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Abstract 

Background: Gastric cancer (GC) remains a significant global health challenge. This study aimed to 
comprehensively analyze GC epidemiology and risk factors to inform prevention and intervention strategies. 
Methods: We analyzed the Global Burden of Disease Study 2021 data, conducted 16 different machine 
learning (ML) models of NHANES data, performed Mendelian randomization (MR) studies on disease 
phenotypes, dietary preferences, microbiome, blood-based markers, and integrated differential gene 
expression and expression quantitative trait loci (eQTL) data from multiple cohorts to identify factors 
associated with GC risk. 
Results: Global age-standardized disability-adjusted life year rates (ASDR) for GC declined from 886.24 to 
358.42 per 100,000 population between 1990 and 2030, with significant regional disparities. Despite this 
decline, total disability-adjusted life years show a concerning upward trend from 2015, rising from 
approximately 22.9 million to a projected 24.3 million by 2030. The slope index of inequality shifted from 87 in 
1990 to -184 in 2021, indicating a reversal in GC burden distribution, with higher ASDR now associated with 
lower socio-demographic index countries. The ML models analysis identified higher levels of clinical 
characteristics such as phosphorus, calcium, eosinophils percent, and triglycerides, as well as lower levels of 
iron and monocyte percent, may be associated with an increased risk of GC. MR analyses revealed causal 
associations between GC risk and disease phenotypes such as Helicobacter pylori infection, chronic gastritis, 
obesity, depression, and dietary preferences such as dairy and processed meats. Gut microbiome analysis 
showed associations with microbiome such as Phascolarctobacterium and Ruminococcaceae species. Blood-based 
markers analysis identified protective and risk effects for cortisol, glutamate, nicotinamide, Natural Killer 
%lymphocyte, CD4-CD8- T cell Absolute Count, Phosphatidylcholine (16:0_18:1), and Interleukin-1-alpha. 
Integrated genomic analysis identified 10 genes significantly associated with GC risk, with strong evidence for 
colocalization in genes such as CCR6 and PILRB. 
Conclusions: This systematic analysis reveals complex global trends in GC burden and identifies novel clinical, 
disease phenotypes, dietary preferences, microbial, blood-based, and genetic risk factors. These findings 
provide potential targets for improved risk stratification, prevention, and intervention strategies to reduce the 
global burden of GC. 
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Introduction 
Gastric cancer (GC) remains a significant global 

health challenge, ranking as the fifth most common 
cancer and the fourth leading cause of cancer-related 
deaths worldwide [1]. Its high mortality rate and 
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substantial socioeconomic impact underscore the 
critical need for exhaustive research into its 
epidemiology, risk factors, and underlying biological 
mechanisms. Understanding the multifaceted nature 
of GC is crucial for developing effective prevention 
strategies, improving early detection, and enhancing 
treatment outcomes. 

The Global Burden of Disease (GBD) study has 
provided valuable insights into the changing 
landscape of GC epidemiology [2]. Previous analyses 
based on GBD data from 1990 to 2019 have 
illuminated trends in GC epidemiology [3]. However, 
the rapidly evolving nature of cancer epidemiology 
necessitates continuous updates and more current 
analyses. Our study extends this temporal framework 
to 2021, incorporating the most recent data available, 
to provide a more contemporary and relevant picture 
of GC burden worldwide [4]. While the GBD database 
offers a wealth of information on disease burden, its 
utility in elucidating the complex risk factor profile of 
GC is limited. The multifactorial etiology of GC, 
involving an intricate interplay of genetic, 
environmental, and lifestyle factors, demands a more 
extensive approach to risk factor analysis [5-7]. To 
address this gap, our study integrates a wide array of 
potential risk factors and biomarkers, leveraging 
advanced statistical and bioinformatic techniques to 
provide a holistic view of GC risk. 

In addition to analyzing the burden trend of GC 
by GBD 2021, this study also evaluates the 
relationships between GC risk and a wide range of 
factors, including clinical characteristics, 
comorbidities, food preferences, gut microbiota, blood 
metabolites, immune cells, lipids, inflammatory 
markers, and genetic markers: Utilizing data from the 
National Health and Nutrition Examination Survey 
(NHANES), we apply 16 different machine learning 
models to identify clinical parameters associated with 
GC risk. This approach allows for the discovery of 
novel clinical biomarkers and risk factors. Through 
Mendelian randomization (MR) analyses, we examine 
the causal relationships between various disease 
phenotypes, dietary preferences, and GC risk. This 
method, using data from the FinnGen R10, UK 
Biobank-SAIGE GWAS, Helicobacter pylori infection, 
and food-liking databases, provides robust evidence 
for causal associations while minimizing confounding 
factors [8-11]. We also investigate the associations 
between GC risk and an in-depth panel of 
blood-based markers, including metabolites, immune 
cell populations, lipid species, and inflammatory 
proteins [12-15]. Recognizing the emerging role of the 
gut microbiome in cancer development, we analyze 
data from Finnish and German cohorts to explore 
associations between specific microbial taxa and GC 

risk [16, 17]. At last, we conduct an integrated analysis 
of differential gene expression, expression 
quantitative trait loci (eQTL) data [18]. This approach, 
combining data from The Cancer Genome Atlas 
(TCGA) and Genotype-Tissue Expression (GTEx) 
databases with summary-data-based Mendelian 
randomization (SMR) analysis, provides a systematic 
view of the genetic and epigenetic landscape of GC 
risk [19-22]. By synthesizing these diverse data 
sources and analytical approaches, our study aims to 
provide a nuanced and multidimensional under-
standing of GC risk. This detailed approach not only 
enhances our knowledge of GC etiology but also has 
the potential to inform more effective strategies for 
prevention, early detection, and personalized 
treatment. 

Methods 
Figure 1 delineates the extensive, multi-stage 

research design employed in this investigation of GC 
epidemiology and associated risk factors. The study 
commenced with an extensive analysis of GC 
epidemiology utilizing the GBD database. This 
analysis encompassed the examination of 
age-standardized disability-adjusted life year rates 
(ASDR) across 204 countries and territories, frontier 
analysis based on the socio-demographic index (SDI), 
and the projection of future trends in disability- 
adjusted life years (DALYs) employing Bayesian 
Age-Period-Cohort (BAPC) models. Health 
inequalities were assessed using the slope index of 
inequality (SII) and concentration index. 

Subsequently, the NHANES database was 
utilized to analyze clinical characteristics associated 
with GC. Following data cleaning of the NHANES 
database, we employed propensity score matching 
(PSM) to extract samples. Subsequently, we 
conducted analyses using both conventional logistic 
regression and an array of 16 machine learning 
models.  

Disease and food-liking phenotypes association 
studies were conducted using the FinnGen R10, UK 
Biobank SAIGE, Helicobacter pylori infection 
(anti-Helicobacter pylori IgG levels), and food-liking 
databases, incorporating Mendelian Randomization 
Phenome-Wide Association Study (MR-PheWAS) 
methodologies to identify phenotypes potentially 
influencing GC risk. 

Further investigations explored the intricate 
relationships between blood markers, gut microbiota, 
and GC risk. This phase involved the analysis of 
various metabolites, immune cell populations, lipid 
profiles, inflammatory proteins, and microbiota 
through two-sample MR techniques. 
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The final phase of the study comprised 
transcriptomic and epigenetic analyses. TCGA and 
GTEx databases were employed for differential gene 
expression analysis, while the eQTLGen dataset was 
utilized for eQTL analysis through SMR. The 
integration of Differentially Expressed Genes (DEGs) 
and eQTLs facilitated the identification of potential 
protective and risk genes for GC. 

Please refer to the Supplementary method and 
Supplementary Table for detailed study design and 
data resources. 

Results 
Unraveling the global epidemiology of GC 

Global disparities in GC analysis of DALYs rates and 
trends 

Figure 2A illustrates the global landscape of 
ASDR trends due to GC from 1990 to 2021. The 
majority of countries and regions worldwide 
exhibited varying degrees of decline in the average 
annual percentage change (AAPC) of ASDR. Notably, 
the Republic of Korea (-5.06% [95% uncertainty 
interval (UI), -5.32 to -4.79]), Maldives (-4.50% [95% 
UI, -4.76 to -4.23]), and Singapore (-4.36% [95% UI, 
-5.14 to -3.57]) demonstrated the most substantial 
reductions, ranking as the top three countries with the 
largest decreases in AAPC. In contrast, only five 
nations—Egypt (1.27%), Lesotho (1.17%), Zimbabwe 

(0.72%), Chad (0.33%), and Honduras 
(0.19%)—exhibited an upward trend in AAPC during 
the same period (Supplementary Table S1). Figure 2B 
depicts the ASDR rankings for 2021, revealing 
substantial global disparities. The countries with the 
highest ASDR (per 100,000 population) were 
Mongolia (1473.25), Afghanistan (1438.82), and 
Bolivia (1131.23). Conversely, Kuwait (86.83), 
Morocco (95.18), and Nigeria (96.00) reported the 
lowest ASDR values (Supplementary Table S2). 

Comparative analysis of global GC burden trends by 
gender and SDI 

Joinpoint regression analysis unveiled 
significant changes in the ASDR of GC over time. SDI 
stratification revealed evolving patterns of GC 
burden. In 1990, the High-middle SDI region reported 
the highest ASDR (1271.16), while the Low-middle 
SDI region had the lowest (434.36). By 2021, the 
High-middle SDI region (559.68) maintained the 
highest ASDR, whereas the High SDI region (231.61) 
reported the lowest. From 1990 to 2021, ASDR 
reductions were more substantial in the High SDI, 
High-middle SDI, and Middle SDI regions, with 
decreases of -3.07%, -2.62%, and -2.62%, respectively. 
In contrast, the Low-middle SDI and Low SDI regions 
experienced less pronounced declines of -1.15% and 
-1.26%, respectively (Figure 2C). 

 

 
Figure 1. Schematic overview of the study design and methodologies. 
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Figure 2D illustrates the ASDR per 100,000 
population from 1990 to 2021, with notable joinpoints 
identified for males, females, and the overall 
population. The overall population ASDR exhibited a 
continuous decline with significant joinpoints in 1998, 
2004, 2007, and 2015. The annual percentage change 
(APC) varied across time periods: -2.09% before 1994, 
-2.59% between 1994-1998, -1.48% between 1998-2004, 
-4.14% from 2004-2007, -2.95% from 2007-2015, and 
-1.90% from 2015-2021. The AAPC over the entire 
period was -2.42%. Gender-specific analysis revealed 
an AAPC of -2.34% for males and -2.59% for females 
over the study period. The ASDR for males (1216.22 in 
1990; 588.45 in 2021) consistently exceeded that of 
females (591.03 in 1990; 261.96 in 2021).  

Drivers of GC epidemiology: population growth, 
aging, and epidemiologic changes 

A decomposition analysis of raw DALYs by 
population, age structure, and epidemiologic changes 
was conducted to elucidate the forces shaping GC 
epidemiology over the past three decades (Figure 2E 
and Supplementary Table S3). Globally, a net decline 
in GC DALYs was observed (represented by the black 
dot in Figure 2E, indicating the aggregate change 
contributed by all three components). From 1990 to 
2021, while aging and population growth contributed 
to increases in DALYs by 1287.46% and 3251.44% 
respectively, substantial epidemiological changes in 
GC (contributing to a 4638.90% decrease) 
counterbalanced these increases, resulting in an 
overall reduction in GC-attributable DALYs. Regional 
analysis revealed divergent patterns. In High and 
High-middle SDI regions, raw DALYs decreased, 
predominantly due to epidemiological changes, with 
reductions of 279.95% and 495.71% respectively. 
Conversely, Middle, Low-middle, and Low SDI 
regions experienced increases in raw DALYs, 
primarily driven by population growth, with 
contributions of 832.4%, 158.89%, and 224.91% 
respectively. 

Disparities in GC management efficiency 

To quantify potentially achievable 
improvements in GC ASDR relative to a country's 
development status, a frontier analysis based on 
ASDR and SDI was constructed using data from 1990 
to 2021 (Figure 2F). The frontier line delineates 
countries and territories with the lowest ASDR 
(optimal performers) given their SDI. The distance 
from this frontier, termed the effective difference, 
represents the gap between a country's observed and 
potentially achievable ASDR—a disparity that could 
potentially be mitigated based on the country or 
territory's sociodemographic resources. 

Mongolia and the Republic of Korea are 
highlighted as exemplars of divergent trajectories. In 
1990, these nations had the highest ASDRs globally, 
with values of 2315.52 and 2272.91 respectively. By 
2021, the Republic of Korea had markedly reduced its 
ASDR to 457.74. However, Mongolia maintained its 
position as the country with the highest GC ASDR 
globally, with a value of 1473.25 in 2021, followed 
closely by Afghanistan at 1438.82 (Supplementary 
Table S4). 

The effective difference from the frontier for each 
country and territory was calculated using 2021 ASDR 
and SDI data (Figure 2G and Supplementary Table 
S5). Among lower SDI countries (SDI < 0.5), Somalia, 
Niger, Malawi, Gambia, and Côte d'Ivoire 
demonstrated the smallest effective differences in GC 
management, ranging from 0 to 18.74. In contrast, 
higher SDI countries (SDI > 0.85), including the 
Republic of Korea, Japan, Lithuania, San Marino, and 
Taiwan (Province of China), exhibited significantly 
larger effective differences, ranging from 217.93 to 
369.00. 

A detailed assessment, irrespective of SDI, 
identified Mongolia, Afghanistan, Bolivia, the 
Democratic People's Republic of Korea, Guatemala, 
and several other nations (denoted in black in Figure 
2G) among the top fifteen countries with the largest 
discrepancies between expected and actual 
performance in GC management. These countries 
exhibited effective differences ranging from 624.44 to 
1376.44, underscoring substantial opportunities for 
improvement in GC outcomes relative to their 
sociodemographic resources. 

Absolute inequality and relative inequality in GC 
burden 

Figures 2H and 2I illustrate the top countries and 
regions with the highest ASDR in five SDI categories 
for 1990 and 2021, alongside the five most populous 
nations and regions. 

The slope index of inequality, depicted in Figure 
2H, quantifies the absolute inequality in GC burden 
across countries. In 1990, the index value of 87 
indicated substantial absolute inequality, with higher 
ASDR observed in countries with higher SDI ranks. 
By 2021, the index shifted to -184, signifying a reversal 
in this trend, with higher GC ASDR now more 
prevalent in countries with lower SDI ranks. 

Figure 2I presents the concentration index 
analysis, elucidating the relative inequality in GC 
burden among countries. The concentration index in 
1990 was 0.04 (95% confidence interval [CI]: -0.02, 0.1), 
suggesting minimal inequality in GC burden 
distribution across countries with varying SDI. By 
2021, the index increased to 0.07 (95% CI: 0.02, 0.12), 
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indicating a slight increase in relative inequality. 
However, the difference in p-value (0.71) did not 
reach statistical significance, implying no substantial 
change in relative inequality between 1990 and 2021. 

Temporal trends in DALYs and ASDR: 1990-2030 

This study presents trends in DALYs, years lived 
with disability (YLDs), years of life lost (YLLs), and 
gender-specific data for GC globally from 1990 to 
2030, encompassing historical data (1990-2021) and 
projections (2022-2030). 

As illustrated in Figure 2J and Figure 2K, the 
total DALYs attributed to GC fluctuated between 1990 
and 2021, peaking around 2004 (23.8 million DALYs). 
A general decline ensued from 2005, reaching 
approximately 22.9 million DALYs in 2014. However, 
projections indicate a concerning upward trend from 
2015, with estimates reaching 24.3 million DALYs by 
2030. YLDs, representing non-fatal disease burden, 
demonstrate a steady increase throughout the study 
period. YLLs, indicative of premature mortality, 
exhibit wave-like fluctuations from 1990 to 2030, 
similar to the overall DALYs trend. 

Gender-specific DALYs trends mirror the overall 
population pattern. 

The global ASDR for GC shows a consistent 
decline over the 41-year period from 1990 to 2030 
(from 886.24 to 358.42 per 100,000 population). The 
ASR for YLDs remains relatively stable with a slight 
decrease (from 9.72 to 5.35). The marked decline in 
ASR for YLLs emerges as the primary driver of the 
overall ASDR reduction (from 876.50 to 353.17). 

Throughout the entire period (1990-2030), males 
exhibit substantially higher ASDR for GC compared 
to females. In 1990, the male ASDR was 1216.21 per 
100,000 population, while the female ASDR was 
591.01, indicating more than twice the burden in 
males. This disparity is projected to persist, with male 
ASDR estimated at 500.50 in 2030, compared to 226.69 
for females. Despite the difference in magnitude, both 
genders demonstrate similar downward trends in 
ASDR for GC. 

Potential protective and risk factors for GC 

Clinical characteristics potentially associated with GC 

Table 1 presents a complete analysis of PSM 
results, comparing various clinical variables between 
control and case groups before and after matching. A 
1:10 PSM was performed between the disease group 
and the control group to balance age and gender 
distributions. The standardized mean difference (Std. 
Mean Diff.) served as the primary indicator of PSM 
effectiveness. 

For sex, the Std. Mean Diff. decreased from 

0.1316 to 0.0467 post-matching (Figure 3A). Similarly, 
for age, the Std. Mean Diff. decreased from 1.0172 to 
0.3919 post-matching (Figure 3B). These results 
demonstrate the effectiveness of PSM in reducing age 
and gender bias, facilitating more accurate 
comparisons of other variables. Prior to matching, 
significant differences (p<0.05) were observed 
between cases and controls in age, urinary albumin, 
alanine aminotransferase (ALT), alkaline phosphatase 
(ALP), iron, osmolality, weight, waist circumference, 
eosinophils percentage, red blood cell count (RBC), 
hemoglobin, hematocrit, mean corpuscular 
hemoglobin (MCH), mean corpuscular hemoglobin 
concentration (MCHC), red cell distribution width 
(RDW), and glycohemoglobin. Post-matching analysis 
of 26 cases and 260 controls revealed a reduction in 
differences for all previously significant variables. 
However, several variables maintained statistically 
significant differences: urinary albumin (p = 0.015), 
calcium (p = 0.027), iron (p = 0.012), phosphorus (p = 
0.013), chloride (p = 0.006), waist circumference (p = 
0.023), hemoglobin (p = 0.015), hematocrit (p = 0.022), 
MCHC (p = 0.049), RDW (p = 0.005), and platelet 
count (p = 0.045). 

Logistic regression analysis of the propensity 
score-matched data revealed several clinical 
characteristics potentially associated with GC risk 
(Supplementary Table S6). Higher levels of iron, 
weight, waist circumference, hemoglobin, hematocrit, 
MCH, and MCHC were associated with a reduced 
risk of GC (all p<0.05). Conversely, increased levels of 
phosphorus, chloride, eosinophils percentage, RDW, 
and platelet count were associated with an increased 
risk (all p<0.05). Subsequent multivariable logistic 
regression analysis, which included variables with 
p<0.05 from the univariable analysis, identified two 
factors that remained significantly associated with GC 
risk. Eosinophils percentage (odds ratio [OR] range: 
1.26, 95% CI: 1.03-1.54, p = 0.022) and RDW (OR: 1.71, 
95% CI: 1.11-2.64, p = 0.015) demonstrated 
independent associations with increased GC risk. 

In addition to using logistic regression, we 
employed an extensive array of machine learning 
techniques to elucidate the association between 
clinical characteristics and GC. Our methodology 
encompassed 16 distinct models. This multifaceted 
approach was designed to optimize the identification 
of clinical parameters associated with GC, as quanti-
fied by the Area Under the Curve (AUC) metric. 
Figure 3C illustrates the discriminative capacity of 
each model. Notably, 14 of the 16 models demonstra-
ted robust performance, with AUC values ranging 
from 0.59 to 0.85. The Naive Bayes and Support 
Vector Machine (SVM) models, however, exhibited 
comparatively inferior discriminative abilities. 
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Figure 2. Global Burden of Disease (GBD) Analysis Results for Gastric Cancer (GC). World maps depict (A) the Average Annual Percent Change (AAPC) of 
age-standardized disability-adjusted life year rates (ASDR) from 1990 to 2021 and (B) ASDR in 2021. ASDR trends from 1990 to 2021, analyzed using Joinpoint regression model, 
are shown (C) stratified by Socio-demographic Index (SDI) regions and by (D) gender. (E) Decomposition analysis of variations in GC Disability-Adjusted Life Years (DALYs) 
between 1990 and 2021 accounts for changes in age structure, population size, and epidemiological factors. (F, G) Frontier analysis based on SDI and ASDR from 1990 to 2021 
is presented. Health inequalities in 204 countries and regions are illustrated using (H) the Slope Index of Inequality (SII) for absolute inequalities and (I) the Concentration Index 
for relative inequalities. Predictions using the Bayesian Age-Period-Cohort (BAPC) model show (J) GC DALY numbers and Age-Standardized Rates (ASR) by gender from 2022 
to 2030, and (K) GC DALY, Years Lived with Disability (YLD), and Years of Life Lost (YLL) numbers and ASRs from 2022 to 2030. 

 
 
To ascertain the relative importance of clinical 

parameters, we utilized Shapley Additive 
exPlanations (SHAP) values, evaluating each 
characteristic across all 16 models with their 
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optimized parameters in the test set. Figure 3D 
presents a bar chart of these findings, with the color 
gradient from red to blue indicating the frequency of 
inclusion for each clinical characteristic across the 
models. The x-axis represents the mean importance 
rank of each characteristic, with lower values 
denoting higher importance. Our analysis revealed 
that ALP, bicarbonate, and phosphorus emerged as 
the most significant parameters, while RBC, MCH, 
and glucose were identified as the least influential. 

Figure 4A provides a detailed breakdown of the 
absolute SHAP scores for each clinical characteristic 
across all 16 optimized machine learning models in 
the test set, with variables ranked in descending order 
based on their absolute SHAP scores. To elucidate the 
predictive mechanisms of each model, we employed 
waterfall plots (Figure 4B) to visualize the prediction 
process for a GC sample from the test set. These plots 
delineate the contributions of individual 
characteristics to the model's predicted value, f(x). 
The prediction is computed by aggregating the SHAP 
values of each characteristic, starting from a base 
value. The z-score normalized values of each 
variable's actual value in the sample are displayed to 
the left of each characteristic. A positive f(x) value 
indicates a prediction favoring GC, while a negative 
value suggests a prediction leaning towards the 
healthy population. To further quantify the risk 
prediction for GC samples in the test set, we 
constructed a decision plot (Figure 4C). This plot 
employs a methodology similar to the waterfall plots 
but incorporates a color-coded line at the apex, 
ranging from 0 (blue) to 1 (red), representing the 
predicted probability of GC classification. A value 
exceeding 0.5 indicates a model prediction of greater 
than 50% likelihood of GC. Our analysis revealed that 
14 of the 16 machine learning models correctly 
classified the sample as GC with a probability 
exceeding 0.5, while the Linear Discriminant Analysis 
(LDA) and SVM models incorrectly categorized the 
GC sample as belonging to the healthy cohort. 

In the end, the beeswarm plot (Figure 4D) offers 
a sophisticated visualization of the impact of 
individual clinical characteristics on the model's 
predictive output within the test set. This nuanced 
representation facilitates the identification of potential 
associations between the clinical parameters and GC. 
The plot reveals that elevated levels of certain 
biochemical markers, including ALP, phosphorus, 
calcium, eosinophil percentage, triglycerides, and 
potassium, may be correlated with an increased 
likelihood of GC. Conversely, diminished levels of 
bicarbonate, iron, monocyte percentage, and MCHC 
appear to be associated with a higher probability of 
GC. 

Disease, food-liking phenotypes, gut microbiota 
composition and various blood-based biomarkers 
potentially associated with GC risk 

We conducted two-sample MR analyses to 
elucidate potential risk factors and protective 
elements associated with GC. Our investigation 
encompassed a wide array of exposures, including 
disease phenotypes, food preferences, gut microbiota 
composition, and various blood-based biomarkers, 
utilizing GC genome-wide association study (GWAS) 
data as the outcome. All the results in this study do 
not exist pleiotropy and heterogeneity. 

Leveraging data from the FinnGen R10 GWAS 
(2,408 phenotypes), UK Biobank-SAIGE GWAS (783 
phenotypes), Helicobacter pylori infection, and food 
liking (139 specific foods) databases, we identified 
some disease and behavioral phenotypes potentially 
linked to increased GC risk (OR: 1.03-2.80) (Figure 5A, 
Supplementary Table S7). Notable among these were 
anti-Helicobacter pylori IgG levels, chronic gastritis, 
obesity, depression or dysthymia, and biliary calculi, 
which have been previously implicated in GC 
pathogenesis. Our analysis of food preferences 
revealed 11 phenotypes significantly associated with 
GC risk. Dairy product preference exhibited the 
strongest positive correlation (OR: 2.42, p = 0.009), 
followed by preferences for sausages (OR: 1.76, p = 
0.017), chips (OR: 1.60, p = 0.030), barbecued/grilled 
meat (OR: 1.51, p = 0.022), and red meat (OR: 1.39, p = 
0.034). Carbohydrate (OR: 1.32, p = 0.024), dessert 
(OR: 1.19, p = 0.013), savory/caloric food (OR: 1.18, p 
= 0.027), and general meat (OR: 1.16, p = 0.049) 
preferences also showed positive associations. 
Conversely, preferences for dark chocolate (OR: 0.85, 
p = 0.004) and sauces (OR: 0.82, p = 0.028) were 
associated with reduced GC risk. 

Our analysis of gut microbiota revealed distinct 
associations with GC risk across German and Finnish 
cohorts. In the German cohort, such as 
Phascolarctobacterium (OTU99_123) and Butyrivibrio 
(OTU99_155) demonstrated strong protective 
associations (OR: 0.89, p = 0.002; OR: 0.94, p = 0.002, 
respectively), while Ruminococcaceae (OTU99_121) 
showed the strongest risk association (OR: 1.11, p = 
0.018). The Finnish cohort analysis identified 
UBA8904 as having the most significant protective 
association (OR: 0.51, p = 0.021), whereas 
Faecalibacterium sp002160895 exhibited the strongest 
risk association (OR: 1.39, p = 0.020) (Figure 5B, 
Supplementary Table S8). 

Among plasma metabolites and metabolite 
ratios, 56 markers showed significant associations 
with GC risk (Figure 5C, Supplementary Table S9). 
Cortisol (OR: 0.85, p = 0.001), glutamate (OR: 0.85, p = 
0.002), and flavin adenine dinucleotide (OR: 0.89, p < 
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0.001) levels demonstrated strong protective effects. In 
contrast, benzoate (OR: 1.11, p = 0.044), nicotinamide 
(OR: 1.15, p = 0.006), and the leucine to phosphate 

ratio (OR: 1.13, p = 0.021) were associated with 
increased GC risk. 

 
 

Table 1. Comparison of clinical characteristics between case and control groups before and after PSM 

 Pre-PSM Post-PSM 
Variable Controls, N = 31,8681 Cases, N = 261 p-value2 Controls, N = 2601 Cases, N = 261 p-value2 
Sex       
Female 16,313.00 (51.19%) 15.00 (57.69%) 0.507 144.00 (55.38%) 15.00 (57.69%) 0.821 
Male 15,555.00 (48.81%) 11.00 (42.31%) 116.00 (44.62%) 11.00 (42.31%) 
Age 47.000 (33.000, 61.000) 65.000 (49.250, 76.000) <0.001 62.500 (42.000, 72.000) 65.000 (49.250, 76.000) 0.172 
Urinary albumin 8.000 (4.200, 16.600) 19.100 (9.425, 34.700) <0.001 10.150 (4.600, 21.175) 19.100 (9.425, 34.700) 0.015 
Urinary creatinine 113.000 (64.000, 171.000) 100.000 (76.250, 153.750) 0.812 93.000 (54.000, 169.500) 100.000 (76.250, 153.750) 0.538 
Albumin 42.000 (40.000, 44.000) 41.500 (38.000, 44.000) 0.589 41.000 (39.000, 43.000) 41.500 (38.000, 44.000) 0.411 
ALT 20.000 (15.000, 28.000) 16.000 (12.000, 20.750) 0.023 19.000 (14.000, 27.000) 16.000 (12.000, 20.750) 0.180 
AST 22.000 (18.000, 27.000) 22.000 (18.500, 25.750) 0.985 20.000 (17.000, 26.000) 22.000 (18.500, 25.750) 0.486 
ALP 68.000 (56.000, 83.000) 85.000 (62.250, 96.000) 0.012 73.000 (58.000, 90.250) 85.000 (62.250, 96.000) 0.149 
BUN 4.640 (3.570, 5.710) 5.355 (3.660, 7.943) 0.124 5.360 (4.280, 6.430) 5.355 (3.660, 7.943) 0.852 
Calcium 2.350 (2.275, 2.400) 2.363 (2.300, 2.400) 0.318 2.325 (2.250, 2.375) 2.363 (2.300, 2.400) 0.027 
Cholesterol 4.913 (4.241, 5.637) 4.720 (4.183, 5.314) 0.329 4.810 (4.157, 5.637) 4.720 (4.183, 5.314) 0.564 
Bicarbonate 25.000 (24.000, 27.000) 25.000 (23.000, 26.000) 0.546 25.000 (24.000, 27.000) 25.000 (23.000, 26.000) 0.227 
Creatinine 74.260 (62.760, 88.400) 76.465 (66.743, 92.820) 0.536 75.140 (63.650, 90.390) 76.465 (66.743, 92.820) 0.779 
GGT 20.000 (14.000, 31.000) 22.500 (12.250, 30.250) 0.714 22.000 (15.000, 31.000) 22.500 (12.250, 30.250) 0.463 
Glucose 5.110 (4.720, 5.720) 5.410 (4.885, 6.095) 0.078 5.270 (4.830, 5.880) 5.410 (4.885, 6.095) 0.296 
Iron 82.000 (61.000, 105.000) 69.000 (40.250, 95.750) 0.015 80.500 (63.750, 109.000) 69.000 (40.250, 95.750) 0.012 
LDH 134.000 (117.000, 155.000) 134.000 (116.000, 174.250) 0.589 148.000 (132.000, 174.500) 134.000 (116.000, 174.250) 0.110 
Phosphorus 1.195 (1.066, 1.292) 1.243 (1.098, 1.388) 0.095 1.162 (1.033, 1.259) 1.243 (1.098, 1.388) 0.013 
TB 10.260 (6.840, 13.680) 9.405 (6.840, 11.970) 0.463 8.550 (5.130, 10.260) 9.405 (6.840, 11.970) 0.248 
Total protein 72.000 (69.000, 75.000) 71.000 (69.000, 75.500) 0.924 71.000 (68.000, 74.000) 71.000 (69.000, 75.500) 0.817 
Triglyceride 1.332 (0.903, 2.032) 1.434 (1.005, 2.340) 0.557 1.282 (0.960, 1.843) 1.434 (1.005, 2.340) 0.506 
Uric acid 315.200 (261.700, 374.700) 282.550 (223.075, 345.000) 0.122 321.200 (261.700, 382.175) 282.550 (223.075, 345.000) 0.073 
Sodium 140.000 (138.000, 141.000) 141.000 (138.000, 142.000) 0.179 140.000 (138.000, 141.000) 141.000 (138.000, 142.000) 0.463 
Potassium 4.000 (3.800, 4.200) 4.100 (3.800, 4.300) 0.132 4.000 (3.800, 4.300) 4.100 (3.800, 4.300) 0.455 
Chloride 103.000 (101.000, 105.000) 104.000 (101.250, 105.000) 0.491 101.000 (100.000, 103.000) 104.000 (101.250, 105.000) 0.006 
Osmolality 279.000 (276.000, 282.000) 282.500 (279.250, 284.750) 0.004 280.000 (277.000, 284.000) 282.500 (279.250, 284.750) 0.169 
Globulin 29.000 (27.000, 33.000) 30.000 (27.000, 32.750) 0.699 30.000 (27.000, 33.000) 30.000 (27.000, 32.750) 0.792 
Weight 78.700 (66.700, 93.200) 68.750 (62.550, 80.975) 0.010 76.250 (66.600, 88.725) 68.750 (62.550, 80.975) 0.055 
Standing height 166.800 (159.600, 174.400) 162.150 (159.450, 170.650) 0.108 164.600 (157.300, 171.625) 162.150 (159.450, 170.650) 0.695 
BMI 28.120 (24.420, 32.700) 26.500 (24.055, 30.758) 0.098 27.900 (25.000, 31.825) 26.500 (24.055, 30.758) 0.141 
Waist circumference 97.800 (87.500, 108.800) 93.600 (85.175, 100.775) 0.044 99.500 (89.300, 110.200) 93.600 (85.175, 100.775) 0.023 
WBC 6.900 (5.700, 8.400) 6.900 (5.725, 8.975) 0.885 7.000 (5.600, 8.900) 6.900 (5.725, 8.975) 0.913 
Lymphocytes percent 30.500 (25.200, 36.300) 30.400 (24.500, 37.425) 0.765 30.250 (24.950, 37.550) 30.400 (24.500, 37.425) 0.890 
Monocytes percent 7.700 (6.400, 9.100) 7.500 (6.125, 8.575) 0.567 7.800 (6.800, 9.500) 7.500 (6.125, 8.575) 0.233 
Neutrophils percent 58.000 (51.500, 64.000) 56.700 (49.650, 60.900) 0.397 58.150 (49.900, 63.700) 56.700 (49.650, 60.900) 0.589 
Eosinophils percent 2.300 (1.500, 3.500) 2.750 (2.200, 3.900) 0.047 2.400 (1.500, 3.700) 2.750 (2.200, 3.900) 0.071 
Basophils percent 0.700 (0.500, 0.900) 0.750 (0.500, 1.000) 0.480 0.700 (0.600, 0.900) 0.750 (0.500, 1.000) 0.909 
Lymphocyte 2.100 (1.700, 2.600) 2.250 (1.600, 2.575) 0.779 2.200 (1.700, 2.600) 2.250 (1.600, 2.575) 0.917 
Monocyte 0.500 (0.400, 0.700) 0.500 (0.400, 0.700) 0.762 0.600 (0.475, 0.700) 0.500 (0.400, 0.700) 0.320 
Neutrophil 4.000 (3.100, 5.100) 3.950 (2.750, 5.275) 0.863 3.900 (3.000, 5.500) 3.950 (2.750, 5.275) 0.773 
RBC 4.680 (4.350, 5.030) 4.520 (4.255, 4.683) 0.043 4.640 (4.350, 4.953) 4.520 (4.255, 4.683) 0.105 
Hemoglobin 14.100 (13.100, 15.100) 13.500 (12.375, 14.050) 0.001 13.850 (13.000, 14.700) 13.500 (12.375, 14.050) 0.015 
Hematocrit 41.700 (38.700, 44.600) 40.500 (37.925, 41.675) 0.008 41.350 (38.875, 43.700) 40.500 (37.925, 41.675) 0.022 
MCV 89.400 (86.000, 92.400) 89.000 (80.400, 91.125) 0.113 89.500 (86.100, 92.500) 89.000 (80.400, 91.125) 0.105 
MCH 30.400 (29.000, 31.600) 29.200 (25.950, 30.800) 0.015 30.100 (28.800, 31.200) 29.200 (25.950, 30.800) 0.065 
MCHC 33.900 (33.300, 34.500) 32.900 (32.425, 33.975) <0.001 33.600 (32.975, 34.100) 32.900 (32.425, 33.975) 0.049 
RDW 13.100 (12.500, 13.800) 14.300 (13.425, 16.050) <0.001 13.550 (13.000, 14.100) 14.300 (13.425, 16.050) 0.005 
Platelet 242.000 (205.000, 286.000) 256.500 (213.250, 305.250) 0.207 235.000 (197.000, 270.000) 256.500 (213.250, 305.250) 0.045 
MPV 8.100 (7.500, 8.700) 8.400 (8.000, 9.025) 0.069 8.200 (7.700, 8.800) 8.400 (8.000, 9.025) 0.231 
Glycohemoglobin 5.500 (5.200, 5.900) 5.750 (5.425, 6.225) 0.016 5.700 (5.300, 6.100) 5.750 (5.425, 6.225) 0.353 
HDL 1.320 (1.090, 1.600) 1.385 (1.095, 1.653) 0.486 1.320 (1.110, 1.660) 1.385 (1.095, 1.653) 0.760 
1n (%); Median (IQR) 
2Pearson's Chi-squared test; Wilcoxon rank sum test 
ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; BUN, blood urea nitrogen; GGT, gamma-glutamyl 
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transferase; HDL, high-density lipoprotein; LDH, lactate dehydrogenase; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; MCV, 
mean corpuscular volume; MPV, mean platelet volume; RBC, red blood cell count; RDW, red cell distribution width; TB, total bilirubin; WBC, white blood cell count. 

 

 
Figure 3. Multi-panel visualization of propensity score matching outcomes and machine learning model performance. (A) Comparative analysis of gender 
distribution pre- and post-propensity score matching (PSM), with accompanying statistical metrics demonstrating matching efficacy. (B) Density estimation plots depicting the age 
distribution before and after PSM implementation, with corresponding balance diagnostics. (C) Heatmap showcasing the top 3 optimal parameters for 16 machine learning 
models, selected based on Area Under the Curve (AUC) values in the test set. (D) Bar chart ranking variables by their frequency of occurrence and importance across all 16 
machine learning models. 

 
The analysis of immune cell markers revealed 51 

significant associations with GC risk (Figure 5C, 
Supplementary Table S9). Natural Killer 
%lymphocyte exhibited a protective effect (OR: 0.97, p 
= 0.022). Conversely, CD4-CD8- T cell absolute count 
(OR: 1.12, p = 0.001), CD45RA- CD4+ T cell %CD4+ T 
cell (OR: 1.07, p = 0.010), and hematopoietic stem cell 
absolute count (OR: 1.04, p = 0.008) were positively 

associated with GC risk. 
In the plasma lipidome analysis, five significant 

associations were identified (Figure 5C, 
Supplementary Table S9). Phosphatidylcholine 
(16:0_18:1) (OR: 0.91, p = 0.044), phosphatidylcholine 
(O-16:1_20:4) (OR: 0.93, p = 0.001), and sphingomyelin 
(d38:2) (OR: 0.93, p = 0.010) levels demonstrated 
protective effects against GC. Conversely, 
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phosphatidylcholine (18:1_20:2) (OR: 1.05, p = 0.033) 
and triacylglycerol (48:0) (OR: 1.07, p = 0.037) levels 

showed positive associations with GC risk. 

 

 
Figure 4. Comprehensive model interpretability and feature contribution analysis. (A) Bar charts detailing variables included in each model, their absolute SHAP 
(SHapley Additive exPlanations) values, and variable importance rankings. (B) Waterfall plots and (C) decision plots based on the test set, providing detailed insights into how 
individual variables influence the model's decision-making process in classifying samples as either GC or control. (D) Beeswarm plots visualizing the relationship between various 
clinical characteristics and GC risk in the test set. 

 

 
Figure 5. Integrative circular visualization of multidimensional risk factors and molecular signatures associated with GC. (A) Circular heatmap illustrating 
disease phenotypes and dietary preferences influencing GC risk. (B) Circular heatmap depicting microbial factors affecting GC risk. (C) Circular heatmap showing the impact of 
metabolites, immune cell populations, lipid species, and inflammatory proteins on GC risk. 
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The analysis of inflammatory markers revealed 
two significant associations with GC risk (Figure 5C, 
Supplementary Table S9). Interleukin-1-alpha levels 
were associated with increased risk (OR: 1.09, p = 
0.027), while tumor necrosis factor ligand superfamily 
member 12 levels exhibited a protective effect (OR: 
0.92, p = 0.038). 

Genes potentially associated with GC risk 

In our study, we conducted a systematic 
investigation into the genetic underpinnings of GC 
risk, employing a multi-tiered approach to categorize 
candidate genes into three evidence levels, with level 
1 representing the strongest evidence. 

We initiated our analysis by examining 
differential gene expression in GC using datasets from 
TCGA and GTEx databases. Our cohort comprised 
621 samples, including 413 GC tissue samples and 208 
healthy tissue samples. The principal component 
analysis (PCA) plot in Figure 6A illustrates the 
distribution of these samples, while Figure 6B 
presents a heatmap depicting their gene expression 
patterns. Employing a threshold of 1.5-fold change in 
gene expression, we identified 15,369 genes exhibiting 
significant differential expression between GC and 
healthy tissues (p<0.05), categorized as evidence level 
3 (Supplementary Table S10). 

To further elucidate genetic associations with GC 
risk, we conducted SMR analyses. Using 

cis-expression quantitative trait loci (cis-eQTL) GWAS 
data from the eQTLGen database as exposure and GC 
GWAS as outcome, we identified 643 genes associated 
with GC risk (Supplementary Table S11). The 
intersection of these two datasets yielded 242 genes 
potentially linked to GC risk (Figure 6C and 
Supplementary Table S12), classified as evidence level 
2. The circular heatmap providing insights into the 
relationships among 242 gene fold change, gene 
expression, and GC risk (Figure 6D). 

To further validate the reliability of these 242 
genes associated with GC risk, we employed 
colocalization analysis. This approach aims to 
determine whether a common causal variant is 
responsible for both gene expression and GC risk 
within a specific genomic region. We utilized a 
Bayesian statistical framework to calculate posterior 
probabilities for various hypotheses regarding the 
relationship between gene expression and disease 
risk. Our analysis focused on the posterior probability 
of hypothesis 4 (PP.H4), which represents the 
likelihood that both gene expression and GC risk 
share a common causal variant. We established a 
threshold of PP.H4 > 0.5 to indicate significant 
colocalization, suggesting a greater than 50% 
probability that the same causal variant influences 
both gene expression and GC risk in the region of 
interest. 

 
 

 
Figure 6. Comprehensive multi-platform genomic analysis integrating transcriptomic profiles and genetic architecture of GC. (A) Principal Component 
Analysis (PCA) plot showing the distribution of samples from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. (B) Heatmap depicting 
gene expression patterns in GC versus healthy tissues. (C) Venn diagram illustrating the intersection of Differentially Expressed Genes (DEGs) from bioinformatics analysis with 
expression Quantitative Trait Loci (eQTL) results from Summary-data-based Mendelian Randomization (SMR) analysis. (D) Circular heatmap providing insights into the 
relationships among 242 gene fold change, gene expression, and GC risk. (E) Volcano plot demonstrating the relationship between colocalized gene fold change and p-value. (F) 
MA plot delineating the relationship between colocalized gene mean expression levels and log-fold changes. 
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Figure 7. Colocalization analysis revealing tissue-specific gene regulation patterns in GC. (A) Colocalization plots depicting genes upregulated in GC tissue. (B) 
Colocalization plots illustrating genes downregulated in GC tissue. 

 
Our colocalization analysis identified 10 genes 

with significant evidence of shared causal variants 
between eQTLs and GC risk. These genes, namely 
AC022182.3, AP1AR, CCR6, GPSM1, NCF1C, PDCD11, 
PILRB, SAPCD1, SCARF1, and ZCWPW1, were 
classified as evidence level 1, representing the 
strongest level of evidence in our study 
(Supplementary Table S13). The volcano plot (Figure 
6E) depicts the relationship between these 10 genes 
fold change and p-value, while the MA plot (Figure 
6F) illustrates the relationship between the average 
expression of these genes in the samples and their fold 
change. 

The colocalization plot depicting genes 
upregulated (Figure 7A) and downregulated (Figure 
7B) in GC tissue, with the lead single nucleotide 
polymorphism (SNP) labeled and other SNPs 
color-coded according to their linkage disequilibrium 
(LD) with the lead SNP. 

Discussion 
This study provides an in-depth analysis of the 

epidemiological trends of GC from 1990 to 2030, 
elucidating associated risk factors and genetic 
markers. Our findings reveal substantial global 
disparities in GC burden, with a notable decline in 
ASDR observed in most countries. Conversely, a 
subset of nations experienced increases in ASDR. 
Furthermore, projections indicate a concerning 
upward trajectory in total DALYs from 2015 onwards, 
with estimates reaching 24.3 million DALYs by 2030, 
underscoring persistent challenges in GC 
management. The study identifies a constellation of 
factors potentially influencing GC risk, including 
clinical characteristics, disease phenotypes, dietary 

preferences, microbiota composition, metabolite 
profiles, immune cell populations, lipid profiles, 
inflammatory proteins, and genetic markers. The 
insights derived from this extensive analysis have the 
potential to inform public health strategies, guide 
clinical practice in risk assessment and early 
detection, and direct future research endeavors in GC 
prevention and treatment. As we confront the 
ongoing challenge of mitigating the global burden of 
GC, this multifaceted approach offers a novel 
paradigm for understanding and addressing complex 
diseases in the era of precision medicine and big data 
analytics. 

Our analysis of global GC burden trends reveals 
a general decline in ASDR from 1990 to 2021, with 
significant reductions observed in countries such as 
the Republic of Korea, Maldives, and Singapore. This 
decline can be attributed to advancements in medical 
technology, enhanced healthcare infrastructure, and 
efficacious public health interventions targeting GC 
risk factors. However, countries including Egypt, 
Lesotho, and Zimbabwe exhibited increasing ASDR, 
suggesting persistent disparities in healthcare access, 
socioeconomic development, and cancer control 
strategies [6, 23-27]. Our examination of GBD data 
unveils a complex pattern of GC epidemiology from 
1990 to 2030. While the ASDR for GC demonstrates a 
consistent global decline, projections indicate a 
concerning upward trend in DALYs from 2015 
onwards, reaching an estimated 24.3 million DALYs 
by 2030. This paradoxical trend underscores the 
evolving nature of GC burden, likely influenced by 
population growth and aging, despite improvements 
in prevention and treatment modalities. 

The substantial reduction in ASDR, primarily 
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driven by decreases in YLLs, suggests improvements 
in early detection and treatment efficacy. However, 
the persistent gender disparity, with males exhibiting 
consistently higher ASDR, highlights the need for 
targeted interventions and research into sex-specific 
risk factors and biological mechanisms [28, 29]. The 
shift in the slope index of inequality from 87 in 1990 to 
-184 in 2021 indicates a reversal in the association 
between SDI and GC burden, with lower SDI 
countries now bearing a disproportionate burden. 
This trend aligns with previous studies highlighting 
the growing cancer burden in low- and 
middle-income countries [30, 31]. The frontier 
analysis provides valuable insights into the potential 
for improvement in GC management across different 
SDI levels. The significant gaps between observed and 
potentially achievable DALYs in countries such as 
Mongolia and Afghanistan highlight opportunities for 
targeted interventions and resource allocation.  

Our propensity score-matched analysis of 
NHANES data unveils several clinical characteristics 
associated with GC risk. Notably, the identification of 
eosinophil percentage and RDW as independent risk 
factors in multivariable analysis is particularly 
intriguing. Elevated eosinophil counts have 
previously been linked to gastric inflammation and 
precancerous lesions, while increased RDW has been 
associated with poorer survival in various cancers, 
potentially reflecting underlying inflammation or 
nutritional deficiencies [32-38]. The consistent 
identification of ALP, bicarbonate, and phosphorus 
levels associated with GC by machine learning 
models contributes to the growing body of evidence 
linking metabolic alterations to cancer development. 
Elevated ALP and phosphorus levels correlating with 
increased GC risk may indicate underlying liver 
dysfunction or bone metastases, while lower 
bicarbonate levels might suggest metabolic acidosis, a 
condition associated with cancer progression [39-44]. 
These findings underscore the intricate interplay 
between systemic metabolic perturbations and GC 
development, suggesting potential avenues for risk 
assessment and early detection. However, the 
observational nature of these associations necessitates 
further research to establish causality and elucidate 
underlying mechanisms. 

Our MR analyses provide evidence for causal 
relationships between various disease phenotypes, 
dietary preferences, and GC risk. The identification of 
Helicobacter pylori infection, chronic gastritis, obesity, 
and depression as potential risk factors aligns with 
previous studies [45-49]. The findings on dietary 
preferences offer valuable insights for public health 
interventions. The positive associations between GC 
risk and preferences for dairy, processed meats 

(sausages), and high-calorie foods (chips, BBQ/grilled 
meat) corroborate existing evidence on the role of diet 
in GC etiology [50]. These results strengthen the case 
for dietary modifications as a preventive strategy 
against GC. Conversely, the protective association of 
dark chocolate preference with GC risk is intriguing 
and may be related to its high polyphenol content, 
known for anti-inflammatory and antioxidant 
properties [51-54]. This finding, if confirmed in 
further studies, could inform dietary 
recommendations for GC prevention. 

Our MR analyses of gut microbiota and 
blood-based biomarkers unveil an intricate network 
of potential risk and protective factors for GC. The 
identification of specific bacterial taxa associated with 
GC risk, notably the protective effect of 
Phascolarctobacterium and the risk association of 
Ruminococcaceae species, contributes to the expanding 
body of evidence implicating the gut microbiome in 
GC pathogenesis [55-59]. These findings suggest 
promising avenues for microbiome-based risk 
stratification and therapeutic interventions. The 
associations between plasma metabolites and GC risk 
provide insights into the metabolic alterations that 
may precede or accompany GC development. Our 
study corroborates previous research by 
demonstrating that elevated nicotinamide levels 
correlate with increased GC risk [60]. Immune cell 
analyses, particularly the protective association of 
Natural Killer cell percentage and the risk association 
of specific T cell subsets, underscore the critical role of 
immune surveillance in GC development. These 
results complement existing knowledge on immune 
dysfunction in cancer and suggest potential 
immunological biomarkers for GC risk assessment. 

Our most robust finding is the identification of 
10 genes (AC022182.3, AP1AR, CCR6, GPSM1, NCF1C, 
PDCD11, PILRB, SAPCD1, SCARF1, and ZCWPW1) 
showing significant evidence of shared causal 
variants between eQTLs and GC risk. This 
colocalization suggests a potential causal relationship 
between the expression of these genes and GC risk. 
Among these colocalized genes, we identified both 
potential risk-increasing (e.g., AC022182.3, NCF1C, 
SAPCD1) and protective (e.g., AP1AR, CCR6, 
SCARF1) genes, underscoring the complex nature of 
genetic contributions to GC risk. 

Our findings both corroborate and extend 
previous research on GC genetics. For instance, we 
identified CCR6 as significantly upregulated in GC 
tissues and associated with a protective effect against 
GC risk. This aligns with previous research showing 
CCR6's role in immune cell recruitment and its 
potential involvement in anti-tumor responses [61]. 
However, our finding of a protective effect contrasts 
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with some studies suggesting CCR6 promotes tumor 
progression, highlighting the complex and 
context-dependent role of this gene in cancer [62, 63]. 
Similarly, we found SCARF1 to be downregulated in 
GC tissues and strongly associated with a protective 
effect against GC risk. This is consistent with its 
known function as a multifaceted scavenger receptor 
that plays a critical role in both innate and adaptive 
immunity. It facilitates the uptake and processing of 
antigens, activates inflammatory pathways, and is 
essential for the clearance of apoptotic cells, thereby 
maintaining immune homeostasis [64, 65]. 

While our study presents an exhaustive analysis 
of GC epidemiology and risk factors, several 
limitations warrant consideration. Firstly, the GBD 
projections, although based on sophisticated 
modeling techniques, are inherently subject to 
uncertainties, particularly in rapidly evolving 
environments or in the face of unforeseen global 
events. Future research should focus on continuously 
updating these projections with the most recent data 
and refining modeling methodologies to enhance 
predictive accuracy. Secondly, despite utilizing the 
nationally representative NHANES database to 
minimize selection bias, the relatively small number 
of GC cases (n=26) represents a notable limitation that 
may affect the generalizability of our findings. 
Although we implemented multiple methodological 
approaches to address this limitation - including PSM 
to reduce potential confounding, ADASYN sampling 
for training set balancing, and validation through 16 
different machine learning models - the fundamental 
constraint of sample size necessitates cautious 
interpretation of our results. This limitation is 
inherent to the use of public databases where GC 
cases may be underrepresented. Moreover, the 
cross-sectional nature of NHANES data precludes the 
establishment of causal relationships between the 
identified factors and GC. To enhance the robustness 
of our findings, future research should focus on 
prospective cohort studies specifically designed to 
evaluate the clinical indicators identified in our 
analysis. Thirdly, while our MR analyses provide 
compelling evidence for causal relationships, it is 
crucial to acknowledge that these analyses rely on 
several assumptions that may not always hold true in 
complex biological systems. Prospective cohort 
studies are necessary to validate the predictive value 
of the identified clinical, microbial, and molecular 
biomarkers for GC risk assessment. Fourthly, our 
gene expression and genetic analyses, although 
comprehensive, are based on bulk tissue data, which 
may obscure important cell-type-specific effects. 
Lastly, another important limitation stems from the 
utilization of multiple databases representing 

different populations (U.S., Finnish, British, and 
German cohorts). While these databases provide 
robust, well-validated data, the heterogeneity of study 
populations may influence the generalizability of our 
findings across different ethnic and geographical 
groups. Future multi-ethnic, multi-center prospective 
studies are needed to validate these findings across 
diverse populations and to better understand 
potential population-specific variations in the 
identified associations. 

Conclusion 
This study provides a multifaceted view of GC 

epidemiology and risk factors, integrating global 
trends with novel insights into clinical, microbial, 
blood-based, genetic risk factors. Our findings 
highlight the complex and evolving nature of GC 
burden, the identification of novel risk factors offers 
potential avenues for improved risk stratification and 
targeted interventions. As we move forward, a 
concerted effort involving epidemiologists, clinicians, 
molecular biologists, and public health professionals 
will be crucial to translate these findings into effective 
strategies for GC prevention, early detection, and 
treatment. By addressing the multifaceted nature of 
GC risk, we can work towards reducing the global 
burden of this devastating disease. 
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