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Supplementary methods 

Assessing the Immunological Attributes of the TME in 

BLCA 

 The TME in BLCA is characterized by several immunological features, such as the levels of 

immunomodulators (receptors, MHC molecules, immunostimulators, and chemokines), the 

dynamics of the cancer-immunity cycle, the infiltration abundances of tumor-infiltrating immune 

cells, and the immune checkpoint inhibitors. Initially, we gathered data on these 

immunomodulators from the TISIDB online resource (http://cis.hku.hk/TISIDB/). The cancer-

immunity cycle, illustrating the anti-tumor immune response, encompasses seven stages: (1) 

release of tumor antigens, (2) presentation of these antigens, (3) immune priming and activation, 

(4) migration of immune cells to the tumor, (5) their penetration into the tumor, (6) T cell 

recognition of tumor cells, and (7) the subsequent elimination of these cells [1]. These stages are 

crucial in determining tumor cell destiny, as highlighted in our published research [2]. 

Subsequently, a comprehensive assessment of the infiltration abundances of different immune 

cells in the TME was conducted using bulk RNAseq data. This analysis employed seven distinct 

algorithms—CIBERSORT, TIMER, xCell, MCPcounter, ESTIMATE, EPIC, and quanTIseq. 

These TME deconvolution methods have been encapsulated within the IOBR R package 

developed by Zeng et al. [3]. Additionally, we incorporated effector genes of tumor-infiltration 

immune cells including CD8+ T cell, NK cell, Macrophage, Th1 cell, and DC, identified in prior 

research [4] and analyzed various inhibitory immune checkpoints highlighted by Auslander for 

their therapeutic relevance [5]. Ayers and colleagues established a pan-cancer T cell-inflamed 

score, indicative of existing cancer immunity and predictive of ICB response, which we calculated 

as previously documented [6]. Furthermore, we reviewed predictors of ICB-associated 

hyperprogression, noting that amplifications and high expression of genes like MDM2, MDM4, 

and the FGF family, along with deletions and low expression of CDKN2A and CDKN2B, are 

linked to hyperprogression [7, 8]. To determine the effects of FAM174B on cancer immunity in 

BLCA, we examined its correlation with these immunological facets of the TME, corroborating 
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our findings across three external cohorts: GSE31684, GSE32894, and IMvigor210. 

Immunohistochemical and Immunofluorescence Analysis of 

Bladder Cancer Tissue 

A tissue microarray (TMA) comprising 60 bladder cancer samples was constructed, selecting 1.5-

mm cores from formalin-fixed, paraffin-embedded primary tumor specimens. 

Immunohistochemical staining utilized CD8 (ZA-0508, ZSGB-BIO), PD-L1 (ab213524, Abcam), 

and FAM174B (NBP2-33873, Novus Biologicals) antibodies, followed by an HRP-conjugated 

secondary antibody. PD-L1 scoring involved assessing staining intensity across the tumor at low 

magnification, categorizing samples from no staining (score 0) to strong staining (score 3). 

Additionally, the proportion of positive cells was quantified in five high-power fields, assigning 

scores from 1 (<25% positivity) to 4 (≥75% positivity). The final PD-L1 score combined intensity 

and positivity rates. CD8 and FAM174B analyses focused on the percentage of cells with strong 

membrane staining. Tumor immune phenotypes were classified based on CD8+ T cell distribution: 

inflamed (within tumor parenchyma), excluded (in stroma, not parenchyma), and deserted (absent 

in both). Excluded and deserted were deemed non-inflamed. Independent pathologists reviewed 

all slides. Immunofluorescence for FAM174B, CD8, and PD-L1 followed Wang et al.'s method, 

with CY3-TSA, FITC-TSA, and CY5-TSA secondary antibodies for each marker, respectively, 

and DAPI for nuclear staining. Positive cell proportions were calculated across the entire field. 

Real-time quantitative PCR (qPCR) 

In our real-time qPCR experiment, we isolated total RNA from ten BLCA cancer and 

adjacent normal tissue pairs using the RNA-Quick Purification Kit (RN001, ESScience) as per the 

protocol. Subsequent cDNA synthesis was conducted using cDNA synthesis kit (RR047A, Takara). 

2X Universal SYBR Green Fast qPCR Mix (RK21203, ABclonal) was employed to measure 

FAM174B mRNA levels which were normalized against the reference gene GAPDH. The specific 

primers were designed by Beijing Tsingke Biotech Co., Ltd. and listed below:  

FAM174B, forward 5′- AGAAGACACGCAAGTATGAT -3′ and reverse 5′- 
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ACTGTGGAGTCCTCATCTT -3′;  

GAPDH, forward 5′- TATGACAACAGCCTCAAGAT -3′ and reverse 5′- 

AGTCCTTCCACGATACCA -3′ 

Determining Enrichment Scores for Different Gene 

Signatures 

 Gene signatures linked with positive responses to the anti-PD-L1 agent atezolizumab in 

BLCA were sourced from Mariathasan's research [9]. Additionally, we obtained twelve bladder 

cancer-specific signatures for different molecular subtypes from the Bladder Cancer Molecular 

Taxonomy Group's study [10]. Our collection also included gene signatures related to oncogenic 

pathways influencing a non-inflamed TME, genes associated with targeted therapy, and predictors 

of radiotherapy outcomes. We used the GSVA R package to calculate the enrichment scores for 

these gene sets [11]. The potential of FAM174B to predict therapy responses was assessed by 

examining the distributions of these enrichment scores between high- and low FAM174B groups 

(determined by the median mRNA level of FAM174B in each cohort). Lastly, we identified 

BLCA-relevant drug target genes through the DrugBank database [12]. 

Inferring Molecular Subtypes in BLCA 

Several molecular classification frameworks, including CIT, Lund, MDA, TCGA, Baylor, 

UNC, and Consensus subtypes, have been widely used in categorizing BLCA. Subsequent 

analysis involved correlating FAM174B expression with various molecular subtypes and 

distinctive gene signatures associated with BLCA. The findings demonstrate that, based on the 

interrelationships among various classification systems, BLCA is primarily classified into two 

main subtypes: basal and luminal. To assess the predictive capacity of FAM174B for these 

molecular subtypes, Receiver operating characteristic (ROC) curves were generated and the Area 

Under Curve (AUC) values were calculated. Furthermore, the prognostic precision of FAM174B 

for molecular subtypes was confirmed in three additional cohorts, encompassing two BLCA 

datasets (GSE31684 and GSE32894) and one immunotherapy dataset (IMvigor210).   
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Identification of immune-related differentially expressed 

genes (irDEGs) 

BLCA were stratified into distinct groups based on the median expression of (1) FAM174B 

mRNA levels, (2) TME immune scores, and (3) TME stromal scores determined by the 

ESTIMATE algorithm. Differential expression analysis was conducted employing the empirical 

Bayesian statistics of the limma package to discern DEGs. The selection criteria were stringent, 

requiring an adjusted P-value < 0.01 and an absolute log2 fold change (log2FC) > 1. Common 

irDEGs were identified using the VennDiagram package. Furthermore, Gene Ontology (GO) 

enrichment analysis was conducted with the ClusterProfiler 4.0 package to elucidate the biological 

processes associated with irDEGs [13]. 

Immune related score (IRS) generated from machine 

learning-based integrative approaches 

To construct a consensus immune-related score (IRS) with enhanced accuracy and stability, 

we employed an integration approach using 10 machine learning algorithms [14]: RSF, Enet, 

Lasso, Ridge, stepwise Cox, CoxBoost, plsRcox, SuperPC, GBM, and survival-SVM. Notably, 

algorithms like Lasso, stepwise Cox, CoxBoost, and RSF have feature selection capabilities, 

which were leveraged in creating a unified model. We executed 101 combinations of these 

algorithms to establish predictive models, utilizing the LOOCV method as delineated previously. 

The preliminary stage of IRS development utilized the TCGA-BLCA dataset, where prognostic 

irDEGs were identified using Univariate Cox regression analysis. 

The implementation of the RSF model utilized the randomForestSRC package, with ntree 

defining the forest's tree count and mtry denoting the number of variables chosen randomly at 

each node for division. A grid search was conducted for ntree and mtry within the LOOCV 

framework, identifying the optimal pair based on the highest C-index. For the Enet, Lasso, and 

Ridge models, the glmnet package was used, where λ, the regularization parameter, was optimized 

using LOOCV, and α, balancing L1 and L2 regularization, varied from 0 to 1. The stepwise Cox 
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approach, facilitated by the survival package, applied an AIC-based algorithm, exploring in 

"both," "backward," and "forward" directions. CoxBoost, through the CoxBoost package, employs 

componentwise boosting for Cox models, optimizing shrinkage via LOOCV and determining the 

number of boosting steps. The plsRcox package supported the plsRcox model, optimizing 

component numbers via cv.plsRcox and fitting the model with plsRcox function. SuperPC, applied 

through the superpc package, extends principal component analysis to determine the optimal 

feature threshold via LOOCV. GBM's implementation, also through the superpc package, used 

cv.gbm to determine the optimal tree count in LOOCV, and gbm to fit the model. Lastly, the 

survival-SVM model, via the survivalsvm package, adapts the support vector approach to 

accommodate censored data in regression. 

Subsequent validation of the IRS was conducted across nine distinct datasets (GSE13507, 

GSE31684, GSE32548, GSE32894, GSE48075, GSE48277, GSE5287, GSE69795, and 

GSE70691). During this phase, we computed Harrell’s concordance index (C-index) for each 

model across these datasets. The model that yielded the highest mean C-index across the datasets 

was deemed the most effective. 
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Supplementary figures 

 

Figure S1. Distribution of FAM174B expression across various cancers. (a-c) Patterns of 

FAM174B expression in pan-cancer samples from TCGA, with statistical significance indicated 

by asterisks based on the Mann-Whitney U test results (ns, not significant; **P < 0.01; ***P < 

0.001; ****P < 0.0001). (d, e) Levels of FAM174B expression in cancer cell lines according to 

BioGPS (d) and CCLE (e) databases. (f) Quantitative RT-PCR analysis of FAM174B mRNA 

levels in 10 matched samples of BLCA cancer and adjacent normal tissue. 
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Figure S2. Prognostic impact of FAM174B on OS across multiple cancers. (a) Univariate Cox 

regression analysis of FAM174B's prognostic significance in pan-cancers. A hazard ratio greater 

than 1, indicating a risk factor, is colored in red, while a hazard ratio less than 1, indicating a 

protective factor, is colored in blue. (b-g) Prognostic evaluations of FAM174B in selected cancers 

using the Kaplan-Meier method and log-rank tests, showcasing only those cancers where 

FAM174B was identified as a significant prognostic biomarker in the univariate analysis. 



9 

 

 

Figure S3. Prognostic impact of FAM174B on DSS across multiple cancers. (a) Univariate 

Cox regression analysis of FAM174B's prognostic significance in pan-cancers. A hazard ratio 

greater than 1, indicating a risk factor, is colored in red, while a hazard ratio less than 1, indicating 

a protective factor, is colored in blue. (b-g) Prognostic evaluations of FAM174B in selected 

cancers using the Kaplan-Meier method and log-rank tests, showcasing only those cancers where 

FAM174B was identified as a significant prognostic biomarker in the univariate analysis. 
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Figure S4. Prognostic impact of FAM174B on PFS across multiple cancers. (a) Univariate 

Cox regression analysis of FAM174B's prognostic significance in pan-cancers. A hazard ratio 

greater than 1, indicating a risk factor, is colored in red, while a hazard ratio less than 1, indicating 

a protective factor, is colored in blue. (b-h) Prognostic evaluations of FAM174B in selected 

cancers using the Kaplan-Meier method and log-rank tests, showcasing only those cancers where 

FAM174B was identified as a significant prognostic biomarker in the univariate analysis. 
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Figure S5. Associations of FAM174B with MSI and TMB across various cancers. Significance 

levels determined by Spearman correlation analysis are indicated with asterisks (*P < 0.05; **P < 

0.01). 

 

Figure S6. Associations between FAM174B and tumor-associated immune cells as estimated 

by six TME deconvolution algorithms. (a) Comparison of immune cell infiltration abundances 

in high- and low-FAM174B BLCA groups, analyzed using six TME deconvolution algorithms: 

CIBERSORT, TIMER, xCell, MCPcounter, EPIC, and quanTIseq, with each algorithm 
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represented by a different color. (b-g) Correlations of FAM174B with CD8+ T cell infiltration 

levels estimated by the six algorithms. P-values were derived from Pearson correlation analysis. 

 

Figure S7. Correlations between FAM174B, tumor associated immune cells and immune 

phenotypes. (a) Correlations between FAM174B and the effector genes of five tumor associated 

immune cells. (b-e) Correlations between FAM174B and four critical marker genes of 
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macrophages. (e) Expression of FAM174B, PD-L1, and CD8 in the bladder cancer were detected 

using IF. Representative images in three immune phenotypes were displayed. The scale bars 

correspond to 200 μm. (g) CD8 positive rates in the three immune phenotypes detected by IF. (h) 

Correlation between FAM174B positive rates and CD8 positive rates detected using IF. (i) 

Correlation between PD-L1 positive rates and CD8 positive rates detected using IF. (j) Correlation 

between PD-L1 positive rates and FAM174B positive rates detected using IF. (k) IHC 

quantification of CD86, CD206, and CD11c expressions in BLCA samples with distinct 

FAM174B levels. Scale bars are 250 μm. 
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Figure S8. Relationships between FAM174B and immunological characteristics, therapeutic 

signature enrichment scores, and molecular subtypes in the GSE32894 Cohort. (a-c) 

Associations of FAM174B with immunoregulators, effector genes from tumor-associated immune 

cells, and inhibitory immune checkpoints in BLCA. (d) Association of FAM174B with enrichment 

scores of signatures predicted to impact immunotherapy outcomes, where significant p-values are 

indicated by asterisks and calculated using the Mann-Whitney U test (*P < 0.05; **P < 0.01; ***P 

< 0.001; ****P < 0.0001). (e) Relationship between FAM174B and molecular subtype alongside 

BLCA signatures. (f) Correlation of FAM174B with enrichment scores for therapeutic signatures, 

including those for radiotherapy and targeted therapy. 
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Figure S9. Relationships between FAM174B and immunological characteristics, therapeutic 

signature enrichment scores, and molecular subtypes in the GSE31684 Cohort. (a-c) 

Associations of FAM174B with immunoregulators, effector genes from tumor-associated immune 

cells, and inhibitory immune checkpoints in BLCA. (d) Association of FAM174B with enrichment 

scores of signatures predicted to impact immunotherapy outcomes, where significant p-values are 

indicated by asterisks and calculated using the Mann-Whitney U test (*P < 0.05; **P < 0.01; ***P 

< 0.001; ****P < 0.0001). (e) Relationship between FAM174B and molecular subtype alongside 

BLCA signatures. (f) Correlation of FAM174B with enrichment scores for therapeutic signatures, 

including those for radiotherapy and targeted therapy. 
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Figure S10. Relationships between FAM174B and immunological characteristics, 

therapeutic signature enrichment scores, and molecular subtypes in the IMvigor210 Cohort. 

(a-c) Associations of FAM174B with immunoregulators, effector genes from tumor-associated 

immune cells, and inhibitory immune checkpoints in BLCA. (d) Association of FAM174B with 

enrichment scores of signatures predicted to impact immunotherapy outcomes, where significant 

p-values are indicated by asterisks and calculated using the Mann-Whitney U test (*P < 0.05; **P 

< 0.01; ***P < 0.001; ****P < 0.0001). (e) Relationship between FAM174B and molecular 

subtype alongside BLCA signatures. (f) Correlation of FAM174B with enrichment scores for 

therapeutic signatures, including those for radiotherapy and targeted therapy. 
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Figure S11. Associations of FAM174B with immune signatures in the SD Subgroup of the 

IMvigor210 Cohort. (a-c) Associations between FAM174B and immunoregulators, effector 

genes of tumor-associated immune cells, and inhibitory immune checkpoints in BLCA. (d) 

Relationship between FAM174B and enrichment scores of signatures predictive of 

immunotherapy outcomes, with significant p-values indicated by asterisks, calculated using the 

Mann-Whitney U test (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001). 
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Figure S12. Associations of FAM174B with immune signatures in the PR Subgroup of the 

IMvigor210 Cohort. (a-c) Associations between FAM174B and immunoregulators, effector 

genes of tumor-associated immune cells, and inhibitory immune checkpoints in BLCA. (d) 

Relationship between FAM174B and enrichment scores of signatures predictive of 

immunotherapy outcomes, with significant p-values indicated by asterisks, calculated using the 

Mann-Whitney U test (*P < 0.05; **P < 0.01; ***P < 0.001). 
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Figure S13. Associations of FAM174B with immune signatures in the PD Subgroup of the 

IMvigor210 Cohort. (a-c) Associations between FAM174B and immunoregulators, effector 

genes of tumor-associated immune cells, and inhibitory immune checkpoints in BLCA. (d) 

Relationship between FAM174B and enrichment scores of signatures predictive of 

immunotherapy outcomes, with significant p-values indicated by asterisks, calculated using the 

Mann-Whitney U test (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001). 
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Figure S14. Associations of FAM174B with immune signatures in the CR Subgroup of the 

IMvigor210 Cohort. (a-c) Associations between FAM174B and immunoregulators, effector 

genes of tumor-associated immune cells, and inhibitory immune checkpoints in BLCA. (d) 

Relationship between FAM174B and enrichment scores of signatures predictive of 

immunotherapy outcomes, with significant p-values indicated by asterisks, calculated using the 

Mann-Whitney U test (*P < 0.05; **P < 0.01). 
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Figure S15. Relationships between FAM174B and hyper-progression genes, and its 

predictive accuracy for molecular subtypes across validation cohorts. (a) Association of 

FAM174B with the CNV patterns of hyper-progression associated genes in BLCA, with p-values 

determined using the Fisher t-test. (b) Correlation between FAM174B and mRNA expression 

levels of hyper-progression associated genes in BLCA, where significant statistical p-values are 

marked with asterisks, calculated using the Mann-Whitney U test (*P < 0.05; **P < 0.01; ***P < 

0.001). (c-e) Predictive capabilities of FAM174B for determining molecular subtypes in three 

independent validation cohorts, including two BLCA datasets (GSE31684 and GSE32894) and the 

immunotherapy cohort IMvigor210. 
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Figure S16. Influence of FAM174B on predicting molecular subtypes and therapeutic 

responses in the integrated GEO Meta Cohort. (a) Expression patterns of immunoregulators 

between high- and low-FAM174B expression groups. (b) Associations between FAM174B and 

molecular subtypes, along with BLCA signatures. (c) ROC curves demonstrating the predictive 

precision of FAM174B for identifying molecular subtypes. (d) Associations between FAM174B 

and the enrichment scores of therapeutic signatures, such as those for radiotherapy and targeted 

therapy. 
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Figure S17. DEGs across FAM174B, immune score, and stromal score groups. (a-f) Analysis 

of gene expression differences among FAM174B groups, immune score groups, and stromal score 

groups. Differential RNAs were identified using criteria of an adjusted P value < 0.01 and |logFC| > 

1. (g) Representation of 664 common immune-related differential DEGs in a Venn diagram. (h) 

Bar plots illustrating the most enriched terms in GO biological processes (BP), cellular 

components (CC), and molecular functions (MF). 
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Figure S18. IRS as a predictor of clinical response to cancer immunotherapy. (a) Association 

between FAM174B and IRS. (b, c) Associations of IRS with the pan-cancer T cell inflamed score 

and inhibitory immune checkpoints. (d, e) Correlations of IRS with immunoregulators and tumor-

associated immune cells. (f) Associations between IRS and the dynamics of cancer immunity 

cycles. (g) Correlations of IRS with enrichment scores of pathways predicted to influence 

immunotherapy outcomes. Significance levels are marked by asterisks, determined using the 

Mann-Whitney U test (*P < 0.05; **P < 0.01; ***P < 0.001). 
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