
Supplemental Methods 

2.1 Mendelian randomization 

2.1.1 Study design 

Figure 1 illustrates our study design and MR Hypothesis. The objective of this research endeavor 

was to examine the causal connection that exists between 10 autoimmune diseases (ADs) and PAH. MR 

was implemented in accordance with three hypotheses1. Assumption 1: Instrumental variables (IVs) are 

strongly correlated with exposure; Assumption 2: IVs are independent of potentially confounding 

variables; and Assumption 3: IVs only affect outcomes through exposure, not through any other means. 

In addition, we adhered to the recommendations of STROBE-MR 2 to guarantee the transparency and 

reproducibility of our study. 

 

2.1.2 Data sources 

ADs Ankylosing spondylitis, celiac disease, Crohn's disease (CD), multiple sclerosis (MS), 

primary biliary cholangitis (PBC), psoriasis, rheumatoid arthritis (RA), systemic lupus erythematosus 

(SLE), type 1 diabetes mellitus (T1DM), and ulcerative colitis (UC). We conducted a comparative 

analysis of the two pooled datasets, the former consisting of data obtained from the FinnGen 

Consortium (R9) (https://www.finngen.fi/fi) and the Gwas Catalog database 

(https://www.ebi.ac.uk/gwas/) and the latter from the MRC-IEU database (https://gwas.mrcieu.ac.uk/). 

Of these, the diagnosis of 8 autoimmune diseases in the Finngen Consortium was confirmed using the 

International Classification of Diseases codes (ICD-9, ICD-10) provided, and detailed information is 

summarised in eTable 1. The 10 autoimmune diseases included in the MRC-IEU database are available 

online with detailed information provided in the referenced papers3-12. 

Mediators To investigate the potential mechanisms underlying the genetic link between ADs and 

PAH, we further calculated 21 potential mediators for analysis, including blood cell counts, 

immunoglobulins, and inflammatory cytokines that may be affected by ADs. For blood cell counts, we 

acquired genome-wide association study (GWAS) data from the Blood Cell Consortium. 

Immunoglobulins' summary statistics were collected from a study conducted by Scepanovic P et al13, 

involving 1,000 individuals of French metropolitan descent. Pooled GWAS data for inflammatory 

cytokines were obtained from the study by Suhre K et al. 14 for a total of 3080 individuals (including 

1000 cases and 2080 controls). The specifics of all data sources can be found in eTable 2. 

PAH GWAS summary data for PAH were retrieved from the GWAS Catalog 

(https://www.ebi.ac.uk/gwas/)15 , comprising 11,744 individuals of European, with 2,085 having PAH 

and 9,659 serving as controls. 

 

2.1.3 SNP selection 

It is common knowledge that rigorous IVs selection is essential for MR analysis results to be 

reliable. To fulfil the three previously mentioned stringent assumptions, we conducted a series of 

quality control procedures to identify suitable single nucleotide polymorphisms (SNPs). First, we 

selected SNPs significantly associated with ADs (P < 5×10-8 ) as IVs in the MRC-IEU database. 

Second, we not only applied the thresholds of r2 < 0.01 and Kb > 10,000 to eliminate linkage 

disequilibrium (LD)-linked genes, but we also computed the F-statistic of exposure, and IVs with F-

statistics < 10 were excluded to avoid bias due to weaker genetic instrumentation. to prevent bias from 

weaker genetic instrumentation. The formula is as follows: F = R2(N-K-1)/K(1-R2). Third, palindromic 

SNPs were excluded. Finally, SNPs that were not present in the resultant dataset or had inconsistent 

https://gwas.mrcieu.ac.uk/).


alleles between exposure and outcome (e.g., T/C vs T/G) were excluded. The remaining selected SNPs 

were then used as instrumental variables for further analyses. 

Nevertheless, when applying the threshold of P< 5 × 10-8 to screen for SNPs in pooled data from 

the FinnGen Consortium and Gwas Catalog, the SNPs linked to Crohn's disease, Multiple sclerosis, 

and Systemic lupus erythematosus were all below 3. Typically, MR studies necessitate a minimum of 4 

SNPs as IVs16. Therefore, based on prior studys17, 18, we applied a less stringent P-value criterion of P< 

5 x10-6 in the FinnGen Consortium and Gwas Catalogue databases to identify corresponding SNPs for 

Crohn's disease, Multiple sclerosis, and Systemic lupus erythematosus. 

Similarly, reverse MR analysis revealed an insufficient number of SNPs when adhering to the 

strict inclusion criteria mentioned. Therefore, we implemented the following criteria: P < 5 × 10-6, r2 < 

0.01 in a window of clusters > 10,000 kb. 

 

2.1.4 Other factors 

To satisfy that IVs are independent of potential confounding variables1, we performed a thorough 

search of the PhenoScanner database(www.phenoscanner.medschl.cam.ac.uk) for established 

associations between instrumental SNPs and potential confounding variables. Considerable genetic 

resemblance was identified among ADs and they are commonly linked to major histocompatibility 

complex (MHC) genes19. In the present study, our exposure factors were the 10 autoimmune diseases 

mentioned above, suggesting a strong association between alterations in MHC genes and ADs. Therefore, 

to mitigate the potential effects that are closely associated with autoimmune diseases, we need to exclude 

variants in the MHC region, that is the short arm of chromosome 6 that contains genes encoding 

molecules involved in antigen presentation20. However, this method may lead to horizontal pleiotropy 

and breach the three primary assumptions of Mendelian randomization. Thus, univariate MR analyses 

were performed on SNPs with excluded MHC loci to minimize the effect of confounding factors, and 

were utilized as the main univariate MR analysis results. 

 

2.1.5 statistical analyses 

In univariate MR analyses, five MR methods were employed to investigate the causal impact of 

ADs on PAH. In concrete terms, for each autoimmune disease, we calculated SNP-specific Wald ratios 

to estimate the effect of exposure on the outcome of each IV, defined as βEXP-OUT = βSNP-OUT/βSNP-EXP. 

An inverse variance weighting (IVW) approach was utilized as the primary analysis to amalgamate the 

effect sizes for each IV. MR-Egger, Weighted median, Simple mode, and Weighted mode were used as 

supplementary methods or to see if their results were consistent with the direction of IVW21. In our 

sensitivity analyses, we performed MR-Egger regression to detect possible bias in directional 

pleiotropy. The intercept term of the MR-Egger regression shows the average pleiotropic effect across 

all genetic heritability variants (p < 0.05 indicated the presence of pleiotropy). Moreover, the MR-

PRESSO method was utilized to assess and adjust for horizontal pleiotropy. To evaluate heterogeneity 

of effects, we analysed heterogeneity of MR Egger and IVW methods using Cochran's Q statistic, with 

p > 0.05 indicating no heterogeneity. Furthermore, we conducted leave-one-out analyses to verify 

whether individual SNPs significantly affected the estimation of causal effects by removing them 

individually. 

We also conducted a multivariable Mendelian randomization (MVMR) analysis to determine the 

independent causal impact of ADs on PAH. This approach balanced the effects of similarly related or 

different risk factor categories on the results, thus producing more objective results. The primary 



method used was IVW. Furthermore, we utilized two-step MR to determine the extent to which ADs 

influence PAH via potential mediators and the coefficient product method to compute mediating 

effects. First, the total effect of ADs on PAH risk was estimated using a one-way MR (coefficient βXY), 

and estimate the effect of ADs on the potential medium (coefficient βXM).  X, M, and Y, respectively, 

denote exposure, mediator, and outcome. Second, the MVMR was used to estimate the direct effect of 

potential mediators on PAH (coefficient βMY). The proportion of the mediated effect was calculated by 

dividing the indirect effect (βXM×βMY) by the total effect (βXY). 

In addition, we extended the MR analysis to bi-directional causal inference between ADs and 

PAH by performing a reverse MR analysis with PAH as the exposure and each of the ten immune 

disorders as the outcome. The IVW method was assessed as the primary outcome. P < 0.05 was 

considered significant. 

All statistical analyses were conducted utilizing Mendelian Randomization (0.4.2), 

TwoSampleMR (0.5.7), MRPRESSO (1.0), and MVMR (0.3) in R version 4.2.2. 

 

2.2 Real-world observational analysis 

2.2.1 Data sources 

This study conducted a retrospective cohort analysis using data from the Medical Information Mart 

for Intensive Care-IV (MIMIC-IV) (version 1.0)22, a publicly available database maintained jointly by 

Beth Israel Deaconess Medical Center and the Massachusetts Institute of Technology. The database 

encompasses de-identified medical records from more than 70,000 patients who were admitted to 

intensive care at the Beth Israel Deaconess Medical Center during the period from 2008 to 2019. Our 

authors fulfilled the criteria for database access and spearheaded the data extraction efforts. The study 

adheres to the Declaration of Helsinki, and the requirement for informed consent was waived due to 

anonymized data were analyzed. The Institutional Review Board of the Beth Israel Deaconess Medical 

Center approved this research. 

 

2.2.2 Population 

Our primary focus was on patients who developed PH during their initial hospital admission. We 

classified diagnoses for a total of 53,569 patients according to the International Classification of Diseases, 

Ninth Revision (ICD-9) and Tenth Revision (ICD-10), under codes 4160, I2720, I272, I2722, I2729, 

I2723, and I270. Employing PostgreSQL software (version 14.6), we meticulously extracted data from 

the MIMIC-IV database corresponding to the patients' first hospitalization. These data encompassed 

demographic information (age, gender, race), vital signs (heart rate, temperature, respiratory rate, oxygen 

saturation), comorbidities (hypertension, diabetes), and severity of disease scores [Sequential Organ 

Failure Assessment (SOFA) and Oxford Acute Severity of Illness Score (OASIS)]. Our main outcome of 

interest was the incidence of PH. 

 

2.2.3 statistical analyses 

Patients were divided into PH and non-PH groups according to whether PH occurred or not. The 

Shapiro-Wilk test was used to assess the normality of continuous variables. Depending on the distribution 

of the data, continuous variables were presented as mean ± standard deviation or median (interquartile 

range), while categorical variables were represented as proportions. Baseline characteristics between the 

groups were compared utilizing t-tests, chi-square tests, or Mann-Whitney U tests. To assess the 

relationship between ten ADs and the risk of PH development during hospitalization, a multivariate 



logistic regression analysis was conducted. Odds ratios (OR) and their 95% confidence intervals (CI) 

were computed to measure the influence of ADs on PH. Adjustments were made in the model for 

potential confounders, including demographic details (age, gender, race), vital signs (heart rate, 

temperature, respiratory rate, oxygen saturation), comorbidities (hypertension, diabetes), and disease 

severity scores (SOFA, OASIS). The analysis was carried out using R software version 4.1.3 and SPSS 

version 22.0 (IBM SPSS Statistics, Armonk, NY, USA). A p-value below 0.05 was considered 

statistically significant. 

 

  



2.3 Post-Gwas analysis: 

2.3.1 LDSC and SUPERGNOVA 

2.3.1.1Study design 

We employ linkage disequilibrium score regression (LDSC) as a crucial method 

for estimating genetic correlations across multiple traits or diseases24, 25. To achieve 

this, we utilized pre-computed LD scores derived from the 1000 Genomes Project. 

These scores are specifically calculated for SNPs within the HapMap 3 SNP set, 

excluding those inconsistent with the reference panel. By leveraging summary GWAS 

statistics alongside LD scores, we applied LDSC to compute heritability for individual 

traits and ascertain genetic correlations between pairs of traits. In addition, SUPER 

Genetic covariance analyzer (SUPERGNOVA)was used to calculate localized genetic 

correlations between T1DM or PBC and PAH. Notably, LDSC yields precise 

estimates even in scenarios where the test statistic might be inflated due to 

polygenicity. 

2.3.2MAGMA 

2.3.2.1 Study Design 

As a sensitivity analysis for LDSC, we conducted tissue-specific enrichment and 

gene set analyses using Multimarker Analysis of GenoMic Annotation (MAGMA)26. 

Initially, gene-level association analyses utilized aggregated data from genome-wide 

association studies (GWAS), estimating gene-phenotype associations by averaging 

SNP p-values proximal to target genes. Subsequently, gene set enrichment analyses 

(MSigDB_20231Hs_MAGMA). Finally, to assess the tissue specificity of the 

phenotype, we employed MAGMA for gene characterization. 

2.3.3Local genetic correlation analysis  

ρ-HESS 

Heritability estimation using Heritability Estimation from Summary Statistics(ρ-

HESS) is a method employed to estimate local SNP heritability and genetic 

correlations27. In this study, we applied ρ-HESS to investigate potential genetic 

correlations between two autoimmune diseases (ADs), PAH and ADs, and PAH 

within genetically independent regions of the genome. We computed local SNP 

heritability for each disease and determined their genetic correlations using the 1000 

Genomes Project as a reference dataset, accessible via the ρ-HESS webpage. To 

account for multiple comparisons, we applied a Bonferroni correction (0.05/ the 

number of regions) to ensure statistical rigor27. 

2.3.4 Colocalization analysis 

We utilized the coloc.abf function from the coloc R package (version 5.1.0) with 

its default prior to perform colocalization analysis (COLOC). This analysis aimed to 

calculate the posterior probability that SNPs within significant bivariate loci were 

either independent (H3) or shared the same correlated variant (H4). The genomic 

coordinates for co-localization were determined as the boundary reflecting local 

genetic correlation between the two phenotypes. 

 

2.3.5 PLACO: pleiotropic analysis under composite null hypothesis 

We initially extracted disease data relevant to sets of paired trait alliances 



exhibiting notable genetic correlations or overlap from the GWAS database. 

Subsequently, we employed polytomy analysis under the composite null hypothesis 

(PLACO)28 to identify potential polytomous single-nucleotide variants (SNVs). SNVs 

with a PLACO FDR-value < 5 × 10-8 were deemed statistically significant. 

 

2.3.6 Summary-data-based Mendelian randomization (SMR) and cis-MR 

We employed Summary-data-based Mendelian randomization (SMR) to identify 

potential functional genes implicated in the statistical associations of PAH and ADs29. 

SMR integrates summary statistics from GWAS and eQTL/pQTL studies within the 

MR framework to assess the relationship between gene expression and the target 

phenotype. Analysis was conducted across tissues showing significant SNP-

heritability enrichment for both PAH and ADs. Genome-wide significant SNPs were 

utilized as instrumental variables, and the Heterogeneity in Dependent Instruments 

(HEIDI) test was applied to assess linkage disequilibrium in the observed 

associations. SMR further employed the HEIDI-outlier test to discern causality or 

pleiotropy from linkage. In addition, we include candidate genes with positive SMR 

analysis results from all eQTL and pQTL sources in the cis-MR analysis. To be 

selected as candidate genes for cis-MR validation, both autoimmune diseases and 

pulmonary arterial hypertension must satisfy the following criteria: P(SMR) < 0.05, 

P(HEDI) > 0.05, and Total loci ≥ 2[Figure9].  

 

2.3.7 FOCUS 

We employed fine-mapping of causal gene sets (FOCUS) to compute the 

posterior inclusion probability (PIP) for each gene within significant bivariate loci30. 

Multi-tissue gene expression weights were derived from the GWAS database, with LD 

serving as the reference genotypes. Specifically, whole blood cells and lung tissues 

were chosen as representative tissues. The multi-tissue panel integrated GTEx weights 

from PrediXcan with weights generated by several studies including the Metabolic 

Syndrome in Men Study (METSIM), the Dutch Twin Registry (NTR), the Young 

Finns Study (YFS), and software from the Common Mind Consortium (CMC). 

Default parameters and settings of FOCUS were uniformly applied across all 

analyses. 
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    eFigure 1: Forest plot to visualize the causal effect of autoimmune diseases (non-MHC loci SNPs) on PAH 
                     using the inverse variance-weighted method.CI: 95% confidence interval. OR, odds ratio.

    eFigure 2: Forest plot to visualize the causal effect of autoimmune diseases (included-MHC loci SNPs) on
                     PAH using the inverse variance-weighted method. CI: 95% confidence interval. OR, odds ratio.

    eFigure 3: Forest plot to visualize the causal effect of PAH and autoimmune diseases using the inverse 
                     variance-weighted method. CI: 95% confidence interval. OR, odds ratio.

    eFigure 4: SMR proteomic analysis between PAH and PBC.
                     To be selected as candidate genes for Heat Map, both autoimmune diseases and pulmonary arterial hypertension 
must satisfy the following criteria: P(SMR) < 0.05, P(HEDI) > 0.05.  a:SMR analysis graph for PAH and PBC from decode 2021; 
b:SMR analysis graph for PAH and PBC from EA;c:SMR analysis graph for PAH and PBC from GBR UKB OLINK;
d:SMR analysis graph for PAH and PBC from Gudjonsson A protei 4782; e:SMR analysis graph for PAH and PBC from 
Pietzner 4979.

      eFigure 5:SMR proteomic analysis between PAH and T1DM.
                     To be selected as candidate genes for Heat Map, both autoimmune diseases and pulmonary arterial hypertension 
must satisfy the following criteria: P(SMR) < 0.05, P(HEDI) > 0.05.  a:SMR analysis graph for PAH and T1DM from decode 2021; 
b:SMR analysis graph for PAH and T1DM from EA;c:SMR analysis graph for PAH and T1DM from GBR UKB OLINK;
d:SMR analysis graph for PAH and T1DM from Gudjonsson A protei 4782; e:SMR analysis graph for PAH and T1DM
from Pietzner 4979.

       eFigure 6: SMR transcriptomic analyses of PAH and PBC.
                     To be selected as candidate genes for Heat Map, both autoimmune diseases and pulmonary arterial hypertension 
must satisfy the following criteria: P(SMR) < 0.05, P(HEDI) > 0.05.  a:SMR analysis graph for PAH and PBC from CAGE; 
b:SMR analysis graph for PAH and PBC from eQTLGen;c:SMR analysis graph for PAH and PBC from Lung_GTEx_V8;
d:SMR analysis graph for PAH and PBC from Whole_Blood_GTEx_V8.
 
     eFigure 7: SMR transcriptomic analyses of PAH and T1DM.
                     To be selected as candidate genes for Heat Map, both autoimmune diseases and pulmonary arterial hypertension 
must satisfy the following criteria: P(SMR) < 0.05, P(HEDI) > 0.05.  a:SMR analysis graph for PAH and T1DM from CAGE; 
b:SMR analysis graph for PAH andT1DM from eQTLGen;c:SMR analysis graph for PAH and T1DM from Lung_GTEx_V8;
d:SMR analysis graph for PAH and T1DM from Whole_Blood_GTEx_V8.   


