filtering of the TCGA datasets to ensure the removal 
of low-quality or unreliable samples. Implement 
quality control checks based on specific criteria, such 
as sample integrity, sequencing depth, or batch 
effects. (b) Gene expression normalization: Apply 
normalization techniques of DESeq2, to account for 
variation in gene expression due to technical biases. 
This step harmonizes gene expression values for 
subsequent analysis. (3) Differential Expression 
Analysis: utilize R packages of DESeq2 to identify 
DEGs between COAD samples and normal controls. 
Adjust for multiple testing to control for false 

discovery rate (FDR). The statistical thresholds to 
determine significant DEGs based on log2|fold 
change| over than or equal 2 and B-H adjusted 
p-value less than or equal 0.05.  

Gene Set Enrichment Analysis (GSEA) and 
Gene Set Variation Analysis (GSVA)  

GSEA and GSVA are powerful tools for 
identifying biological pathways or gene sets that are 
differentially regulated in various experimental 
conditions[17, 23-26]. This methodology provides a 
comprehensive guide for conducting GSEA and 
GSVA analysis to gain insights into pathway level 
changes in gene expression[27-30]. Gene sets were 
obtained from MSigDB databases (https://www 
.gsea-msigdb.org/gsea/index.jsp). Here, the analysis 
as following: (a) Preranked gene list: Rank genes 
based on their differential expression between 
different conditions or phenotypes. Use statistical 
methods of limma to compute fold changes and 
p-values. (b) Running GSEA: Utilize R packages of 
clusterProfiler, fgsea, and GSEABase to perform 
GSEA analysis. Input the ranked gene list and the 
gene set collection. Generate an enrichment score (ES) 
and a normalized enrichment score (NES) to 
determine the significance of gene set enrichment. 
(c)Visualize GSEA results using enrichment plots, 
showing the ranking of genes along with running 
enrichment scores. Identify significantly enriched 
gene sets based on the NES and assess their biological 
relevance.  

For the GSVA analysis, the following steps were 
applied: (1) Gather the gene sets that represent 
biological pathways, processes, and functional gene 
categories. These gene sets also can be obtained from 
MSigDB databases[28, 29]. (2) GSVA calculation: Use 
R packages of GSVA to perform GSVA analysis, 
including the steps of (a) Input the gene expression 
matrix and the gene set collection; (b) Compute 
pathway enrichment scores for each sample, 
representing the activity level of each pathway[31]. (3) 
Differential GSVA analysis: Compare the pathway 
enrichment scores between different conditions or 
phenotypes. Use statistical methods of limma analysis 
to identify significantly differentially enriched 
pathways. (4) Visualize GSVA results using heatmaps 
and bar plots, showing the pathway enrichment 
scores for each sample. Assess the differences in 
pathway activity levels between conditions. 

Survival analysis  
Here, the hub genes and pathway enriched score 

survival analysis applied as following[32, 33]: (1) 
overall survival (OS) analysis: Assess the relationship 
between gene expression and patient survival. Utilize 
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R packages including survival, survminer, and 
survivalROC for survival analysis and generate 
Kaplan-Meier curves. (2) Cox proportional hazards 
regression: Perform Cox regression analysis to 
evaluate the prognostic value of DEGs. Identify genes 
that significantly impact patient survival using R 
packages of survival and survminer[32]. 

Results 
Single-cell sequencing data analysis 

Based on the single-cell RNA-sequencing 
analysis, the results can be summarized as follows: 
Figure 1A of the PCA plot represents the clustering 
pattern of cells based on their gene expression 
profiles. It shows the distribution of cells in a 
reduced-dimensional space, with each point 
indicating an individual cell. Clusters of cells that 
exhibit similar gene expression profiles tend to be 
closer together, while cells with distinct expression 
patterns are located farther apart. Figure 1B visualizes 
the relationship between cells by projecting 
high-dimensional gene expression data into a 
two-dimensional space. Cells that are more similar in 
terms of gene expression are placed closer together in 
the plot, and providing information about cell type 
heterogeneity and allows for the identification of 
distinct subpopulations within the dataset. This plot 
of Figure 1C highlights the expression level of specific 
genes across different cell populations or clusters. It 
displays the enrichment or depletion pattern of 
selected genes in a group-wise or cell type-specific 
manner. This information is helpful for identifying 
genes that are differentially expressed and potentially 
associated with specific cellular functions or 
biological processes. Figure 1D of the tSNE map 
presents the distribution of epithelial cells in a 
reduced-dimensional space, representing distinct 
subpopulations with unique spatial relationships. 
And figure 1E-F provides insights into the 
pseudotime-based progression of EPCs 
subpopulations. 

Gene Function and Pathway Enrichment 
Analysis  

The GSEA bubble plot of Figure 2A 
demonstrates the enrichment level and significance of 
gene sets under different conditions. Here, GOBP: 
response to metal ion, GOBP: regulation of 
glycoprotein metabolic process, and GOBP: negative 
regul ation of glycoprotein metabolic process were 
positivetlly enriched. While the GOBP: DNA 
metabolic process, GOBP: ncRNA metabolic process, 
and GOBP: RRNA metabolic process were 

negativetlly enriched. And, clearly, metabolic related 
signaling pathways are significantly enriched. Figure 
2B-C presents the distribution of hub gene expression 
levels in different subtypes. The figure 2D showing 
the result of a GO analysis, and the bubble plot 
represents a specific gene ontology term involved in 
biological process, molecular function, or cellular 
component, which provides a visual representation of 
enriched gene ontology terms. And the terms of ATP 
metabolic process, mitochondrial ATP synthesis, and 
oxidative phosphorylation were significantly 
enriched. 

The result of a GSEA analysis typically includes 
a ranked list of genes, with the most strongly 
correlated genes at the top of the list. This list is then 
compared against a collection of predefined gene sets, 
which represent known biological pathways, 
molecular functions, and cellular processes. And 
terms including GOBP: glycoprotein metabolic 
process (ES=0.40; NES=1.56; p-adjusted=0.04), GOBP: 
negative regulation of glycoprotein metabolic process 
(ES=0.92; NES=2.10; p-adjusted=1.87E-05), GOBP: 
glycoside metabolic process(ES=0.69; NES=1.75; 
p-adjusted=0.019), and GOBP: regulation of 
glycoprotein metabolic process (ES=0.84; NES=2.13; 
p-adjusted=2.31E-04) were significantly detected. 
Here, the map of glycoprotein metabolic process may 
play an important role in CRC development. The 
figure 3E showing the Area Under the Curve 
(AUC)-based scoring of cell metabolic pathways 
involved in glycoprotein metabolic process, and 
showing the cell heterogeneity of glycoprotein 
metabolic pathway activity within EPCs cell 
population and detecting the regulatory mechanisms 
underlying cell metabolism. 

Colon Cancer TCGA Database Analysis  
GSVA measures the enrichment of gene sets 

within a sample, providing an indication of pathway 
activity. And the differences in enrichment scores of 
metabolic pathways related to CRC tissue were 
analyzed using the GSVA method in Figure 4A-B. 
Here, the GSVA was employed to calculate the 
enrichment scores for metabolic pathways, reflecting 
their relative activity levels in CRC sample (Figure 
4A). A differential analysis was then performed to 
compare the enrichment scores between different 
groups in figure 4B. The results revealed significant 
differences in the enrichment scores of glycoprotein 
metabolic process among the cancer and 
paracancerous tissues, and suggest alterations in the 
activity levels of glycoprotein metabolic pathways in 
CRC cancer tissue compared to healthy tissue.  
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Figure 1. The results of single-cell sequencing data analysis in response to CRC development. A) the PCA plot represents the clustering pattern of cells based on 
their gene expression profiles, and shows the distribution of cells in a reduced-dimensional space, with each point indicating an individual cell. B) showing the cells relationship by 
projecting high-dimensional gene expression data into a two-dimensional space. C) highlights the expression level of specific genes across different cell populations or clusters. 
D) presents the distribution of epithelial cells in a reduced-dimensional space, And E and F showing the pseudotime inference algorithm assigns a pseudotime value to each cell, 
allowing the assessment of temporal relationships and differentiation paths. 

 
The analysis showed that glycoprotein metabolic 

pathways were significantly correlated with CRC 
patient survival. Here, high activity levels in the 
GOBP: glycoprotein metabolic, GOBP: negative 
regulation of glycoprotein metabolic process, GOBP: 

glycoside metabolic process, and GOBP: regulation of 
glycoprotein metabolic process were not favorable to 
overall survival, suggesting that the activation of this 
pathway may have a exacerbate damage for CRC 
progression (Figure 4C). These findings highlight the 
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potential prognostic value of pathway activity levels 
in CRC cancer and provide insights into the molecular 
mechanisms underlying cancer progression. Further 

investigations are warranted to validate these results 
and explore the therapeutic implications of targeting 
specific pathways in the treatment of CRC cancer. 

 

 
Figure 2. The gene functional enrichment results in response to pseudotime-related differently expressed genes. A) The bubble plot indicating the enrichment 
level and significance of the gene set under different conditions. The bubbles placed closer to the top of the plot indicate higher enrichment levels, and the size of the bubbles 
represents the enriched size. While x-axis representing the significance of the enrichment. B-C) the box and dot-plot presenting the expression level differences of core genes 
in different cell EPCs-subtypes. D) the bubble plot represents the specific GO term.  



Int. J. Med. Sci. 2025, Vol. 22 

 
https://www.medsci.org 

610 

 
Figure 3. The analysis of GSEA and AUC-based scoring of cell metabolic pathways. A-D) representing the GSEA enriched results involved in glycoprotein metabolic 
process. E) showing the implementation of an AUC-based scoring approach allows for the quantification of cellular metabolic pathway activity using single-cell sequencing data of 
EPCs. 

 

Hub regulator detection 
The venn diagram displayed the overlap of core 

genes identified from TCGA-based COAD DEGs and 
glycosphingolipid−related gene (Figure 5A). and the 
volcano plot, on the other hand, presented a 
representation of the statistical significance and fold 
change of hub gene expression between cancer and 
paracancerous tissue (Figure 5B). Similarly, the key 

regulators including SMPD1, GLTP, B3GALT4, and 
ST8SIA6 were significantly correlated with CRC 
patient survival. Here, high expression levels in 
SMPD1, and low expression in GLTP, B3GALT4, and 
ST8SIA6 were significantly correlated with worse 
prognosis, suggesting a significant relations to 
SMPD1, GLTP, B3GALT4, and ST8SIA6 expression 
level of the development and prognoses of the CRC 
patients (Figure 5C).  
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Figure 4. The differently level and survival analysis of CRC cancer tissue from TCGA. A-B) showing the results of differential enrichment scores of glycoprotein 
metabolic GSVA pathways in CRC cancer tissue. C presented the glycoprotein metabolic alterations associated with CRC cancer development and progression based on survival 
analysis. 

 

Discussion 
In this study, we conducted an analysis and 

screening of potential core pathways, specifically the 
Glycosphingolipid pathway, and identified four core 
genes (SMPD1, GLTP, B3GALT4, and ST8SIA6) in 
colorectal cancer based on data analysis from relevant 
databases. We also demonstrated significant 
differential expression of these core genes through 
modeling. Lipid metabolism dysregulation is one 
characteristic of cancer cells. Highly proliferating 
cancer cells not only require lipids for cell membrane 
synthesis (phospholipids, cholesterol, and 
sphingolipids) but also utilize lipids as substrates for 

energy metabolism (triglycerides) or as sources of 
signaling molecules. Bioinformatics analysis and 
different analytical methods applied to clinical 
samples have shown significant changes in the species 
profile of sphingomyelins (SM) and triglycerides (TG) 
in colorectal cancer cohorts. These changes were 
successfully validated in two independent cohorts 
and showed a significant correlation with 
postoperative survival rate, supporting the 
hypothesized clinical relevance. The dysregulation of 
glycerolipid metabolism mentioned in this study may 
be involved in the progression of CRC, with the core 
genes SMPD1, GLTP, B3GALT4, and ST8SIA6 playing 
crucial roles. 
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Figure 5. Venn diagram and volcano plot were used to illustrate the results of hub gene analysis. A) This venn plot provided a clear visual representation of the 
shared and unique core genes across TCGA-based COAD DEGs and glycosphingolipid−related gene. Each circle in the diagram represented a different condition or group, and 
the intersection of circles represented the common genes found in those conditions or groups. B) The hub genes exhibiting a significant fold change with a high statistical 
significance were located further away from the center of the plot, resembling the shape of a volcano. C) the survival analysis of key regulators expression level revealed significant 
associations between gene expression levels and patient survival outcomes. 

 
Glycosphingolipids (GSLs) are a class of complex 

glycoconjugates that play crucial roles in various 
cellular processes, including signal transduction, cell 
adhesion, and modulation of immune responses 
[34-36]. And GPLs are composed of a hydrophobic 
ceramide domain linked to a hydrophilic carbo-

hydrate moiety. They are broadly classified into 
ganglio-series, globo-series, isoglobo-series, and 
lacto/neo-lacto-series based on their carbohydrate 
structures[34, 37]. Dysregulation of GSL metabolism 
can occur through altered expression or activity of 
enzymes involved in GSL biosynthesis, degradation, 
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and modification[38]. Accumulating evidence 
suggests that aberrant GSL metabolism contributes to 
tumor initiation, progression, metastasis, and drug 
resistance[37, 39]. Studies have demonstrated that 
alterations in GSL metabolism can directly impact 
oncogenic signaling pathways. For example, aberrant 
expression of glycosyltransferases involved in GSL 
synthesis has been observed in various cancers, 
leading to changes in GSL composition and 
functions[35, 39, 40]. Altered GSL expression can 
modulate key cellular events, such as cell 
proliferation, apoptosis, invasion, and angiogenesis, 
thereby promoting tumor initiation and growth. 
Several studies have reported the association between 
dysregulated GSL metabolism and tumor 
development. For instance, increased expression of 
specific GSLs, such as GM2 and GD2, has been 
observed in neuroblastoma and melanoma, 
respectively, and is associated with poor 
prognosis[34]. Moreover, GSLs have been implicated 
in cancer stem cell maintenance and 
epithelial-mesenchymal transition, both of which are 
critical processes in tumor development and 
metastasis[35]. Targeting dysregulated GSL 
metabolism shows promise as a therapeutic strategy 
for cancer treatment. Inhibition of GSL synthesis 
enzymes, such as glucosylceramide synthase, has 
been explored as a potential anticancer therapy[35]. 
Additionally, the development of antibodies targeting 
GSL antigens, such as GD2, has shown encouraging 
results in clinical trials, highlighting the therapeutic 
potential of targeting GSLs[41]. Here, the 
dysregulation of glycosphingolipid metabolism is 
implicated in the occurrence and development of 
various types of tumors. Aberrant GSL expression 
and altered GSL-dependent signaling pathways 
contribute to tumor initiation, progression, and 
metastasis[37]. Further investigations into the precise 
mechanisms underlying the relationship between 
dysregulated GSL metabolism and cancer are 
warranted to exploit GSL-related targets for novel 
therapeutic interventions in cancer treatment[42]. 

Researchers have indicated that 5-fluorouracil 
(5-FU)-resistant colon cancer cells predominantly 
acquire resistance by inhibiting cell apoptosis induced 
by ceramide through the sphingomyelin 
(SM)/ceramide pathway, with lower levels of 
SMPD1[43-45], compared to sensitive cell lines. 
SMPD1translocates to the plasma membrane to 
generate ceramide, promoting enhanced apoptosis 
signaling through FAS-FASL and TNFRSF10- 
TNFSF10, leading to rapid endothelial cell apoptosis. 
In early investigations, by comparing SMPD1 activity 
and tumor cell apoptosis rates, the appropriate 
radiation dosage for CRC radiotherapy could be 

selected[43-45]. And these results highlighted the 
upregulation of MIR196B in CRC tissues, which 
regulates the expression levels of GLTP during the 
colorectal cancer (CRC) development process[46-48]. 
In human colon cancer cells, GLTP overexpression 
interferes with cell cycle progression, induces cell 
death, and inhibits cell growth[49]. Recent studies 
have discovered that GLTP, as a differentially 
expressed death-related gene, is associated with poor 
prognosis in female cervical cancer[46-48]. Zhang et al. 
found that overexpression of the B3GALT4 
glycosyltransferase responsible for ganglioside GM1 
synthesis can induce epithelial-mesenchymal 
transition (EMT) in breast cancer cells[50]. 
Additionally, analysis shows that B3GALT4 can 
independently predict overall survival in 
osteosarcoma patients, suggesting its potential as a 
prognostic biomarker[15, 49, 51]. Early studies 
demonstrated that downregulation of B3GALT4 in 
neuroblastoma cells resulted in increased prolife-
ration, invasion, and metastasis abilities in vitro[21, 31, 
50, 52-59]. High expression of ST8SIA6-AS1 was 
detected in hepatocellular carcinoma tissues and cells, 
with ST8SIA6-AS1 silencing leading to weakened 
proliferation and migration abilities in liver cancer 
cells[60, 61]. ST8SIA6-AS1 displayed its oncogenic 
function through the absorption of the tumor 
suppressor miR-651-5p. Shih et al. showed that 
ST8SIA6-silenced colon cancer cells exhibited 
increased resistance to treatment with ibrutinib[42, 51, 
62], as shown by cell viability assays[60, 61, 63-68]. 
Moreover, downregulation of ST8SIA6 was positively 
correlated with cancer recurrence in later stages. 
ST8SIA6 accelerated tumor occurrence in a genetically 
engineered spontaneous mouse model of colon 
cancer, reducing survival to approximately 67 
days[60, 61, 69-72]. Thus, ST8SIA6 expression in 
tumors suppresses anti-tumor immune responses to 
enhance tumor growth[22, 33, 73]. However, this 
study also has limitations and drawbacks, such as the 
lack of large sample clinical cohort studies and 
experimental validation. 
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