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Supplementary methods

Assessing the Immunological Attributes of the TME in
BLCA

The TME in BLCA is characterized by several immunological features, such as the levels of
immunomodulators (receptors, MHC molecules, immunostimulators, and chemokines), the
dynamics of the cancer-immunity cycle, the infiltration abundances of tumor-infiltrating immune
cells, and the immune checkpoint inhibitors. Initially, we gathered data on these
immunomodulators from the TISIDB online resource (http://cis.hku.hk/TISIDB/). The cancer-
immunity cycle, illustrating the anti-tumor immune response, encompasses seven stages: (1)
release of tumor antigens, (2) presentation of these antigens, (3) immune priming and activation,
(4) migration of immune cells to the tumor, (5) their penetration into the tumor, (6) T cell
recognition of tumor cells, and (7) the subsequent elimination of these cells [1]. These stages are
crucial in determining tumor cell destiny, as highlighted in our published research [2].

Subsequently, a comprehensive assessment of the infiltration abundances of different immune
cells in the TME was conducted using bulk RNAseq data. This analysis employed seven distinct
algorithms—CIBERSORT, TIMER, xCell, MCPcounter, ESTIMATE, EPIC, and quanTlIseq.
These TME deconvolution methods have been encapsulated within the IOBR R package
developed by Zeng et al. [3]. Additionally, we incorporated effector genes of tumor-infiltration
immune cells including CD8+ T cell, NK cell, Macrophage, Th1 cell, and DC, identified in prior
research [4] and analyzed various inhibitory immune checkpoints highlighted by Auslander for
their therapeutic relevance [5]. Ayers and colleagues established a pan-cancer T cell-inflamed
score, indicative of existing cancer immunity and predictive of ICB response, which we calculated
as previously documented [6]. Furthermore, we reviewed predictors of ICB-associated
hyperprogression, noting that amplifications and high expression of genes like MDM2, MDM4,
and the FGF family, along with deletions and low expression of CDKN2A and CDKN2B, are
linked to hyperprogression [7, 8]. To determine the effects of FAM174B on cancer immunity in

BLCA, we examined its correlation with these immunological facets of the TME, corroborating
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our findings across three external cohorts: GSE31684, GSE32894, and IMvigor210.

Immunohistochemical and Immunofluorescence Analysis of

Bladder Cancer Tissue

A tissue microarray (TMA) comprising 60 bladder cancer samples was constructed, selecting 1.5-
mm cores from formalin-fixed, paraffin-embedded primary tumor  specimens.
Immunohistochemical staining utilized CD8 (ZA-0508, ZSGB-BIO), PD-L1 (ab213524, Abcam),
and FAM174B (NBP2-33873, Novus Biologicals) antibodies, followed by an HRP-conjugated
secondary antibody. PD-L1 scoring involved assessing staining intensity across the tumor at low
magnification, categorizing samples from no staining (score 0) to strong staining (score 3).
Additionally, the proportion of positive cells was quantified in five high-power fields, assigning
scores from 1 (<25% positivity) to 4 (>75% positivity). The final PD-L1 score combined intensity
and positivity rates. CD8 and FAM174B analyses focused on the percentage of cells with strong
membrane staining. Tumor immune phenotypes were classified based on CD8+ T cell distribution:
inflamed (within tumor parenchyma), excluded (in stroma, not parenchyma), and deserted (absent
in both). Excluded and deserted were deemed non-inflamed. Independent pathologists reviewed
all slides. Immunofluorescence for FAM174B, CD8, and PD-L1 followed Wang et al.'s method,
with CY3-TSA, FITC-TSA, and CY5-TSA secondary antibodies for each marker, respectively,

and DAPI for nuclear staining. Positive cell proportions were calculated across the entire field.

Real-time quantitative PCR (gPCR)

In our real-time gPCR experiment, we isolated total RNA from ten BLCA cancer and
adjacent normal tissue pairs using the RNA-Quick Purification Kit (RN0O01, ESScience) as per the
protocol. Subsequent cDNA synthesis was conducted using cDNA synthesis kit (RR047A, Takara).
2X Universal SYBR Green Fast gPCR Mix (RK21203, ABclonal) was employed to measure
FAM174B mRNA levels which were normalized against the reference gene GAPDH. The specific
primers were designed by Beijing Tsingke Biotech Co., Ltd. and listed below:

FAM174B, forward 5- AGAAGACACGCAAGTATGAT -3’ and reverse 5'-



ACTGTGGAGTCCTCATCTT -3
GAPDH, forward 5'- TATGACAACAGCCTCAAGAT -3’ and reverse 5'-

AGTCCTTCCACGATACCA -3’

Determining Enrichment Scores for Different Gene

Signatures

Gene signatures linked with positive responses to the anti-PD-L1 agent atezolizumab in
BLCA were sourced from Mariathasan's research [9]. Additionally, we obtained twelve bladder
cancer-specific signatures for different molecular subtypes from the Bladder Cancer Molecular
Taxonomy Group's study [10]. Our collection also included gene signatures related to oncogenic
pathways influencing a non-inflamed TME, genes associated with targeted therapy, and predictors
of radiotherapy outcomes. We used the GSVA R package to calculate the enrichment scores for
these gene sets [11]. The potential of FAM174B to predict therapy responses was assessed by
examining the distributions of these enrichment scores between high- and low FAM174B groups
(determined by the median mRNA level of FAM174B in each cohort). Lastly, we identified

BLCA-relevant drug target genes through the DrugBank database [12].

Inferring Molecular Subtypes in BLCA

Several molecular classification frameworks, including CIT, Lund, MDA, TCGA, Baylor,
UNC, and Consensus subtypes, have been widely used in categorizing BLCA. Subsequent
analysis involved correlating FAM174B expression with various molecular subtypes and
distinctive gene signatures associated with BLCA. The findings demonstrate that, based on the
interrelationships among various classification systems, BLCA is primarily classified into two
main subtypes: basal and luminal. To assess the predictive capacity of FAM174B for these
molecular subtypes, Receiver operating characteristic (ROC) curves were generated and the Area
Under Curve (AUC) values were calculated. Furthermore, the prognostic precision of FAM174B
for molecular subtypes was confirmed in three additional cohorts, encompassing two BLCA

datasets (GSE31684 and GSE32894) and one immunotherapy dataset (IMvigor210).



Identification of immune-related differentially expressed

genes (irDEGs)

BLCA were stratified into distinct groups based on the median expression of (1) FAM174B
MRNA levels, (2) TME immune scores, and (3) TME stromal scores determined by the
ESTIMATE algorithm. Differential expression analysis was conducted employing the empirical
Bayesian statistics of the limma package to discern DEGs. The selection criteria were stringent,
requiring an adjusted P-value < 0.01 and an absolute log2 fold change (log2FC) > 1. Common
irDEGs were identified using the VennDiagram package. Furthermore, Gene Ontology (GO)
enrichment analysis was conducted with the ClusterProfiler 4.0 package to elucidate the biological

processes associated with irDEGs [13].

Immune related score (IRS) generated from machine

learning-based integrative approaches

To construct a consensus immune-related score (IRS) with enhanced accuracy and stability,
we employed an integration approach using 10 machine learning algorithms [14]: RSF, Enet,
Lasso, Ridge, stepwise Cox, CoxBoost, plsRcox, SuperPC, GBM, and survival-SVM. Notably,
algorithms like Lasso, stepwise Cox, CoxBoost, and RSF have feature selection capabilities,
which were leveraged in creating a unified model. We executed 101 combinations of these
algorithms to establish predictive models, utilizing the LOOCV method as delineated previously.
The preliminary stage of IRS development utilized the TCGA-BLCA dataset, where prognostic
irDEGs were identified using Univariate Cox regression analysis.

The implementation of the RSF model utilized the randomForestSRC package, with ntree
defining the forest's tree count and mtry denoting the number of variables chosen randomly at
each node for division. A grid search was conducted for ntree and mtry within the LOOCV
framework, identifying the optimal pair based on the highest C-index. For the Enet, Lasso, and
Ridge models, the glmnet package was used, where A, the regularization parameter, was optimized

using LOOCYV, and a, balancing L1 and L2 regularization, varied from 0 to 1. The stepwise Cox



approach, facilitated by the survival package, applied an AlC-based algorithm, exploring in
"both,” "backward," and "forward" directions. CoxBoost, through the CoxBoost package, employs
componentwise boosting for Cox models, optimizing shrinkage via LOOCV and determining the
number of boosting steps. The plsRcox package supported the plsRcox model, optimizing
component numbers via cv.plsRcox and fitting the model with plsRcox function. SuperPC, applied
through the superpc package, extends principal component analysis to determine the optimal
feature threshold via LOOCV. GBM's implementation, also through the superpc package, used
cv.gbm to determine the optimal tree count in LOOCYV, and gbm to fit the model. Lastly, the
survival-SVM model, via the survivalsvm package, adapts the support vector approach to
accommodate censored data in regression.

Subsequent validation of the IRS was conducted across nine distinct datasets (GSE13507,
GSE31684, GSE32548, GSE32894, GSEA48075, GSE48277, GSE5287, GSE69795, and
GSE70691). During this phase, we computed Harrell’s concordance index (C-index) for each
model across these datasets. The model that yielded the highest mean C-index across the datasets

was deemed the most effective.



Supplementary figures
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Figure S1. Distribution of FAM174B expression across various cancers. (a-c) Patterns of
FAM174B expression in pan-cancer samples from TCGA, with statistical significance indicated
by asterisks based on the Mann-Whitney U test results (ns, not significant; **P < 0.01; ***P <
0.001; ****P < 0.0001). (d, e) Levels of FAM174B expression in cancer cell lines according to
BioGPS (d) and CCLE (e) databases. (f) Quantitative RT-PCR analysis of FAM174B mRNA

levels in 10 matched samples of BLCA cancer and adjacent normal tissue.
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Figure S2. Prognostic impact of FAM174B on OS across multiple cancers. (a) Univariate Cox
regression analysis of FAM174B's prognostic significance in pan-cancers. A hazard ratio greater
than 1, indicating a risk factor, is colored in red, while a hazard ratio less than 1, indicating a
protective factor, is colored in blue. (b-g) Prognostic evaluations of FAM174B in selected cancers

using the Kaplan-Meier method and log-rank tests, showcasing only those cancers where
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FAM174B was identified as a significant prognostic biomarker in the univariate analysis.
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Figure S3. Prognostic impact of FAM174B on DSS across multiple cancers. (a) Univariate
Cox regression analysis of FAM174B's prognostic significance in pan-cancers. A hazard ratio
greater than 1, indicating a risk factor, is colored in red, while a hazard ratio less than 1, indicating
a protective factor, is colored in blue. (b-g) Prognostic evaluations of FAM174B in selected
cancers using the Kaplan-Meier method and log-rank tests, showcasing only those cancers where

FAM174B was identified as a significant prognostic biomarker in the univariate analysis.
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impact of FAM174B on PFS across multiple cancers. (a) Univariate

Cox regression analysis of FAM174B's prognostic significance in pan-cancers. A hazard ratio

greater than 1, indicating a risk factor, is colored in red, while a hazard ratio less than 1, indicating

a protective factor, is colored in blue. (b-h) Prognostic evaluations of FAM174B in selected

cancers using the Kaplan-Meier method and log-rank tests, showcasing only those cancers where

FAM174B was identified as a significant prognostic biomarker in the univariate analysis.
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Figure S5. Associations of FAM174B with MSI and TMB across various cancers. Significance

levels determined by Spearman correlation analysis are indicated with asterisks (*P < 0.05; **P <

0.01).
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Figure S6. Associations between FAM174B and tumor-associated immune cells as estimated

by six TME deconvolution algorithms. (a) Comparison of immune cell infiltration abundances

in high- and low-FAM174B BLCA groups, analyzed using six TME deconvolution algorithms:

CIBERSORT, TIMER, xCell, MCPcounter, EPIC, and quanTlseq, with each algorithm

11



represented by a different color. (b-g) Correlations of FAM174B with CD8+ T cell infiltration

levels estimated by the six algorithms. P-values were derived from Pearson correlation analysis.
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Figure S7. Correlations between FAM174B, tumor associated immune cells and immune
phenotypes. (a) Correlations between FAM174B and the effector genes of five tumor associated

immune cells. (b-e) Correlations between FAM174B and four critical marker genes of
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macrophages. (e) Expression of FAM174B, PD-L1, and CD8 in the bladder cancer were detected
using IF. Representative images in three immune phenotypes were displayed. The scale bars
correspond to 200 um. (g) CD8 positive rates in the three immune phenotypes detected by IF. (h)
Correlation between FAM174B positive rates and CD8 positive rates detected using IF. (i)
Correlation between PD-L1 positive rates and CD8 positive rates detected using IF. (j) Correlation
between PD-L1 positive rates and FAM174B positive rates detected using IF. (k) IHC
guantification of CD86, CD206, and CD1lc expressions in BLCA samples with distinct

FAM174B levels. Scale bars are 250 pm.
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Figure S8. Relationships between FAM174B and immunological characteristics, therapeutic
signature enrichment scores, and molecular subtypes in the GSE32894 Cohort. (a-c)
Associations of FAM174B with immunoregulators, effector genes from tumor-associated immune
cells, and inhibitory immune checkpoints in BLCA. (d) Association of FAM174B with enrichment
scores of signatures predicted to impact immunotherapy outcomes, where significant p-values are
indicated by asterisks and calculated using the Mann-Whitney U test (*P < 0.05; **P < 0.01; ***P
< 0.001; ****P < 0.0001). (e) Relationship between FAM174B and molecular subtype alongside
BLCA signatures. (f) Correlation of FAM174B with enrichment scores for therapeutic signatures,

including those for radiotherapy and targeted therapy.

14



—— C GSE31684

Inhibitory immune checkpoint
16 .

- pg e e o

S

FAM174B

©7 0t B high
# . Elow

Expression

r1on] —a

B high
Y

A T

] = S = T ¢ = <
2 S g B : 8 & § ¥ H
g 5 : E B P o2 <
& § & - g o= <
§ 0§ g £ g I H
8 508 3 i ) -] {
B £ 8 & E ' £ H
& £
LN z
EGFA_igancs
I
WA sustype Pt
2-score Gluster Lune_subtype UNG_subtype ~ FEX0Y]
TOBA_sibtyps © e o o FGFRz-eoexresea_genes 0. 3
Uaylar suaiye ﬂ aw Baisig Inl ﬂLummm g5m
UNG_subiype u Gu E
| Consensus sublype | Clint PRARG _ratwork C_3
Ta pathay . Ba'sg ties-lie 232
- Lurihis SNE-like &3
. Lump’ Uro-lnf =gt
Cumi UroA-Frog WNT-Boatenin network g B R
NE-like UroB e &
(T e, B H
=
e GIT_subtype MDA_subitype IDH1 % 2
a1 bssal f-%-1
| | | | G2 luminai &
MC3 psd ke KOMEE o
Mca e o3
s TCGA subtype S0
Gs Basal squarous EL
MGT L VEGFA G- )
Luitinal infatod S
Luminal pap ary =
Nzuronal o
Hypokia
Baylor_sublype v &
Hsnsm
Differentiatec
Cell oyl
I | | | DNA replication

Figure S9. Relationships between FAM174B and immunological characteristics, therapeutic
signature enrichment scores, and molecular subtypes in the GSE31684 Cohort. (a-c)
Associations of FAM174B with immunoregulators, effector genes from tumor-associated immune
cells, and inhibitory immune checkpoints in BLCA. (d) Association of FAM174B with enrichment
scores of signatures predicted to impact immunotherapy outcomes, where significant p-values are
indicated by asterisks and calculated using the Mann-Whitney U test (*P < 0.05; **P < 0.01; ***P
< 0.001; ****P < 0.0001). (e) Relationship between FAM174B and molecular subtype alongside
BLCA signatures. (f) Correlation of FAM174B with enrichment scores for therapeutic signatures,

including those for radiotherapy and targeted therapy.

15



_________ _ b - p— o . IMvigor210
a ; | TERETE A e c Inhibitory immune checkpoint
= | T s e 0 s s s A
- ; N . -

_ E FAM174B
g | 2 ) o : Tt EEhigh
£ S B low
E w

i
5 200

Thicsl  NK_sall

=
d Immunotherapy—predicted pathways
i 1 —+- t

L S

075
5
Sose
i
028

.00

i T 5 I I & E
= : f R I
a H % g Er s
5 L2 g 3 £ EE
Eoeg & % 3 I
s B E o3 . 5B
o | E :
g 3 = iy
H b
e
Cluster z
Consensus subtype [N &
aim_suotype [IMNTNIVITAVADNIT UL
Lund subtype|
MIDA_sublype I, usio Lana. s e EGFR Igands
e sty 7 zacore u:Uhr und_sublype E;::wm
Bayler suotype| L Em Luminal
UNG_subtype Lo FOFRS coexpressed genes
T L], Consensus_subtype
Ta_pstmay ; Barsy . -
2 Lumis PPARC_netwerk Ism=
LumP 5309
Luml) a3y L4
HE-like. SEm
Strema rich WTfroaterin etk SE 5
o
=
CIT subtype MDA_subtype EI__ 3
W1 basal DH1 555
M2 luminal 223
MC3 ph3ike L= =
MC4 45
WMOB TCGA_sublype KDMEE SJQ.
MCE Basal squamous ao
MC7 Lurttinal =3
Luminal_infilrated VEGFA 23
Luariinial _paapillary e}
Neurondl Do
23
Baylor subtype Hypaia Z°
Basal v £l
Dierentates 28
l=
Call_cyele =
D
5
‘ ‘ ‘ | ‘ | DNA_replizaion

Figure S10. Relationships between FAM174B and immunological characteristics,
therapeutic signature enrichment scores, and molecular subtypes in the IMvigor210 Cohort.
(a-c) Associations of FAM174B with immunoregulators, effector genes from tumor-associated
immune cells, and inhibitory immune checkpoints in BLCA. (d) Association of FAM174B with
enrichment scores of signatures predicted to impact immunotherapy outcomes, where significant
p-values are indicated by asterisks and calculated using the Mann-Whitney U test (*P < 0.05; **P
< 0.01; ***P < 0.001; ****P < 0.0001). (e) Relationship between FAM174B and molecular
subtype alongside BLCA signatures. (f) Correlation of FAM174B with enrichment scores for

therapeutic signatures, including those for radiotherapy and targeted therapy.
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Figure S11. Associations of FAM174B with immune signatures in the SD Subgroup of the
IMvigor210 Cohort. (a-c) Associations between FAM174B and immunoregulators, effector
genes of tumor-associated immune cells, and inhibitory immune checkpoints in BLCA. (d)
Relationship between FAM174B and enrichment scores of signatures predictive of
immunotherapy outcomes, with significant p-values indicated by asterisks, calculated using the

Mann-Whitney U test (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001).
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Immunotherapy predicted pathway in PR cohort

Figure S12. Associations of FAM174B with immune signatures in the PR Subgroup of the
IMvigor210 Cohort. (a-c) Associations between FAM174B and immunoregulators, effector
genes of tumor-associated immune cells, and inhibitory immune checkpoints in BLCA. (d)
Relationship between FAM174B and enrichment scores of signatures predictive of
immunotherapy outcomes, with significant p-values indicated by asterisks, calculated using the

Mann-Whitney U test (*P < 0.05; **P < 0.01; ***P < 0.001).
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Figure S13. Associations of FAM174B with immune signatures in the PD Subgroup of the
IMvigor210 Cohort. (a-c) Associations between FAM174B and immunoregulators, effector
genes of tumor-associated immune cells, and inhibitory immune checkpoints in BLCA. (d)
Relationship between FAM174B and enrichment scores of signatures predictive of

immunotherapy outcomes, with significant p-values indicated by asterisks, calculated using the

Mann-Whitney U test (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001).
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Figure S14. Associations of FAM174B with immune signatures in the CR Subgroup of the

IMvigor210 Cohort. (a-c) Associations between FAM174B and immunoregulators, effector

genes of tumor-associated immune cells, and inhibitory immune checkpoints in BLCA. (d)

Relationship between FAM174B and enrichment scores of signatures predictive of

immunotherapy outcomes, with significant p-values indicated by asterisks, calculated using the

Mann-Whitney U test (*P < 0.05; **P < 0.01).
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Figure S15. Relationships between FAM174B and hyper-progression genes, and its
predictive accuracy for molecular subtypes across validation cohorts. (a) Association of
FAM174B with the CNV patterns of hyper-progression associated genes in BLCA, with p-values
determined using the Fisher t-test. (b) Correlation between FAM174B and mRNA expression
levels of hyper-progression associated genes in BLCA, where significant statistical p-values are
marked with asterisks, calculated using the Mann-Whitney U test (*P < 0.05; **P < 0.01; ***P <
0.001). (c-e) Predictive capabilities of FAM174B for determining molecular subtypes in three
independent validation cohorts, including two BLCA datasets (GSE31684 and GSE32894) and the

immunotherapy cohort IMvigor210.
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Figure S16. Influence of FAM174B on predicting molecular subtypes and therapeutic
responses in the integrated GEO Meta Cohort. (a) Expression patterns of immunoregulators
between high- and low-FAM174B expression groups. (b) Associations between FAM174B and
molecular subtypes, along with BLCA signatures. (¢) ROC curves demonstrating the predictive
precision of FAM174B for identifying molecular subtypes. (d) Associations between FAM174B

and the enrichment scores of therapeutic signatures, such as those for radiotherapy and targeted

therapy.
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Figure S17. DEGs across FAM174B, immune score, and stromal score groups. (a-f) Analysis
of gene expression differences among FAM174B groups, immune score groups, and stromal score
groups. Differential RNAs were identified using criteria of an adjusted P value < 0.01 and |logFC| >
1. (g) Representation of 664 common immune-related differential DEGs in a Venn diagram. (h)
Bar plots illustrating the most enriched terms in GO biological processes (BP), cellular

components (CC), and molecular functions (MF).
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Figure S18. IRS as a predictor of clinical response to cancer immunotherapy. (a) Association

between FAM174B and IRS. (b, ¢) Associations of IRS with the pan-cancer T cell inflamed score

and inhibitory immune checkpoints. (d, e) Correlations of IRS with immunoregulators and tumor-

associated immune cells. (f) Associations between IRS and the dynamics of cancer immunity

cycles. (g) Correlations of IRS with enrichment scores of pathways predicted to influence

immunotherapy outcomes. Significance levels are marked by asterisks, determined using the

Mann-Whitney U test (*P < 0.05; **P < 0.01; ***P < 0.001).
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