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Abstract 

Background: Frozen shoulder (FS) is characterized by the thickening and fibrosis of the joint capsule, leading 
to joint contracture and a reduction in joint volume. The precise etiology responsible for these pathological 
changes remains elusive. Therefore, the primary aim of this study was to explore the potential involvement of 
pathogenic genes in FS and analyze their underlying roles in the disease progression. 
Methods: Differential expression analysis and weighted gene co-expression network analysis (WGCNA) 
were employed to investigate co-expressed genes potentially associated with FS. Gene Ontology and Kyoto 
Encyclopedia of Genes and Genomes analyses were conducted to elucidate the potential roles of these 
co-expressed genes. Subsequently, Mendelian randomization (MR) analysis was performed using expression 
quantitative trait loci datasets for the co-expressed genes, combined with summary statistics from the 
genome-wide association study of FS, aiming to identify key genes causally associated with FS. The identified key 
genes were further validated through reverse transcription-quantitative PCR (RT-qPCR). Additionally, a 
nomogram model and receiver operating characteristic (ROC) curves were established to assess the diagnostic 
value of the hub genes. Furthermore, the infiltration of immune cells was evaluated using the CIBERSORT 
algorithm and the relationship between key genes and immune-infiltrating cells was analyzed.  
Results: 295 overlapping co-expressed genes were identified by intersecting the differentially expressed genes 
with the hub genes obtained from associated modules identified through WGCNA. Utilizing MR analysis, four 
key genes, namely ADAMTS1, NR4A2, PARD6G and SMKR1, were found to exhibit positive causal 
relationships with FS, which were subsequently validated through RT-qPCR analysis. Moreover, the diagnostic 
value of these four key genes was demonstrated through the development of a nomogram model and the 
construction of ROC curves. Notably, a causal relationship between ADAMTS1 and immune cell infiltration in 
FS was observed.  
Conclusion: Our study suggested genetic predisposition to higher expression levels of ADAMTS1, NR4A2, 
PARD6G and SMKR1, was associated with an increased risk of FS. Further investigations elucidating the 
functional roles of these genes will enhance our understanding of the pathogenesis of FS and may facilitate the 
development of targeted treatment strategies. 

Keywords: frozen shoulder, differentially expressed genes, weighted gene co-expression network analysis, mendelian 
randomization, immune cell infiltration 

1. Introduction 
Frozen shoulder (FS), also referred to as adhesive 

capsulitis, is a prevalent shoulder disorder 
characterized by a gradual reduction in glenohumeral 
joint mobility accompanied by pain [1]. 

Pathologically, it disrupts typical collagen structures, 
leading to progressive fibrosis of connective tissues 
and thickening of the adjacent synovium. These 
fibrotic processes are accompanied by inflammation, 
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neovascularization, and new neural innervation [2, 3], 
resulting in a decrease in joint volume and an increase 
in the stiffness of the joint capsule. Although FS is 
self-limiting and often resolves spontaneously within 
1-2 years, studies indicate that 20%-50% of patients 
may continue to experience symptoms, including 
stiffness and pain [4, 5]. Prioritizing preventive 
measures is crucial for alleviating patient symptoms 
and reducing the socio-medical burden. Therefore, 
identifying new risk factors and interventions for FS 
through further research into its pathophysiology is 
imperative, aiming to discover reliable biomarkers for 
early detection and treatment of the condition. 

Identifying the expression of specific genes is 
crucial for comprehending the underlying 
micro-mechanisms of FS and discerning relevant 
biomarkers for disease diagnosis and treatment 
assessment. Weighted gene co-expression network 
analysis (WGCNA) stands as an unbiased systematic 
biological analysis method crafted to identify 
co-expressed gene modules, investigate the 
correlation between gene networks and phenotypes of 
interest, and pinpoint hub genes within these 
networks [6]. Furthermore, WGCNA possesses the 
capacity to screen for potential therapeutic targets or 
candidate biomarkers. However, the application of 
the WGCNA method for bioinformatics analysis in FS 
remains largely unexplored. Hence, this study aims to 
employ WGCNA to uncover hub genes, identify new 
biomarkers, and elucidate potential pathological 
mechanisms associated with FS. 

Mendelian randomization (MR) is a powerful 
tool for investigating potential causal relationships 
between exposures and outcomes by utilizing single 
nucleotide polymorphisms (SNPs) as instrumental 
variables (IVs) for the exposure [7]. Compared to 
traditional statistical methods used in association 
studies, MR effectively mitigates confounding factors 
and reverse causation, making it an increasingly 
popular approach for exploring etiological 
mechanisms [8, 9]. Expression quantitative trait loci 
(eQTLs) are genetic loci that influence gene 
expression levels, with many being SNPs. Specific 
SNPs associated with changes in gene expression play 
a crucial role in transcriptomics by facilitating the 
identification of genetic markers [10, 11]. These 
identified gene markers can reflect an individual's 
health status, providing novel insights into the 
underlying mechanisms of various diseases, 
including cardiovascular diseases, systemic lupus 
erythematosus, depression, inflammatory bowel 
disease, and osteoporosis [12-17]. This underscores 
the potential of eQTLs as valuable tools for 
investigating genes that are pleiotropically associated 
with complex traits. By employing MR analysis to 

assess the association between the eQTLs of identified 
key genes and the risk of FS, we can determine 
whether the expression of candidate genes selected 
through WGCNA has a causal effect on FS risk. This 
approach facilitates the discovery of novel hub genes 
and provides clarity regarding the control 
mechanisms underlying the pathogenesis of FS, 
ultimately aiding in the identification of new 
therapeutic targets for its treatment. 

In this study, we utilized the GSE140731 
RNA-seq dataset from the Gene Expression Omnibus 
(GEO) database to identify co-expressed genes by 
intersecting the differentially expressed genes (DEGs) 
with hub genes obtained from key modules identified 
through WGCNA. Subsequently, we conducted a MR 
study to examine the causal effects of eQTLs, derived 
from the co-expressed genes, on the risk of FS using 
data from genome-wide association studies. To 
validate our findings, we further analyzed the 
expression of these genes in clinical samples. The 
diagnostic value of the identified key genes was 
evaluated using nomogram models and Receiver 
Operating Characteristic (ROC) analysis. Finally, we 
employed CIBERSORT software to analyze 
discrepancies in immune cell infiltration and to 
explore the interactions between the key genes and 
infiltrating immune cells. 

2. Materials and methods 
2.1 Downloading and Processing of Data 

Initially, we downloaded the GSE140731 
transcriptome data from the GEO database [18]. The 
GSE140731 database contained 22 control samples 
and 26 FS samples. Subsequently, the transcriptome 
data were transformed to log2 values and quantile 
normalized using the normalizeBetweenArrays 
function from the "limma" package in R (version 4.2.2; 
https://www.r-project.org/) [19]. Differentially 
expressed genes (DEGs) were identified based on an 
adjusted p-value (adj.P.Val) < 0.05 and |log fold 
change (logFC)| ≥ 1. The "ggplot2" package in R was 
employed to create volcano plots and heatmaps for 
the statistical analysis of expression levels. 

2.2 WGCNA 

WGCNA is a method utilized to construct gene 
co-expression networks and to investigate the 
relationships between phenotypes and gene 
expression levels. In this study, we employed the 
"WGCNA" package to construct a co-expression 
network [6] and identify significant modules using 
the FS transcriptome data dataset, GSE140731. Briefly, 
the weighted adjacency matrix was constructed using 
the soft-thresholding power (β) of 10 to attain 
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scale-free topology. This adjacency matrix was then 
transformed into a topologically overlapping matrix 
and subsequently into a dissimilarity matrix. The 
dissimilarity matrix was used to perform hierarchical 
clustering of the genes, which were assigned to 
different modules. Modules were identified using 
dynamic tree cutting, with a minimum module size 
set at 50 genes. To quantify the co-expression 
similarity of the entire modules, we calculated their 
eigengenes and clustered them based on correlation. 
A correlation of 75% (distance threshold of 0.25) was 
used to merge similar modules. The module 
eigengenes were then correlated with FS, and 
associations with a p-value of less than 0.05 were 
considered statistically significant. Genes 
corresponding to significantly correlated modules 
and exhibiting significant differential expression 
between FS and control samples were selected for 
further analysis. 

2.3 Screening of co-expressed genes and 
GO/KEGG analysis 

 Genes identified from the intersection of DEGs 
and WGCNA analysis were considered relevant 
co-expressed genes associated with fibromyalgia 
syndrome (FS). To further investigate the functional 
roles of these co-expressed genes, functional 
enrichment analysis was performed. Gene Ontology 
(GO) provides a widely used framework for 
annotating genes based on their functions, 
categorizing them into three main aspects: molecular 
function (MF), biological process (BP), and cellular 
component (CC). Additionally, Kyoto Encyclopedia 
of Genes and Genomes (KEGG) enrichment analysis 
serves as a valuable resource for studying gene 
functions and understanding high-level genomic 
information [20]. To elucidate the involvement of 
co-expressed in the pathogenesis of FS, we utilized the 
"ClusterProfiler" package in R to analyze the GO 
functions of these genes and their enrichment in 
KEGG pathways. Heatmaps were generated using the 
"pheatmap" package in R. In this analysis, the 
minimum gene set size was set to 1, and the 
maximum was capped at 5,000. A p-value of less than 
0.05 was considered indicative of significantly 
enriched terms. 

2.4 MR analysis 
MR analysis employs genome-wide significant 

SNPs as IVs to investigate the causal effects of a 
specific exposure on an outcome. This analytical 
approach has been extensively utilized to elucidate 
the genetic etiology of complex diseases by 
integrating quantitative trait loci data [21]. The eQTLs 
data were obtained from genome-wide association 

study (GWAS) data (https://gwas.mrcieu.ac.uk/). To 
select eQTLs, we applied the following criteria: (1) 
eQTLs exhibited genome-wide significant 
associations (p < 5E-08), (2) the assumption of 
independence was met by ensuring linkage 
disequilibrium (LD) clumping with an r² threshold of 
less than 0.001, and (3) eQTLs were not considered 
weak IVs, having F-statistics greater than 10. In total, 
SNPs for 510 genes were included in the analysis. 
GWAS data specific to FS were obtained from the IEU 
OpenGWAS project (https://gwas.mrcieu.ac.uk/) 
[22]. All data utilized in this study were derived from 
European populations, including data for FS 
(ebi-a-GCST90000512), which included 15,184,371 
SNPs with a total sample size of 451,099. This study 
reanalyzed previously collected and publicly 
available data and therefore did not require 
additional ethical approval. 

The selection of appropriate IVs is crucial for MR 
analysis, serving as the initial and paramount step in 
conducting this methodology. To satisfy Assumption 
1 (relevance assumption), SNPs must exhibit a strong 
association with the exposure of interest. In this study, 
we applied a genome-wide significance threshold of 
p < 5E-08 to filter the SNPs obtained from the eQTLs 
dataset as IVs. Assumption 2 (independence 
assumption) necessitates that the IVs are not 
associated with confounding factors, which can be 
assessed through the examination of pleiotropy in 
post-MR analysis. Lastly, Assumption 3 (exclusion 
assumption) mandates that the IVs do not have a 
direct association with the outcome under 
investigation.  

Then, the selected IVs underwent linkage 
disequilibrium clumping with an r2 < 0.001 within a 
10-megabase distance. Subsequently, the IVs were 
harmonized with the outcome variable. Then, 
according to the number of SNPs corresponding to 
each gene, different MR analysis strategies were used. 
The Wald ratio method was utilized when only one 
SNP was available for one gene, while the Inverse 
variance weighting (IVW) method, Egger's regression 
and Weighted median methods were employed for 
cases with two or more SNPs for another gene [23]. 
An odds ratio (OR) greater than 1 implies a risk factor 
and OR less than 1 implies a protective factor. Genes 
meeting the criteria of OR > 1 and logFC>1 or OR < 1 
and logFC<-1 criteria were considered to have a 
positive causal relationship with an increased risk of 
FS. The genes obtained from the intersecting between 
the OR and logFC were considered to be hub genes 
associated with FS. These procedures were 
implemented using the "TwoSampleMR" R package 
(github.com/MRCIEU/TwoSampleMR). 
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2.5 Clinical specimen collection 

This study received approval from the Ethics 
Committee of Zhongnan Hospital of Wuhan 
University (Approval Number: 2022023K). All 
procedures involving human participants in this 
study were conducted in accordance with the 
Helsinki Declaration (2013 revision). Patient Selection: 
Diagnosis of FS was established through a 
combination of medical history, physical examination, 
and arthroscopic findings. Patients with rotator cuff 
tears and unrestricted passive range of motion (ROM) 
were selected as the control group. All patients were 
required to be between 40 and 70 years of age, with FS 
patients requiring a symptom duration of less than 12 
months. Exclusion criteria for the FS group included 
calcific tendinitis of the shoulder, joint infection, joint 
instability, rheumatoid arthritis, glenohumeral joint 
arthritis, and prior shoulder joint surgery. Tissue 
Collection: Synovial tissue samples were obtained 
from 12 FS patients and 12 rotator cuff tear patients 
(Supplementary Table 1) using 3.5 mm biopsy forceps 
under arthroscopic visualization. The synovial tissue 
was immediately transferred to RNAlater solution 
(Thermo Fisher Scientific) post-surgery, refrigerated 
overnight at 4°C, and stored at -80°C. 

2.6 Histological analysis 

Six random synovial tissue sections were 
selected from both the FS patient group and the 
control group. These sections were immediately fixed 
in 10% formaldehyde for 16-24 hours. Subsequently, 
the samples were embedded in paraffin, cut into 4-6 
μm sections, and underwent hematoxylin and eosin 
(H&E) staining. Following deparaffinization and 
dehydration, the sections were stained with 
hematoxylin for 3-5 minutes, followed by three 
washes and clearance in 1% hydrochloric acid alcohol. 
Eosin staining was then performed for 2-3 minutes. 
The specimens were fixed in 10% formaldehyde, 
embedded in paraffin, and sagittally sectioned. 
Masson's trichrome staining was conducted to 
evaluate the extent of fibrosis. 

2.7 Reverse transcription-quantitative PCR 
(RT-qPCR) 

Total RNA was extracted from human shoulder 
joint synovial tissue using Trizol reagent according to 
the manufacturer's instructions. CDNA was 
synthesized using the cDNA Synthesis SuperMix Kit. 
RT-qPCR was performed using the SYBR Green PCR 
Master Mix and an ABI StepOne instrument (Applied 
Biosystems, Foster City, CA, USA). Each 20 µL 
reaction well contained 10 µL of 2× SYBR qPCR Mix, 1 
µL of forward primer, 1 µL of reverse primer, 6 µL of 

RNAse-free water, and 2 µL of cDNA template. The 
reaction conditions were as follows: 95°C for 10 
minutes, followed by 35 cycles of 95°C for 15 seconds, 
60°C for 20 seconds, and 72°C for 15 seconds. Relative 
gene expression levels were calculated using 2-ΔΔCT 
relative to glyceraldehyde-3-phosphate dehydro-
genase (GAPDH). All primers were designed using 
the Primer 5.0 program (Premier Biosoft International, 
Palo Alto, CA.) and were synthesized by Wuhan 
Saiweier Biotechnology Co., Ltd (Wuhan, China). The 
following is a list of the primer sequences: GAPDH 
(Forward: 5-GGAAGCTTGTCATCAATGGAAATC-3; 
Reverse: 5-TGATGACCCTTTTGGCTCCC-3). ADAM 
metallopeptidase with thrombospondin type 1 motif 1 
(ADAMTS1) (Forward: 5-TTGATAAATGTGGT 
GTTTGCGG-3; Reverse: 5-TCATGATATCCAGGTT 
TTGCACTAG-3); Nuclear receptor subfamily 4 group 
A member 2 (NR4A2) (Forward: 5-CAGTGG 
AGGGTAAACTCATCTTTTG-3; Reverse: 5-CCCGTG 
TCTCTCTGTGACCATAG-3); Par-6 family cell 
polarity regulator Gamma (PARD6G) (Forward: 
5-CTGGCTGTGAATGACGAGGT-3; Reverse: 5-GAC 
GGTGACGATGAGGTTGT-3); Small lysine rich 
protein 1 (SMKR1) (Forward: 5-AACCTCTA 
CTACATCGCCCACAAC-3; Reverse: 5-GTCACTT 
GCTTCTCCCTTTCTTTC-3). 

2.8 Nomogram model construction 
To predict the risk of FS, we developed a 

nomogram model utilizing the "rms" package. The 
performance of the nomogram model was evaluated 
by calculating Harrell's concordance index, which 
provided an assessment of its predictive power. 
Additionally, the diagnostic effectiveness of the 
candidate biomarkers was validated using the "ROC" 
package to construct a ROC curve. The accuracy of the 
model was indicated by the area under the ROC curve 
(AUC). AUC >0.7 was considered acceptable [24]. 

2.9 Immune infiltration analysis 
To estimate the relative proportions of immune 

cells infiltrating the included samples, we utilized the 
CIBERSORT algorithm, which provides estimates for 
22 different immune cell types [25]. Samples with a 
CIBERSORT output of p<0.05 were deemed accurate 
and included in the construction of the immune 
landscape, while samples with higher p-values were 
excluded. Subsequently, we constructed and 
visualized a correlation matrix of the different 
immune cell types using the "Corrplot" R package. 
The analysis of the Spearman relationship between 
characteristic diagnostic markers and immune 
infiltrating cells, as well as the visualization of the 
results, was conducted using the "ggstatsplot" and 
"ggplot2" packages. 
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2.10 Statistical analysis 
Experimental data analysis was conducted using 

Prism 9.0 software (GraphPad Software, La Jolla, CA, 
United States). The data were presented as mean 
values ± standard error of the mean (S.E.M.). The 
student's two-tailed t-test was employed for group 
comparisons where applicable. Statistical significance 
was defined as P < 0.05. 

3. Results 
3.1. Identification of DEGs 

The FS dataset, GSE140731, was sourced from 
the GEO database, and the DEGs were determined 
using the criteria of an adj.P.Val< 0.05 and |logFC | 
>1. As depicted in Figure 1A, a total of 549 DEGs were 
identified, including 374 upregulated and 175 
downregulated genes in the FS group compared to the 
control group. Among the upregulated genes, the top 
10 based on logFC were: POSTN (logFC = 4.54), 
CPXM1 (logFC = 4.24), ACAN (logFC = 4.23), FOSB 
(logFC = 3.72), ADAM12 (logFC = 3.61), MMP9 
(logFC = 3.33), CHI3L1 (logFC = 3.25), FOS (logFC = 
3.18), COL11A1 (logFC = 3.10), and COL1A1 (logFC = 
3.05). Conversely, the top 10 downregulated genes 
were: RPS4Y1 (logFC = -2.77), DDX3Y (logFC = -2.69), 
SCUBE1 (logFC = -2.43), CMKLR2 (logFC = -2.32), 
PCOLCE2 (logFC = -2.30), ENHO (logFC = -2.23), 
MYPN (logFC = -2.23), KDM5D (logFC = -2.22), 

CLIC5 (logFC = -2.16), and FGFBP2 (logFC = -2.10) 
(Figure 1B). 

3.2. Construction of WGCNA network and 
identification of FS-related module 

To investigate the potential association between 
gene modules and FS, we performed WGCNA using 
the dataset GSE140731. As illustrated in Figure 2A, a 
gene dendrogram was generated by clustering genes 
based on their dissimilarity, which was computed 
using consensus topological overlap. The colored 
rows indicate initial module assignments, revealing a 
total of 28 preliminary modules identified from the 
clustering of 16,418 genes. To identify modules 
significantly associated with FS, we summarized the 
expression profiles of each module as the eigenvector 
correlated with the first principal component of the 
expression matrix, referred to as the Module 
Eigengene (ME) [26]. As shown in Figure 2B, the 
module-trait analysis indicated that the pink, 
magenta, royal blue, and yellow modules exhibited 
correlations with the clinical state of FS (cor = 0.56, P = 
4e−05; cor = -0.75, P = 7e−10; cor = -0.67, P = 2e−07; cor 
= -0.35, P = 0.02, respectively). In contrast, other 
modules, including dark red, dark grey, dark 
turquoise, and ME grey, were not significantly 
correlated with FS diagnosis. Due to their positive 
association with FS, we selected the pink and magenta 
modules for further analysis.  

 

 
Figure 1. Differentially expressed genes analysis between FS and control groups in the GSE140731 dataset. (A) Volcano plot illustrating the differentially 
expressed genes according to the criteria of an adj.P.Val< 0.05 and |logFC| >1.0. Upregulated genes are represented in red, while downregulated genes are shown in blue. (B) 
Heatmap depicting the top 10 DEGs identified in the FS group of the GSE140731 dataset. 
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Figure 2. Identification of gene modules associated with FS using WGCNA. (A) Clustering dendrogram of genes, with dissimilarity measured based on topological 
overlap, alongside assigned module colors. A total of 28 co-expression modules were constructed and are represented in different colors as determined by the dynamic tree-cut 
method. (B) The heatmap displays the correlation and p-values between module eigengenes and FS status. The numbers in the heatmap represent the correlations of the 
respective module eigengenes with the clinical trait, with p-values shown in parentheses. The intensity of the color indicates the strength of the correlation, with associations 
having p < 0.05 considered significant. (C) Scatter plot illustrating gene significance for FS versus module membership in the magenta module. (D) Scatter plot illustrating gene 
significance for FS versus module membership in the pink module. 

 
Values of gene significance (GS) were calculated 

to assess the association of individual genes with FS. 
Additionally, Module Membership (MM) was defined 
as the correlation between the ME and the gene 
expression profile for each module. When GS and 
MM were found to be strongly correlated, the most 
important (central) elements in the modules were 
closely related to the trait and could be considered 
hub genes [26]. Scatter plots depicting the relationship 
between MM and GS for each gene in the modules are 
shown in Figures 2C and 2D. In the magenta module 
(472 genes), GS was highly correlated with MM (cor = 
0.68, p = 2.1e−126) (Figure 2C), while the pink module 
(924 genes) also exhibited a significant correlation (cor 
= 0.54, p = 4.4e−37) (Figure 2D). Therefore, a total of 

1,396 crucial genes (472 genes from the magenta 
module plus 924 genes from the pink module) were 
identified as hub genes significantly associated with 
FS. 

3.3 Functional enrichment analysis  
To identify co-expressed genes potentially 

involved in the development and progression of FS, 
we intersected the 549 DEGs with the 1396 hub genes 
derived from the magenta and pink modules 
identified in the WGCNA analysis. As shown in 
Figure 3A, 295 overlapping genes were identified. 
Further exploration of these overlapping genes was 
conducted through GO and KEGG analyses, with all 
GO terms and KEGG pathways listed in 
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Supplementary Table S2 and S3. The top five 
categories for GO terms were presented in Figure 3B. 
In this analysis, the "Count" indicated the number of 
co-expressed genes enriched in each pathway, while 
the "GeneRatio" represented the ratio of enriched 
co-expressed genes to background genes. The size of 
each bubble corresponds to the number of genes 
enriched for each specific GO term, with redder colors 
indicating smaller p-values. Specifically, GO 
Biological Process (BP) analysis revealed that the 
co-expressed genes were predominantly enriched in 
extracellular matrix organization, extracellular 
structure organization, and external encapsulating 
structure organization. GO Cellular Component (CC) 
analysis indicated that these genes were involved in 
the collagen-containing extracellular matrix, 
endoplasmic reticulum lumen, and basement 
membrane. Additionally, GO Molecular Function 
(MF) analysis highlighted their associations with 
extracellular matrix structural constituents, 
metallopeptidase activity, and metalloendopeptidase 
activity. The top 10 pathways from the KEGG 
enrichment analysis were presented in Figure 3C. The 
co-expressed genes were primarily enriched in the 
following pathways: cytokine-cytokine receptor 
interaction, protein digestion and absorption, tumor 
necrosis factor (TNF) signaling pathway, advanced 
glycation end-product (AGE)-receptor for advanced 
glycation end-products (RAGE) signaling pathway in 
diabetic complications, parathyroid hormone 
synthesis, secretion, and action, relaxin signaling 
pathway, extracellular matrix-receptor interaction, 
interleukin-17 (IL-17) signaling pathway, Toll-like 
receptor signaling pathway, and malaria. 

3.4 MR analysis 
The above analysis indicated that these 295 

co-expressed genes may be associated with FS. To 
evaluate the potential causal relationships between 
gene expression and FS risk, we first screened eQTLs 
that affect the expression of the co-expressed genes 
from the eQTLs gene database. We then utilized SNPs 
associated with these eQTLs as instrumental variables 
and performed MR analysis. Specifically, among the 
295 co-expressed genes, 111 were excluded due to a 
lack of suitable SNPs, resulting in 510 SNPs screened 
for the remaining 184 genes. The selected SNPs 
exhibited F statistics exceeding 10 (Supplementary 
Table 4). Depending on the number of SNPs 
corresponding to each gene, different MR analysis 
strategies were employed. The Wald ratio method 
was used when only one SNP was available for a 
gene, while the inverse variance weighting (IVW) 
method, Egger's regression, and weighted median 
methods were employed for genes with two or more 
SNPs [2]. All MR analyses related to the 510 SNPs 
across 184 genes are presented in Supplementary 
Table 5. 

 An odds ratio (OR) greater than 1 indicates a 
risk factor, while an OR less than 1 indicates a 
protective factor. Genes meeting the criteria of OR > 1 
and logFC > 1, or OR < 1 and logFC < -1, were 
considered to have a positive causal relationship with 
an increased risk of FS. Consequently, four 
genes—NR4A2 (1 SNP), PARD6G (1 SNP), SMKR1 (1 
SNP), and ADAMTS1 (4 SNPs)—were identified 
(Table 1). The results from the Wald ratio analysis 
demonstrated that genetic liability associated with 

 
Figure 3. Functional enrichment analysis of co-expressed genes. (A) A Venn diagram illustrating the identification of 295 overlapping co-expressed genes. (B) Bubble 
plot depicting Gene Ontology (GO) enrichment analysis, which includes the top five categories for biological processes (BP), molecular functions (MF), and cellular components 
(CC). The "Count" indicates the number of co-expressed genes enriched in each pathway, while "GeneRatio" represents the ratio of enriched co-expressed genes to background 
genes. The X-axis denotes the Gene Ratio, and the Y-axis represents the p-values for the various GO terms. The size of each bubble corresponds to the number of genes 
enriched for each specific GO term, with redder colors indicating smaller p-values. (C) Bubble plot displaying the top 10 KEGG pathways enriched with co-expressed genes. 
"Count" indicates the number of co-expressed genes enriched in each pathway, and "GeneRatio" reflects the ratio of enriched genes to background genes. The X-axis represents 
the Gene Ratio, and the Y-axis shows the p-values for the KEGG pathways. The size of each bubble corresponds to the number of genes enriched for each specific GO term, with 
redder colors indicating smaller p-values. 
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higher expression levels of NR4A2, PARD6G, and 
SMKR1 was significantly linked to an increased risk of 
FS (p = 0.03, p = 0.02, and p = 0.01, respectively). 
Specifically, for each standard deviation increase in 
the expression of NR4A2, PARD6G, and SMKR1, the 
ORs and 95% confidence intervals (CIs) for FS were 
OR = 1.28 (95% CI: 1.02–1.61), OR = 1.27 (95% CI: 1.04–
1.54), and OR = 1.50 (95% CI: 1.12–2.02), respectively. 

 

Table 1. Results of causal effects of 4 co-expressed genes 
(exposure) on FS (outcome). 

Exposure  SNP Outcome Methods OR SE 95%CI P value 
NR4A2 1 Frozen 

shoulder 
Wald ratio 1.28 0.12 (1.02, 1.61) 0.03 

PARD6G 1 Frozen 
shoulder 

Wald ratio 1.27 0.10 (1.04, 1.54) 0.02 

SMKR1 1 Frozen 
shoulder 

Wald ratio 1.50 0.15 (1.12, 2.02) 0.01 

ADAMTS1 4 Frozen 
shoulder 

IVW 1.12 0.04 (1.02, 1.24) 0.02 
Weighted 
median 

1.15 0.04 (1.06, 1.24) 0.01 

MR Egger 1.22 0.06 (1.09,1.36) 0.07 

Abbreviations: SNPs, single nucleotide polymorphisms; OR, odds ratio; SE, 
standard error; CI, confidence interval. NR4A2, nuclear receptor subfamily 4 group 
A member 2; PARD6G, Par-6 family cell polarity regulator Gamma; SMKR1, small 
lysine rich protein 1; ADAMTS1, ADAM metallopeptidase with thrombospondin 
type 1 motif 1; IVW, inverse variance weighting.  

 
Regarding ADAMTS1 with 4 SNPs, the primary 

IVW result indicated that a genetic predisposition to 
higher expression levels of ADAMTS1 was associated 
with an increased risk of FS, yielding an OR of 1.12 
(95% CI: 1.02–1.24, p = 0.02). For a 1 standard 
deviation increment in ADAMTS1 expression, the OR 
was 1.12 (95% CI: 1.02–1.24). This association was 
consistent across the weighted median method (OR = 
1.15, 95% CI: 1.06–1.24, p = 0.01) and the MR-Egger 
method (OR = 1.22, 95% CI: 1.09–1.36, p = 0.07).  

Additionally, MR-Egger regression and IVW 
analysis were conducted to assess heterogeneity, 
revealing no significant heterogeneity in the MR 
analyses of ADAMTS1 for FS (Supplementary Table 
6). The MR-Egger intercept tests indicated no 
evidence of horizontal pleiotropy, as all p-values 
exceeded 0.05 (Supplementary Table 6). The scatter 
plot depicted the estimated impact of SNPs on 
ADAMTS1 expression and FS (Supplementary Figure 
1A), while the leave-one-out analysis confirmed that 
no outlier instrumental variables significantly 
influenced the overall results (Supplementary Figure 
1B). The funnel plot for the ADAMTS1-FS analysis 
further suggested no apparent horizontal pleiotropy 
(Supplementary Figure 1C). 

3.5 Experimental validation  
To ensure the robustness of our analyses, 

synovial tissue samples were obtained from 
individuals diagnosed with FS and rotator cuff tears. 
Histological examinations, including H&E staining 

and Masson's trichrome staining, were subsequently 
performed on these synovial tissue samples. The 
histological results revealed a significant increase in 
the number of collagen fibers and fibroblast cells 
within the synovial tissue of FS patients, with a denser 
arrangement of collagen fibers observed (Figure 4A, 
B). Additionally, RT-qPCR was employed to assess 
the expression levels of key genes. Consistent with the 
above findings, our results demonstrated 
up-regulation of ADAMTS1, NR4A2, PARD6G, and 
SMKR1 in FS samples as compared to control samples 
(Figure 4C, D, E, F). 

3.5 Construction of nomogram model for FS 
risk prediction  

A nomogram model was constructed to predict 
the risk of FS. In the column line graph, each trait gene 
corresponds to a specific point, and the total points 
are obtained by summing the points of all trait genes. 
These total points correspond to different FS risk 
levels (Figure 5A). The calibration curves uncovered 
that the predicted probability of the constructed 
nomogram diagnostic model was almost identical to 
that of the ideal model (Figure 5B). Moreover, the 
DCA for the nomogram was also performed, showing 
that decision-making according to the nomogram 
model may be beneficial for the diagnosis of FS 
(Figure 5C). Additionally, ROC curves were 
calculated for the hub genes to evaluate their 
diagnostic effectiveness. The AUC of our nomogram 
exhibited good discriminative ability between FS 
cases and controls. Specifically, the AUC values for 
ADAMTS1, NR4A2, PARD6G, and SMKR1 were 
0.886, 0.766, 0.930, and 0.830, respectively (Figure 5D). 

3.6 Assessment of immune cell infiltration in 
FS 

In the initial analysis, a bar chart was employed 
to illustrate the distribution of 22 types of immune 
cells within each sample (Figure 6A). Each bar in the 
chart represented the estimated proportion of distinct 
immune cells present in the sample, with the 
cumulative proportion summing to 1. Notably, color 
coding was utilized to denote the relative abundance 
of different immune cell types across samples. 
Subsequently, a heatmap was utilized to depict 
disparities in immune cell abundance between FS 
samples and control samples. The findings revealed 
that mast cells in a resting state, macrophages of the 
M2 subtype, resting memory CD4+ T cells, and naïve 
B cells constituted the primary infiltrating immune 
cell populations. Additionally, the violin plot 
provided insight into the relative infiltration levels of 
various immune cell subtypes between the FS and 
control groups (Figure 6B). Specifically, regulatory T 
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cells (Tregs) and M1 macrophages exhibited 
heightened infiltration levels in the FS group 
compared to the control group. Conversely, the FS 
group demonstrated diminished infiltration levels of 
resting memory CD4+ T cells, activated natural killer 
cells, monocytes, and resting dendritic cells relative to 
the control group. Lastly, the results unveiled a 
significant correlation between plasma cell and 
ADAMTS1 expression in FS (Figure 6C) (p < 0.05). 

4. Discussion 
FS is a condition characterized by the 

development of a thickened, fibrotic joint capsule, 
joint contraction, and reduced intra-articular volume 
[27]. The pathogenesis of FS remains elusive, with its 
pathological features being multifaceted and 
including inflammation, pro-inflammatory cytokines, 
neural and vascular alterations, fibrosis, as well as 
metabolic and immunological factors [28]. Recent 
research has shed new light on the complex interplay 
between the brain and the immune system in FS 
pathology [29], suggesting that central nervous 
system (CNS) dysfunction may play a significant role 
in the development and persistence of this condition. 
Longitudinal studies have explored the clinical course 
and correlations in FS, highlighting the influence of 
autonomic function, central pain processing, and 
psychological variables on patient outcomes [30-32]. 

These findings underscored the multifaceted nature of 
FS as a "mystery syndrome" [28] and suggested that a 
comprehensive approach to understanding its 
pathogenesis and management is necessary. 

While adhesive capsulitis is most commonly 
associated with the shoulder, reports of adhesive 
capsulitis affecting other joints, such as the ankle [33], 
demonstrated the potential for shared pathogenic 
mechanisms across different anatomical sites. 
Additionally, certain patient populations, such as 
those with diabetes, may be at increased risk for 
developing shoulder dysfunction due to a complex 
interplay of metabolic, immunologic, and 
neuro-vascular factors [34]. Recently, various 
treatments for FS have been developed, including 
physiotherapy, pharmacological interventions, 
corticosteroid injections, and surgical options [1, 35, 
36]. However, these treatments primarily aim to 
alleviate symptoms, particularly pain relief and the 
restoration of mobility and function. In light of the 
emerging evidence for CNS involvement in FS, there 
is growing interest in exploring the potential benefits 
of adding CNS-focused interventions to standard 
manual therapy and stretching programs [37, 38]. As 
our understanding of the complex pathogenesis of FS 
continues to evolve, there is a compelling need to 
explore the underlying mechanisms in greater depth. 
By leveraging advancements in high-throughput 

 
Figure 4. Aggravated fibrosis and RT-qPCR analysis and in the synovial tissues of FS. (A) H&E staining in the FS group and control group, scale bar = 100 μm, n = 12 
in the FS group; n = 12 in the control group. (B) Masson Trichrome staining in the FS group and control group, scale bar = 100 μm, n = 6 in the FS group; n = 6 in the control 
group. (C–F) RT-qPCR validated the mRNA expression levels of genes. CN, control; FS, frozen shoulder. **p< 0.01, ***p< 0.005, ****p< 0.001 vs. control group.  
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microarray technology and bioinformatics methods, 
potential core genes that play a significant role in the 
pathological processes of FS could be identified. 
Integration of these molecular insights with clinical 
and neurophysiological findings may pave the way 
for the development of more targeted and effective 
diagnostic and therapeutic strategies for this 
challenging condition. 

Diagnostic biomarkers are developed to identify 
patients with pathological changes. Currently, 
researchers are focused on validating biomarkers 
associated with FS. A recent study utilized a machine 
learning approach to identify central genes in FS, 
pinpointing MMP9, FOS, SOCS3, and EGF as 
potential targets [23]. In a previous study, Qiao et al. 
identified Myh3 and Srsf1 as key regulatory proteins 
involved in the development of FS [36]. However, to 
date, there has been no comprehensive validation or 
assessment of the diagnostic efficacy of these 
candidate biomarkers using mathematical modeling. 

MR, as a genetic epidemiological method, can 
overcome the limitations associated with traditional 
observational studies. In this study, we utilized the 
publicly available dataset GSE140731, which is linked 
to FS, to conduct an innovative combined analysis 
integrating DEGs and WGCNA. This integrated 
approach facilitated the identification of co-expressed 
genes associated with FS and elucidated their 
functional roles. Subsequently, we innovatively 
integrated the eQTLs of these co-expressed genes with 
GWAS data related to FS, leading to the identification 
and experimental validation of four genes implicated 
in the onset and progression of FS: ADAMTS1, 
NR4A2, PARD6G, and SMKR1. Finally, we assessed 
the diagnostic utility of these four core genes and 
investigated their association with immune 
infiltration. To the best of our knowledge, this study 
was the first to employ such a multifaceted approach 
in identifying biomarkers for FS. 

 

 
Figure 5. Development of the diagnostic nomogram model and efficacy assessment. (A) The nomogram was constructed based on the hub genes. (B) The calibration 
curve of nomogram model prediction in FS. The dash line is marked as “Ideal”, which represents the standard curve, and is on behalf of the perfect prediction of the ideal model. 
The dotted line is marked as “Apparent”, which indicates the uncalibrated prediction curve, while the solid line is marked as “Bias-corrected” and represents the calibrated 
prediction curve. (C) DCA for the nomogram model. The black line is marked as “None”, which stands for the net benefit of the assumption that no patients have FS. The grey 
line is marked as “All”, which indicates the net benefit of the assumption that all patients have FS, and the red line is marked as “Model” and represents the net benefit of the 
assumption that FS are identified according to the diagnostic value of predicted by the nomogram model. (D) ROC curves to assess the diagnostic efficacy of each hub gene. ROC 
receiver operating characteristic, DCA decision curve analysis, FS frozen shoulder. 
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Figure 6. The results of immune cell infiltration analysis. (A) The composition of 22 types of infiltrating immune cells in each sample was shown in a bar chart. 
(B)Wilcoxon test was used to identify significantly different infiltrating immune cells in FS (red) and control (blue) tissues. (C) Significantly correlated hub genes and immune cells 
were screened by adjusted p-value < 0.05. 

 

In this investigation, a comprehensive 
bioinformatics methodology was employed to 
identify 295 co-expressed genes by intersecting the 
screened DEGs with key modules identified through 
WGCNA. Results from GO and KEGG enrichment 
analyses revealed that those co-expressed genes 
primarily participated in biological processes related 
to extracellular matrix organization, collagen 
metabolism, and endoplasmic reticulum function. 
Moreover, KEGG pathway analysis unveiled 
significant enrichment in pathways including 
cytokine-cytokine receptor interaction, TNF signaling, 
and AGE-RAGE signaling in diabetic complications. 
Noteworthy pathways such as relaxin signaling, 
ECM-receptor interaction, interleukin-17 (IL-17) 
signaling, and Toll-like receptor signaling were also 
prominently enriched. Previous studies by Yang et al. 
and Yano et al. had implicated interleukin-6 (IL6) and 
advanced glycation end-products (AGEs), 
respectively, in the fibrotic process of FS. Specifically, 
IL6 had been shown to promote fibrosis via the 

PI3K-Akt signaling pathway, while AGEs contributed 
to fibrosis through the activation of NF-kB signaling 
by binding to RAGE [39, 40]. Additionally, relaxin, a 
peptide hormone, had been identified as capable of 
inhibiting myofibroblast activation in inflammation 
and fibrosis by activating multiple signaling 
pathways [41]. Furthermore, research by Moeed et al. 
had indicated that IL-17 produced by T cell subsets 
within joint capsule tissue induced fibrosis and 
inflammation of fibroblasts by upregulating its 
signaling receptor expression [42]. Consistent with 
those findings, previous pathological studies had 
characterized FS histologically by the presence of type 
I and type III collagen matrices populated with 
fibroblasts and myofibroblasts [43-45]. Clinically, the 
symptoms of pain and restricted range of motion 
observed in patients were largely attributed to chronic 
inflammation and fibrosis of the joint capsule, 
aligning with the results of our investigation. 

ADAMTS1, a protein with multifaceted 
biological functions, plays a crucial role in various 
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processes such as extracellular matrix organization, 
angiogenesis, and inflammation regulation [46, 47]. 
Notably, ADAMTS1 is involved in the regulation of 
extracellular matrix organization and fibrosis, making 
it a key player in these mechanisms [48]. Studies 
conducted on mouse cardiac tissue have 
demonstrated that the cysteine-rich acidic secreted 
protein leads to age-dependent collagen deposition in 
the heart by upregulating ADAMTS1 levels [49]. 
Moreover, increased expression of ADAMTS1 in rat 
kidney tissue has been associated with fibrosis and 
inflammation [50]. In mouse muscle tissue, silencing 
ADAMTS1 expression has shown promise in 
alleviating muscle fibrosis [51]. In addition to its role 
in fibrosis, ADAMTS1 has been implicated in the 
regulation of angiogenesis. Research on mouse kidney 
tissue has suggested that ADAMTS1 may promote the 
formation of unstable blood vessels by modulating 
the signaling mediated by VEGFR2 [52]. Similarly, in 
mouse skin tissue, ADAMTS1 has been found to 
participate in pathological angiogenesis induced by 
VEGF-A/VPF [53]. However, the involvement of the 
ADAMTS1 gene in FS remains unexplored. Our 
findings indicate a significant causal relationship 
between elevated ADAMTS1 expression and the 
occurrence of FS. We postulate that under 
pathological conditions, ADAMTS1 promotes the 
development of FS by inducing local collagen 
deposition, fibrosis, and angiogenesis. 

NR4A2, belonging to the nuclear receptor 
superfamily, acted as a ligand-activated transcription 
factor with diverse roles in various organs [54]. 
Studies had indicated the regulatory effects of NR4A2 
on pro-inflammatory cytokine expression and fibrosis 
in different diseases [54, 55]. For instance, in a mouse 
model of multiple sclerosis, abnormal NR4A2 
expression enhanced the promoter activity of 
interleukin-17 and interferon-gamma genes, resulting 
in excessive cytokine production [56]. Similarly, 
aberrant NR4A2 expression in mouse liver tissue 
induced inflammation and fibrosis [54]. However, 
there was a scarcity of studies investigating the 
association between NR4A2 and FS. In our MR 
analysis, we observed a causal relationship between 
increased NR4A2 expression and the occurrence of FS. 
We hypothesized that elevated NR4A2 expression 
might trigger FS by promoting the expression of 
inflammatory factors and fibrosis. The PAR6 protein 
family, initially identified in Caenorhabditis elegans 
and fruit flies, was known to be essential for 
establishing cell polarity [57]. In mammals, there were 
three homologs of Par6: PARD6A, PARD6B, and 
PARD6G. Notably, specific gene knockout studies 
had suggested that PARD6G was involved in 
regulating osteoblast proliferation and differentiation, 

thereby implicating it in cell proliferation [58]. 
However, the functions of PARD6G and SMKR1 
genes in the context of FS remained largely 
unexplored. Further research was needed to elucidate 
the precise roles of these two genes in the 
pathogenesis of FS. 

FS has been reported to begin as an immune 
response that exacerbates inflammatory synovitis, 
subsequently leading to capsular fibrosis [59]. Hand et 
al. documented the presence of immune cells, 
including B-lymphocytes, T-lymphocytes, macro-
phages, and mast cells in the synovium and capsule of 
the rotator interval, indicating an immune response in 
FS [59]. However, a comprehensive assessment of 
immune cell infiltration in FS using CIBERSORT has 
not been reported. Our results indicate that M1 
macrophages and Tregs were highly infiltrated in the 
synovial tissues of FS patients. During the early stages 
of wound repair, unstimulated M0 macrophages were 
converted to M1 macrophages, producing cytokines 
such as TNF-α and nitric oxide, which amplified the 
inflammatory response and promoted myofibroblast 
proliferation and fibroblast recruitment [60]. 
Therefore, we speculated that M1 macrophages 
played a role in promoting chronic inflammatory 
responses and accelerating fibrosis in the early stages 
of FS. Another study reported that Tregs could secrete 
the pro-fibrotic cytokine transforming growth factor 
beta [61]. Boveda-Ruiz et al. found that Tregs played a 
role in promoting pulmonary fibrosis in a mouse 
model but exerted a suppressive role in the late stage 
of the disease [62], Similar complex functions of Tregs 
during fibrosis progression have been observed in 
other studies [63]. Consequently, we hypothesize that 
the role of Tregs might be involved throughout the 
development of FS, exerting either protective or 
pathogenic effects at different stages of the disease. 

Additionally, we investigated the critical role of 
immune-infiltrating cells and core genes in the context 
of FS. Our findings revealed a significant positive 
correlation between ADAMTS1 and plasma cells (r = 
0.39, p = 0.0057). Previous research has highlighted 
the essential function of plasma cells as key effectors 
in the progression of fibrosis, particularly in mouse 
lung tissue [60]. Therefore, these results provide 
further evidence supporting the potential influence of 
ADAMTS1 on fibrosis advancement in FS through the 
regulation of plasma cell functions. This finding 
emphasizes the importance of immune-infiltrating 
cells and their interactions with core genes in the 
pathogenesis of FS. 

However, this study had several limitations that 
must be acknowledged. Firstly, the GSE140731 dataset 
utilized in this research was obtained from a public 
database, and there was a lack of clear definition 
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regarding the staging of FS patients. This ambiguity in 
patient staging might potentially impact the 
interpretation of the obtained results. Furthermore, 
the precise molecular mechanisms underlying the 
pathogenesis of FS, specifically concerning the 
upregulation of ADAMTS1, NR4A2, PARD6G and 
SMKR1, necessitated further investigation through 
future animal and cell experiments. These additional 
studies would contribute to a more comprehensive 
understanding of the role and function of these genes 
in FS pathology. 

5. Conclusions 
In this study, a comprehensive and innovative 

approach was undertaken by incorporating a 
combination of WGCNA, MR analysis, and clinical 
specimen validation. By employing these advanced 
methodologies, we effectively identified ADAMTS1, 
NR4A2, PARD6G, and SMKR1 as potential diagnostic 
biomarkers for FS. This novel finding not only 
enhances our understanding of the diagnostic 
landscape of FS but also offers valuable insights into 
the underlying molecular mechanisms contributing to 
its pathogenesis. 
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