
Supplementary method 

Figure 1A delineates the comprehensive, multi-stage research design employed in this 

investigation of gastric cancer (GC) epidemiology and associated risk factors. The 

study commenced with an extensive analysis of GC epidemiology utilizing the Global 

Burden of Disease (GBD) database. This analysis encompassed the examination of age-

standardized disability-adjusted life year rates (ASDR) across 204 countries and 

territories, frontier analysis based on the socio-demographic index (SDI), and the 

projection of future trends in disability-adjusted life years (DALYs) employing 

Bayesian Age-Period-Cohort (BAPC) models. Health inequalities were assessed using 

the slope index of inequality (SII) and concentration index. 

Subsequently, the NHANES database was utilized to analyze clinical characteristics 

associated with GC. Following data cleaning of the NHANES database, we employed 

propensity score matching (PSM) to extract samples. Subsequently, we conducted 

analyses using both conventional logistic regression and an array of 16 machine 

learning models.  

Disease and food-liking phenotypes association studies were conducted using the 

FinnGen R10, UK Biobank SAIGE, Helicobacter pylori infection (anti-Helicobacter 

pylori IgG levels), and food-liking databases, incorporating Mendelian Randomization 

Phenome-Wide Association Study (MR-PheWAS) methodologies to identify 

phenotypes potentially influencing GC risk. 

Further investigations explored the intricate relationships between blood markers, gut 

microbiota, and GC risk. This phase involved the analysis of various metabolites, 

immune cell populations, lipid profiles, inflammatory proteins, and microbiota through 

two-sample Mendelian Randomization (MR) techniques. 

The final phase of the study comprised transcriptomic and epigenetic analyses. The 

Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases 

were employed for differential gene expression analysis, while the eQTLGen dataset 

were utilized for expression Quantitative Trait Loci (QTL) analysis through Summary-

data-based Mendelian Randomization (SMR). The integration of Differentially 

Expressed Genes (DEGs) and QTLs facilitated the identification of potential protective 



and risk genes for GC. 

Detailed study design and data resources are as follows.  

The design and data resources of GBD analysis 

This investigation leveraged data from the Global Burden of Diseases, Injuries, and 

Risk Factors Study 2021 (GBD 2021), accessible via the Global Health Data Exchange 

(https://vizhub.healthdata.org/gbd-results). The GBD 2021 represents the most 

comprehensive epidemiological assessment to date, encompassing 371 diseases and 

injuries and 88 risk factors across global, regional, and national scales [1]. DALYs were 

employed as the primary metric of disease burden, amalgamating years of life lost due 

to premature mortality and years lived with disability. Age-standardized rates (ASRs) 

were calculated per 100,000 individuals, facilitating comparisons across 

demographically diverse populations. The SDI, a composite measure ranging from 0 

(least developed) to 1 (most developed), integrates income per capita, educational 

attainment, and fertility rates, enabling temporal and geographical comparisons. The 

204 countries and territories under study were stratified into five SDI quintiles: high, 

high-middle, middle, low-middle, and low. 

Our analysis focused on DALYs and DALY rates for individuals aged 20 and above 

from 1990 to 2021. Estimates are presented as both counts and ASRs per 100,000, 

accompanied by 95% Uncertainty Intervals (95% UIs). To quantify temporal trends, we 

calculated the Average Annual Percentage Change (AAPC) in GC ASDR from 1990 to 

2021 across genders and SDI quintiles using Joinpoint regression analysis, employing 

software provided by the US National Cancer Institute Surveillance Research Program 

[2]. 

To evaluate trends in health inequality related to GC from 1990 to 2021, we utilized 

two complementary measures: the SII and the concentration index [3-6]. The SII 

quantifies absolute inequality, representing the absolute difference in health outcomes 

between the theoretically most and least advantaged subgroups across the entire 

socioeconomic spectrum. A positive SII indicates higher ASDR in regions with higher 

SDI, while a negative SII suggests the converse. The concentration index measures 

relative inequality, quantifying the degree of socioeconomic-related inequality in health 



outcomes. The concentration index ranges from -1 to +1, with 0 representing perfect 

equality. A negative concentration index indicates a concentration of the health outcome 

among lower SDI regions, while a positive concentration index suggests concentration 

among higher SDI regions. Both indices were calculated for 1990 and 2021, enabling 

comparison of absolute and relative inequalities over the three-decade period. 

To elucidate the relationship between sociodemographic progress and GC burden, we 

conducted a frontier analysis using SDI to identify minimum achievable ASDR [7]. 

This analysis highlighted countries and territories at the vanguard of GC burden 

reduction relative to their SDI, with the "effective difference" indicating the gap 

between current and potentially achievable burdens. Decomposition analyses were 

performed to understand variations in GC DALYs between 1990 and 2021, considering 

factors such as age structure, population size, and epidemiologic changes [8]. Finally, 

we employed BAPC forecasting methodology to project rates and absolute numbers of 

DALYs, years lived with disability, and years of life lost up to 2030 [9]. This 

multifaceted analytical approach provides a comprehensive assessment of GC 

epidemiology, socioeconomic disparities, and future trends, offering valuable insights 

for health policy and resource allocation. 

The design and data resources of clinical characteristics related to the risk of GC 

The clinical characteristics analysis pertaining to GC risk is illustrated in Figure 1B. 

This comprehensive investigation utilized data from the NHANES database, spanning 

from 2005 to March 2020, encompassing a wide array of demographic, anthropometric, 

and hematological parameters from both GC patients and non-tumor individuals. 

The data preprocessing protocol for the NHANES dataset involved a meticulous, multi-

step approach to ensure optimal data quality. Initially, we conducted a thorough 

assessment of missing values for each clinical characteristic. Variables with 30% or 

more missing data were identified and subsequently excluded to enhance overall data 

integrity. We then evaluated the proportion of missing values for each sample, 

eliminating those with 30% or more absent data points. The resulting dataset comprised 

clinical characteristics with less than 30% missing values, thus optimizing the dataset 

for subsequent statistical analyses. 



To address the remaining missing values, we employed a sophisticated imputation 

technique: Multiple Imputation by Chained Equations (MICE). Specifically, we utilized 

random forest as the imputation algorithm, selected for its capacity to manage complex 

datasets with heterogeneous variable types and its robustness in capturing non-linear 

relationships between variables [10]. The imputation process was executed with 100 

iterations to ensure convergence on stable imputed values, and a single imputed dataset 

was generated to maintain analytical simplicity. Post-imputation, we conducted 

rigorous diagnostic checks to verify the plausibility of the imputed values and to ensure 

that the imputation process did not introduce unexpected patterns or distortions in the 

data distribution. This comprehensive approach allowed us to preserve the full sample 

size while minimizing potential biases associated with missing data, thereby enhancing 

the robustness and reliability of our subsequent statistical analyses. 

The final dataset comprised 31,894 participants (26 GC cases versus 31,868 controls), 

examining 51 distinct clinical characteristics. These variables encompassed various 

aspects of renal and liver function, metabolic parameters, electrolyte balance, 

hematological markers, and anthropometric measurements. 

Urinary markers included albumin and creatinine. Liver function was assessed through 

albumin, ALT (Alanine Aminotransferase), AST (Aspartate Aminotransferase), ALP 

(Alkaline Phosphatase), GGT (Gamma-Glutamyl Transferase), and TB (Total 

Bilirubin). Renal function was evaluated using BUN (Blood Urea Nitrogen) and 

creatinine. Metabolic parameters comprised glucose, glycohemoglobin (HbA1c), 

cholesterol, HDL (High-Density Lipoprotein), triglycerides, and uric acid. We also 

measured electrolytes and minerals including calcium, phosphorus, sodium, potassium, 

chloride, bicarbonate, and iron. Additional biochemical markers included LDH (Lactate 

Dehydrogenase), total protein, globulin, and osmolality. Anthropometric measurements 

consisted of weight, standing height, BMI (Body Mass Index), and waist circumference. 

A complete blood count (CBC) was performed, including WBC (White Blood Cell) 

count, RBC (Red Blood Cell) count, hemoglobin, hematocrit, MCV (Mean Corpuscular 

Volume), MCH (Mean Corpuscular Hemoglobin), MCHC (Mean Corpuscular 

Hemoglobin Concentration), RDW (Red Cell Distribution Width), platelet count, and 



MPV (Mean Platelet Volume). The differential white blood cell count included 

percentages and absolute counts (where applicable) of lymphocytes, monocytes, 

neutrophils, eosinophils, and basophils. 

Given the highly skewed distribution of our dataset (26 cases versus 31,868 controls), 

which could potentially introduce significant bias, we employed propensity score 

matching (PSM). This method matched cases to controls at a 1:10 ratio, based on gender 

and age, to mitigate potential confounding effects and enhance the validity of our 

analysis [11]. The matching process yielded a final sample of 286 subjects (26 cases vs. 

260 controls). The efficacy of PSM was evaluated using several statistical measures. 

Standardized Mean Difference (SMD): Assessed the covariate distribution difference 

between GC and healthy groups, with lower values indicating more effective matching. 

Variance ratio: Compared the variance of covariates between groups, with ratios 

between 0.5 and 2 considered acceptable, indicating satisfactory matching quality. 

Empirical cumulative distribution function (eCDF) mean and max: Evaluated the 

cumulative distribution functions of covariates, with lower values indicating a closer 

match in covariate distribution. To visually represent these distributions, we utilized 

density plot and bar graph, providing a graphical representation of the matching quality. 

These combined statistical and visual methods offered a comprehensive assessment of 

the PSM's efficacy in balancing covariate distribution between the GC and healthy 

groups. 

For intergroup comparisons of clinical characteristics, we employed Pearson's Chi-

squared test for categorical variables and the Wilcoxon rank-sum test for continuous 

variables. Multivariate logistic regression analysis was conducted to explore 

associations between 49 clinical characteristics (excluding age and gender) and GC risk, 

with statistical significance set at p<0.05. 

Despite the application of PSM, a slight imbalance persisted in the dataset. Recognizing 

the potential limitations of conventional logistic regression under these circumstances, 

we implemented a more comprehensive approach. We utilized an ensemble of 16 

machine learning models in conjunction with SHAP (SHapley Additive exPlanations) 

interpreters to elucidate the associations between clinical characteristics and GC risk. 



This approach facilitated robust feature selection and model optimization, potentially 

uncovering nuanced relationships that might be overlooked by traditional statistical 

methods. 

The machine learning models employed encompassed a diverse range of algorithms: 

Artificial Neural Network (ANN), AdaBoost, Naive Bayes, CatBoost, Decision Tree, 

Elastic Net, Gradient Boosting, K-Nearest Neighbors (KNN), Light Gradient Boosting 

Machine (LGBM), Lasso Regression, Linear Discriminant Analysis (LDA), Quadratic 

Discriminant Analysis (QDA), Random Forest, Ridge Regression, Support Vector 

Machine (SVM), and XGBoost. 

Prior to machine learning modeling, we standardized the clinical characteristics data 

(excluding age and gender) using z-score normalization [12, 13]. This process 

transformed each feature to have a mean of 0 and a standard deviation of 1, facilitating 

the comparison and analysis of variables with originally disparate scales and units. The 

standardized dataset was then partitioned into training and test sets at a 7:3 ratio. 

To address the residual class imbalance, we applied the Adaptive Synthetic (ADASYN) 

sampling technique to the training set. ADASYN, an advanced oversampling method, 

generates synthetic samples for the minority class (GC cases) adaptively based on their 

learning difficulty. This approach not only balances the dataset but also shifts the 

classification decision boundary towards more challenging examples, potentially 

enhancing the model's discriminative capacity between GC cases and controls [14]. For 

each of the 16 machine learning models, we employed the area under the receiver 

operating characteristic curve (AUC) in the test set to guide feature selection. The 

preliminary models were then fine-tuned using grid search with predefined parameter 

grids. Finally, we aggregated and visualized the top 3 parameter combinations yielding 

the highest AUC values in the test set for each machine learning model, providing a 

comprehensive overview of model performance and optimization. 

To elucidate the complex relationships between clinical characteristics and GC risk 

identified by our machine learning models, we employed SHAP [15]. SHAP, a game 

theory-based approach, assigns each feature an importance value for a particular 

prediction, providing a unified measure of feature importance that is consistent, locally 



accurate, and capable of handling feature interactions. 

Following the optimization of our 16 machine learning models, we applied SHAP to 

each model utilizing the AUC in the test set. We then generated a comprehensive 

summary plot of SHAP values for each variable across all models, offering a holistic 

view of feature importance. To further elucidate the relative significance of each 

variable, we assessed the ranking of SHAP values within individual models and the 

frequency of each variable's appearance across the ensemble of 16 models. These 

results were visualized using bar plots, providing an intuitive understanding of variable 

importance. 

To elucidate the specific performance of each machine learning model in predicting GC, 

we employed waterfall plots and decision plots for the test set. These visualizations 

offered detailed insights into how individual variables influenced the model's decision-

making process in classifying samples as either GC or control. Additionally, we utilized 

beeswarm plots on the test set to visualize the relationship between various clinical 

characteristics and GC risk. This approach allowed for clear observation of how 

dynamic changes in the values of each clinical characteristic corresponded to changes 

in GC risk. This comprehensive analysis using SHAP not only enhanced the 

interpretability of our complex machine learning models but also provided clinically 

relevant insights into the factors associated with GC risk.  

The design and data resources of MR analysis 

We employed MR-PheWAS analyses to elucidate potential causal relationships 

between various disease phenotypes, food preferences, blood markers, and microbiota 

composition with GC risk. Our two-sample MR framework was predicated on three 

fundamental assumptions (Figure 1C): (1) robust association between genetic 

instrumental variables (IVs) and exposure factors, (2) independence from confounding 

variables, and (3) influence on outcomes exclusively through exposure factors [16, 17].  

The MR analysis followed a rigorous, systematic approach to examine putative causal 

relationships between exposures and outcomes (Figure 1D). We initiated our 

investigation by extracting data from genome-wide association studies (GWAS). 

Eligible IVs were selected based on their significant association with exposure variables, 



employing variable thresholds for p-values across different exposure variables (detailed 

in Supplementary Table S14). We subsequently filtered IVs associated with the 

outcome using a threshold of 5×10⁻⁵. To refine our selection further, we implemented 

the Steiger test method, which evaluates the relative strength of each single nucleotide 

polymorphism's (SNP) association with the exposure versus the outcome [18]. This 

crucial step ensures that selected IVs primarily influence the exposure rather than 

directly affecting the outcome, thereby enhancing the validity of our MR analysis. To 

mitigate potential bias from linkage disequilibrium (LD), we removed SNPs in LD 

using variable thresholds for r² (ranging from 0.001 to 0.1) across distances spanning 

500 kb to 10,000 kb, tailored to each specific dataset [19]. We assessed the strength of 

each IV using F-statistics to address potential weak IV bias, considering an F statistic 

below 10 indicative of a weak IV [20, 21]. In our study, the reported F-statistics 

represent the mean of the aggregated F-statistics for individual SNPs, calculated using 

the formula: (beta/SE)², where beta denotes the estimate of the IV's effect size, and SE 

represents the standard error of this estimate [22]. Weak IVs were subsequently 

excluded from further analysis. After obtaining a set of independent, non-LD IVs, we 

extracted the corresponding SNPs for the outcome variable. We then applied the 

harmonize effect method to align effect sizes and alleles across exposure and outcome 

datasets, resulting in a refined set of effective IVs for our analysis. Utilizing these 

harmonized data, we conducted two-sample MR analyses to estimate the causal effect 

of exposures on outcomes. 

Statistical analyses were performed using the "Two Sample MR," "Mendelian 

Randomization," and "RadialMR" packages in R. The inverse-variance weighted (IVW) 

method, implemented under a random-effects model, served as our primary approach 

for estimating potential bidirectional causal relationships between exposure and 

outcome variables. This method assumes strict adherence to fundamental MR principles. 

We also employed MR-Egger, weighted median, and weighted mode methods as 

complementary approaches, with results provided for reference. 

To ensure robust causal inference, we conducted comprehensive sensitivity analyses 

[23, 24]. These analyses included assessments of heterogeneity and pleiotropy, with a 



p-value below 0.05 considered statistically significant. Heterogeneity was evaluated 

using both the IVW and MR-Egger methods, interpreted via Cochran's Q-test P-value 

[25]. Horizontal pleiotropy was assessed using the Egger intercept method [26]. Our 

MR analysis conclusions were primarily based on findings derived from the IVW 

method, with the caveat that results should not exhibit heterogeneity or pleiotropy to be 

considered valid. This rigorous methodological approach enhances the reliability and 

interpretability of our findings, providing valuable insights into the complex etiology 

of GC. 

This study utilized a comprehensive array of datasets to conduct robust MR analyses, 

with detailed information presented in Supplementary Table S14. The primary outcome 

dataset for GC was derived from the GWAS catalog, encompassing a diverse cohort of 

1,029 European ancestry cases and 475,087 controls, alongside 7,921 East Asian 

ancestry cases and 159,201 controls [27]. For exposure data, we leveraged several 

large-scale resources. The FinnGen R10 dataset provided phenotypic information on 

2,408 traits across 412,181 individuals. The UK Biobank SAIGE dataset contributed 

data on 783 phenotypes, with case numbers ranging from 51 to 77,977 and control 

numbers from 330,366 to 408,908. There are 4,683 samples in the data set of 

Helicobacter pylori infection (anti-Helicobacter pylori IgG levels) [28]. Food 

preferences were assessed using a 9-point scale for 139 specific foods in a cohort of 

161,625 individuals [29]. We also augmented our analysis with specialized datasets, 

including 1,400 blood metabolites and metabolite ratios (n = 8,299), 731 immune cell 

traits (n = 3,757), 179 lipid species (n = 7,174), and 91 inflammatory proteins (n = 

14,824) [30-33]. Gut microbiota data were sourced from two distinct cohorts: a Finnish 

cohort providing data on 471 distinct Genome Taxonomy Database taxa (n = 5,959), 

and a German cohort offering abundance and prevalence data for 430 microbiome traits 

(n = 8,956) [34, 35]. Our stringent methodological approach involved filtering SNPs 

associated with the outcome using a threshold of 5×10⁻⁵ across all datasets. For 

phenotypic data, IV selection generally employed a threshold of 5×10⁻⁶ for exposures, 

with LD analysis performed using an r² threshold of 0.001 within distances of 10,000 

kb. For other datasets, IV selection utilized a threshold of 1×10⁻⁵ for exposures, with 



LD analysis conducted using an r² threshold of 0.1 within distances of 500 kb. 

This meticulous data curation and analysis strategy ensures a comprehensive 

exploration of potential causal factors influencing GC risk, spanning a wide array of 

phenotypes, metabolites, immune markers, lipid species, inflammatory proteins, and 

microbial taxa. The incorporation of diverse populations and large sample sizes 

enhances the generalizability and statistical power of our findings, providing a solid 

foundation for identifying novel risk factors and potential therapeutic targets in GC 

etiology. 

The design and data resources of genes analysis 

In this comprehensive investigation, we elucidated the intricate relationship between 

genetic factors and GC risk. Candidate genes were stratified into three evidence levels, 

with level 1 representing the strongest and level 3 the weakest empirical support. We 

conducted an extensive bioinformatics analysis utilizing data from TCGA and GTEx 

databases [36, 37]. The initial cohort comprised 623 samples (413 GC cases and 210 

controls), with gene expression quantified as raw count data. Following stringent 

quality control measures, including the exclusion of genes expressed in less than 50% 

of samples and logarithmic transformation of counts per million (CPM) normalized 

data, we performed Principal Component Analysis (PCA) for sample assessment 

(Figure 1E). This rigorous process led to the identification and subsequent removal of 

two outlier control samples, yielding a final dataset of 621 samples (413 cases and 208 

controls) (Figure 1F). 

Differential gene expression analysis was executed using the "DESeq2" R package, a 

robust tool optimized for count-based RNA-sequencing data [38]. Our analytical 

pipeline encompassed normalization, dispersion estimation, and statistical inference via 

the Wald test. Employing a significance threshold of p<0.05, we identified 15,369 

DEGs between GC tissues and healthy controls (evidence level 3). To elucidate the 

expression patterns of these DEGs, we generated a heatmap depicting the top 1000 

DEGs across all samples, providing a clear visual representation of gene expression 

disparities between GC tissues and control groups. 

To investigate the potential mediation of SNP effects on GC risk through gene 



expression, we employed SMR multi-tools [39, 40]. We leveraged blood expression 

quantitative trait loci (eQTL) summary statistics from the eQTLGen consortium, 

encompassing 31,684 individuals across 37 datasets, with 16,987 genes tested for cis-

eQTLs and 6,298 for trans-eQTLs [41]. Our analysis focused exclusively on cis-

regulatory elements, defined as SNPs within a 2-Mb window of the gene's 

transcriptional start and end sites. A two-step SMR analysis was conducted: first 

utilizing SNPs as instruments, blood gene expressions as exposure, and GC as the 

outcome. Candidate genes were identified based on meeting both SMR criteria (p < 

0.05) and demonstrating suggestive genome-wide significance (p < 1 × 10-5) in all 

eQTLs. We implemented a Heterogeneity in Dependent Instruments (HEIDI) test, with 

a threshold of p < 0.05, to identify and characterize this heterogeneity. Heterogeneity is 

not allowed in the result of this study. 

To synthesize our findings, we performed an intersection analysis of the DEGs 

identified through bioinformatics analysis and genes highlighted by SMR analysis. This 

integration was visually represented through a Venn diagram. This rigorous selection 

process yielded our set of candidate genes (evidence level 2). To visually represent our 

results, we developed a circular heatmap to provide a holistic view of gene expression 

patterns in GC compared to controls. These visualizations effectively demonstrate the 

differential expression of our candidate genes between GC and healthy tissues, as well 

as the intricate relationships among their expression levels and GC risk. 

To further refine our selection of robust candidate genes, we implemented a 

sophisticated colocalization analysis [42, 43]. This advanced statistical approach was 

employed to identify overlapping genetic variants potentially responsible for distinct 

traits, thereby enhancing our capacity to detect putative causal single nucleotide 

polymorphisms (SNPs). Specifically, we integrated genome-wide association study 

GWAS data with QTL data, facilitating a more nuanced understanding of the genetic 

architecture underlying GC susceptibility. This method evaluates the presence of a 

shared causal variant in a given genomic region for two traits of interest, namely gene 

expression and GC susceptibility. We utilized the "coloc" R package, a well-established 

tool in genetic epidemiology, to conduct this analysis [44, 45]. The package implements 



a Bayesian statistical framework to estimate the probability of colocalization between 

two genetic association signals. In our analysis, we applied stringent criteria for 

determining shared genetic effects between the two traits. Specifically, we employed a 

posterior probability of hypothesis 4 (PP.H4) greater than 0.5 as our threshold [46, 47]. 

The PP.H4 represents the probability that both traits are associated with the same causal 

variant in the region. This threshold ensures a high level of confidence in our identified 

colocalized signals, minimizing false positives while maintaining sensitivity to detect 

true shared genetic effects. Through this rigorous colocalization analysis, we identified 

candidate genes with the highest level of evidence (level 1). To visually represent the 

results of our colocalization analysis, we generated multiple graphical depictions. A 

volcano plot was constructed to illustrate the significance and magnitude of gene 

expression changes. An MA plot was created to delineate the relationship between mean 

expression levels and log-fold changes. We also employed the R package 

'locuscomparer' to generate colocalization plots [48]. In these plots, the lead SNP is 

prominently labeled, while other SNPs are color-coded based on their LD with the lead 

SNP, providing a visual representation of the genetic landscape associated with GC risk. 

All statistical analyses and data visualizations in this study were performed using R 

version 4.3.1 (R Core Team, 2023) and Python version 3.9 (Python Software 

Foundation, https://www.python.org/). 



  
Figure 1. Schematic overview of the study design and methodologies. (A) Flowchart of 
the overall research process. (B) Flowchart depicting the analysis of clinical 
characteristics associated with gastric cancer (GC) risk. (C) The three critical 
assumptions underlying Mendelian Randomization (MR) analysis. (D) Comprehensive 
workflow of the Mendelian Randomization analysis. (E) Principal Component Analysis 
(PCA) plot before the removal of outlier samples. (F) Principal Component Analysis 
(PCA) plot after the removal of outlier samples. 
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