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Abstract 

Background: Breast cancer (BC) is the most common cancer among women globally and poses the 
leading health threat to women worldwide, with persistently high incidence rates. Mitophagy is a selective 
autophagy process that specifically targets mitochondria within the cell, maintaining cellular energy 
balance and metabolic health by identifying and degrading damaged mitochondria. Although there is an 
understanding of the relationship between mitophagy and cancer, the specific mechanisms remain unclear 
due to the complexity and diversity of mitophagy, suggesting that it could be an effective and more 
targeted therapeutic approach for BC. 
Methods: In this study, we meticulously examined the BC expression and clinical pathology data from 
The Cancer Genome Atlas (TCGA) to assess the expression profiles, copy number variations (CNV), and 
to investigate the correlation, function, and prognostic impact of 34 mitophagy-related genes (MRGs). 
Differentially expressed genes (DEGs) were identified based on group classification. Lasso and Cox 
regression were used to determine prognostic genes for constructing a nomogram. Single-cell analysis 
mapped the distribution of these genes in BC cells. Additionally, the association between gene-derived 
risk scores and factors such as immune infiltration, tumor mutational burden (TMB), cancer stem cell 
(CSC) index, and drug responses was studied. In vitro experiments were conducted to confirm the 
analyses. 
Results: We included 34 MRGs and subsequently generated a risk score for 7 genes, including RPLP2, 
PCDHGA2, PRKAA2, CLIC6, FLT3, CHI3L1, and IYD. It was found that the low-risk group had better 
overall survival (OS) in BC, higher immune scores, but lower tumor mutational burden (TMB) and cancer 
stem cell (CSC) index, as well as lower IC50 values for commonly used drugs. To enhance clinical 
applicability, age and staging were incorporated into the risk score, and a more comprehensive 
nomogram was constructed to predict OS. This nomogram was validated and showed good predictive 
performance, with area under the curve (AUC) values for 1-year, 3-year, and 5-year OS of 0.895, 0.765, 
and 0.728, respectively. 
Conclusion: Our findings underscore the profound impact of prognostic genes on the immune response 
and prognostic outcomes in BC, indicating that they can provide new avenues for personalized BC 
treatment and potentially improve clinical outcomes. 
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Introduction 
Breast cancer, the leading health threat to 

women worldwide, maintains a high incidence rate 
with the unfortunate statistic that one in eight women 

is affected, making it the primary cause of 
cancer-related deaths among females(1,2). The 
essence of the disease lies in the uncontrolled 
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proliferation and growth of aberrant cells within the 
mammary tissue, which exhibit a complex and 
mutable nature. At the molecular level, breast cancer, 
particularly BRCA, demonstrates a high degree of 
heterogeneity, closely linked to therapeutic 
resistance(3). Currently, pathological classification 
combined with the status of molecular markers such 
as estrogen receptor (ER), progesterone receptor (PR), 
and human epidermal growth factor receptor 2 
(HER2), delineates breast cancer into subtypes: 
luminal A, luminal B, basal-like, and HER2- 
enriched(4). Despite the current medical system's 
comprehensive treatment strategies, which include 
mastectomy, radiation therapy, chemotherapy, 
endocrine therapy, and targeted therapy, the 
prognosis for patients with advanced stages remains 
unfavorable(5). Hence, there is a necessity to explore 
new subtypes or biomarkers based on advancements 
in biological markers and mechanisms, to refine 
personalized treatment strategies and offer patients 
improved therapeutic outcomes and a greater hope 
for survival. 

Autophagy is a crucial cellular process that 
facilitates the degradation and recycling of damaged 
or unnecessary organelles and proteins within the 
cell(6), ensuring its health and functionality, 
particularly during nutrient deprivation or under 
stress(7). Mitophagy, a specialized form of autophagy, 
plays a pivotal role in maintaining energy balance and 
metabolic health by selectively targeting and 
degrading damaged mitochondria(8,9). This process 
begins with the recognition of dysfunctional 
mitochondria, which are then sequestered within 
autophagosomes. These vesicles merge with 
lysosomes to form autolysosomes, where lysosomal 
enzymes break down the mitochondrial components. 
Mitophagy not only removes impaired mitochondria 
but also recycles certain elements, which is essential 
for cellular well-being(10,11). Disruptions in this 
process are linked to a spectrum of diseases, including 
cancer and neurodegenerative conditions(12–14). The 
regulation of mitophagy is governed by various 
signaling pathways and proteins, such as 
AMP-activated protein kinase (AMPK), mechanistic 
target of rapamycin (mTOR), and Unc-51-like 
autophagy-activating kinase 1 (ULK1)(15–17). A 
thorough understanding of this regulatory 
mechanism could pave the way for innovative 
therapeutic strategies for diseases associated with 
mitochondrial dysfunction and cancer.  

Current studies have shown that mitophagy is 
related to the occurrence and development of 
tumors(18,19). In breast cancer cells, mitophagy can 
be impaired by factors such as oxidative stress and 
metabolic disruptions, which may result in cellular 

dysfunction and could potentially promote tumor 
development(20). The activation of mitophagy could 
be beneficial in clearing damaged mitochondria, thus 
reducing the viability and proliferation of tumor 
cells(21). Consequently, agents that activate or 
enhance mitophagy might present a new therapeutic 
strategy for breast cancer. For instance, research is 
exploring the potential of mitophagy inducers in 
treatment(22). The relationship between mitophagy 
and cancer, while recognized, remains intricate and 
enigmatic due to the complexity and diversity of 
mitophagy's roles in different cancers, particularly 
BC.  

In this study, we downloaded the expression 
data and corresponding clinical information from 
breast cancer patients in The Cancer Genome Atlas 
(TCGA) database. We analyzed the expression 
profiles of mitophagy-related genes (MRGs) and 
categorized samples into two distinct mitophagy 
subtypes based on MRGs expression levels. 
Subsequently, we identified differentially expressed 
genes (DEGs) based on these two mitophagy genetic 
subtypes and stratified patients into three genetic 
subtypes. Utilizing these DEGs, we constructed and 
validated a prognostic risk model comprising seven 
genes, aiming to accurately predict the prognosis of 
BC. Additionally, we conducted a comprehensive 
analysis of their distribution in tissues, the immune 
microenvironment within breast cancer, and drug 
sensitivity to provide more comprehensive guidance 
for the treatment and prognosis of breast cancer. 

Methods 
Breast cancer data source and pre-processing 

The detailed process of this study is illustrated in 
Figure 1. We systematically conducted data collection 
and analysis. Initially, we utilized the authoritative 
Cancer Genome Atlas (TCGA) database 
(https://portal.gdc.cancer.gov/), from which we 
extracted the mRNA expression profiles and copy 
number variation (CNV) data of breast cancer (BC) 
samples, along with detailed clinical and pathological 
information. To ensure the breadth and 
representativeness of the data, we meticulously 
selected 1,102 cases from the TCGA database that had 
complete follow-up information and clinical 
pathological data. To further validate our research 
findings, we also selected 1,455 breast cancer samples 
with complete prognostic information from the 
METABRIC cohort within the cBioportal platform 
(http://www.cbioportal.org) as an independent 
validation set. This additional data enhances the 
reliability of our study. Furthermore, to delve into the 
gene expression characteristics of breast cancer, we 
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downloaded relevant gene expression data from the 
Gene Expression Omnibus (GEO) database 
(https://www.ncbi.nlm.nih.gov/geo/). 

Mitophagy-related genes CNVs, and consensus 
clustering analysis 

Based on a review of prior literature, we 
identified 34 mitophagy-related genes and 
summarized their details in Table S1(19,23–25). We 
visualized the positions of mitophagy-related genes 
on the 23 chromosomes using the R packages 
"maftools" and "RCircos." Subsequently, we 
performed consensus clustering analysis with these 

genes and employed the "ConsensusClusterPlus" R 
package to stratify the samples into two distinct 
mitophagy gene regulatory subtypes. To evaluate the 
overall survival (OS) of different subtypes, we 
conducted survival analysis using the R package 
"survival." Finally, we further analyzed the 
differentially expressed genes (DEGs) of these 
subtypes using the "Limma" R package. This 
integrated approach has facilitated the 
characterization of the molecular heterogeneity of 
breast cancer and its impact on patient prognosis and 
therapeutic strategies. 

 

 
Figure 1. Flow chart of the study design.    
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GSVA, PCA, and functional enrichment 
analysis 

In this study, we initially employed the Gene Set 
Variation Analysis (GSVA) approach to meticulously 
examine and compare the differences in biological 
processes between distinct mitophagy regulatory 
gene subtypes. This method is capable of revealing 
unique patterns of biological pathways and gene 
expression across subtypes, thereby deepening our 
understanding of the complexity of breast cancer. 
Subsequently, to evaluate the immune 
microenvironment of different mitophagy subtypes in 
breast cancer, we utilized the single-sample gene set 
enrichment analysis (ssGSEA) algorithm. This 
algorithm quantitatively assesses the enrichment of 
specific gene sets within each sample, aiding in our 
understanding of immune cell infiltration across 
different mitophagy subtypes and subsequently 
analyzing their potential impact on tumor progression 
and patient prognosis. Furthermore, to achieve a more 
accurate classification of breast cancer samples, we 
applied Principal Component Analysis (PCA). PCA is 
a powerful statistical tool that can reduce 
high-dimensional gene expression data into several 
principal components, which capture most of the 
variation in the data and are used for classification 
and comparison between samples. To further 
elucidate the biological functions of MRGs in breast 
cancer, we conducted Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis. These analyses provide detailed 
information on the biological processes and metabolic 
pathways in which genes are involved. Throughout 
the analysis, we made full use of multiple packages 
within the R language, including "GSEABase," 
"clusterProfiler," "GSVA," "limma," "org.Hs.e.g.db," 
and "enrichplot," among others. 

Construction of the mitophagy-related scoring 
system and prognostic risk model 

We initiated our study with univariate Cox 
regression to identify prognostic-relevant genes 
(PRGs) with P < 0.05. Using PRG expression, 
unsupervised clustering categorized samples into 
gene clusters, revealing OS differences. The LASSO 
model refined gene selection, identifying a prognostic 
gene subset. Multivariate stepwise Cox regression on 
these genes constructed a mitophagy-related scoring 
system. The formula for calculating each patient's risk 
score was: 

Risk score = (coefficient 1 × value 1) + (coefficient n × 
value n) 

Where value represents the z-score converted 
expression of selected genes. We used the "rms" R 

package to create a nomogram correlating risk scores 
with clinical features, enhancing our understanding of 
their combined prognostic impact. The AUC from the 
ROC curve assessed the model's discriminative 
ability, with values closer to 1 indicating greater 
predictive strength. Patients were divided into low- 
and high-risk groups based on the median risk score. 
The "dplyr" R package generated a Sankey diagram 
illustrating the progression from cluster analysis to 
risk stratification and survival outcomes. 

Single-cell distribution analysis  

Our analysis of gene distribution in breast cancer 
specimens from the scRNA-Seq dataset GSE176078 
involved the following steps: Firstly, we utilized the 
detailed cellular annotations from data contributors 
for precise cell identification in the initial sequencing, 
forming the basis for accurately discerning cell types 
within the dataset. Next, we applied t-SNE and 
UMAP techniques to visually depict the cellular 
clusters present. These methods dimensionality 
reduce high-dimensional gene expression data to 2D 
or 3D, facilitating intuitive observation of cluster 
distributions and boundaries. Following cluster 
identification, we used violin plots to analyze the 
expression distribution of prognostic genes. These 
plots, integrating boxplot and kernel density 
estimation features, illustrated gene expression 
medians, interquartile ranges, and overall distribution 
shapes, highlighting expression differences of 
prognostic genes across clusters and bolstering 
subsequent biological analyses. 

Tumor immune and cancer stem cell (CSC) 
index analysis  

We assessed tumor-infiltrating immune cells 
using the CIBERSORT algorithm, which estimates cell 
type proportions from gene expression data, 
providing insights into the TME's immune cell 
landscape, including T cells, B cells, NK cells, DCs, 
macrophages, and MDSCs. Using the "Estimate" R 
package, we calculated TME scores to evaluate 
stromal and immune cell infiltration levels, 
distinguishing between stromal and immune scores 
indicative of cellular content and infiltration degree, 
respectively. Patients were stratified by risk scores 
derived from mitophagy-related analyses into high- 
and low-risk groups, and TME score differences were 
compared to discern TME characteristic variations. 
Additionally, the correlation between risk scores and 
stemness scores, which measure tumor cell stemness 
and correlate with malignancy and relapse, was 
explored to understand the link between immune cell 
infiltration and tumor stemness. 
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Tumor mutation and drug sensitivity analysis  
In this study, we extracted somatic mutation 

data of breast cancer from the TCGA repository and 
utilized the "maftools" R package to convert it into the 
MAF format. We subsequently analyzed the mutation 
profiles of samples in both high- and low-risk cohorts 
and quantified their tumor mutational burden (TMB) 
scores. Further exploration was conducted to 
investigate the potential correlation between TMB 
scores and risk scores. Ultimately, using the 
"pRophetic" R package, we calculated the IC50 values 
of commonly used chemotherapeutic agents in the 
management of breast cancer to compare the 
therapeutic response to chemotherapy across different 
risk stratifications. 

RT-qPCR  
Utilizing the RNA fast 200 RNA Extraction kit 

from Fastagen Biotech (Shanghai, 220010), we isolated 
total RNA from both normal mammary epithelial cells 
(MCF-10A) and breast cancer (BC) cell lines, including 
HCC-1954, SUM 159, T-47D, and MDA-MB-231. 
Subsequently, cDNA synthesis was performed 
employing the StarScript III RT MasterMix provided 
by Genestar. The quantification of mRNA expression 
levels was achieved through the application of 
SYBR-Green assays, procured from Abclonal, and 
conducted on a Bio-Rad CFX-96 instrument 
(Hercules). The relative expression data were 
analyzed employing the comparative CT (cycle 
threshold) method, with GAPDH serving as the 
endogenous control to normalize the expression 
levels. A comprehensive list of the primers utilized in 
this research is detailed in Table S2. 

Statistical analysis  
We conducted all statistical analyses with R 

software, version 4.4.0, accessed through its official 
website (http://www.r-project.org). Significance was 
determined using a two-tailed P-value with a cutoff of 
less than 0.05. 

Results 
The MRGs landscape in breast cancer 

In this Comprehensive Study, We Integrated 34 
MRGs into the TCGA Breast Cancer Database Cohort. 
Initially, we employed a heatmap (Figure 2A) to 
visually contrast the expression differences of the 34 
genes between BC and normal tissues, highlighting 
the discordance in MRG expression between tumor 
and normal tissues. Subsequently, Figure 2B clearly 
delineated the specific chromosomal locations of these 
genes. Further, we investigated the CNV among these 

genes. Our analysis revealed a widespread presence 
of CNVs across all 34 mitophagy genes. Specifically, 
genes such as TOMM20, MTERFD1, SRC, 
MAP1LC3A, CSNK2A1, TOMM7, and MFN1 
exhibited extensive CNV gains, while PINK1, MFN2, 
UBB, MAP1LC3B, CSNK2A2, and others 
demonstrated CNV losses (as shown in Figure 2C and 
Table S3). Subsequently, we conducted a detailed 
analysis of mRNA expression differences of MRGs 
between tumor and normal tissues (Figure 2D). The 
results indicated that, with the exception of ATG12, 
HUWE1, MAP1LC3A, MFN1, TOMM20, TOMM70A, 
and UBA52, the remaining genes all showed 
significant differential expression. These findings 
strongly suggest that MRGs play an essential role in 
the onset of BC. Additionally, we observed that in 
tumor tissues, many highly expressed MRGs are 
associated with CNV gains, such as MTERFD1, SRC, 
and MAP1LC3A. However, exceptions were noted, 
including TOMM20, which did not show significant 
differences in expression between tumor and normal 
tissues. This suggests that while CNVs can influence 
the expression of MRGs, they are not the sole 
determining factor. 

Identification of mitophagy subgroup in breast 
cancer 

Initially, we conducted an in-depth correlation 
analysis for these 34 genes (Figure 3A). To explore the 
expression patterns of MRGs in BC patients, we 
applied a consensus clustering algorithm, 
meticulously classifying the samples based on the 
expression profiles of these 34 genes. The clustering 
results indicated that when employing the k-means 
clustering algorithm with k set to 2, the patient 
population could be distinctly divided into two 
separate clusters, demonstrating a high degree of 
stability in this classification (Figure 3B-C). 
Furthermore, we performed Kaplan-Meier survival 
analysis on these two MRG subgroups and observed 
that patients in the second group had relatively 
poorer prognosis. However, it is important to note 
that the P-value from the log-rank test was 0.67, 
indicating that the survival difference between the 
two groups was not statistically significant (Figure 
3D). To gain a more comprehensive understanding of 
the transcriptomic differences between these 
subgroups, we carried out principal component 
analysis (PCA). The results revealed that there indeed 
were significant differences in the transcriptomic 
profiles between the two subgroups (Figure 3E-F). 
Lastly, box plots and heatmap were used to compare 
the distribution of MRGs across different MRG 
subgroups in BC (Figure 3G and Figure S1). 
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Figure 2. The MRGs landscape in breast cancer. (A) Comparison of MRGs between tumor and normal group; (B) Chromosomal locations of these genes; (C) The 
frequency of CNV gain and loss in MRGs; (D) mRNA expression of MRGs between tumor and normal tissues (t-test, **** P < 0.0001; *** P < 0.001; ** P < 0.01; * P < 0.05). 
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Figure 3. Identification of mitophagy Subgroup in breast cancer. (A) Correlation analysis of MRGs; (B, C) A consensus matrix heat map defining two clusters (k=2); (D) 
Kaplan-Meier analysis of three subtypes of OS. (E, F) PCA analysis of two mitophagy clusters. (G) The gene expression level of two mitophagy clusters (t-test, **** P < 0.0001; 
*** P < 0.001; ** P < 0.01; * P < 0.05). 

 

Characteristics of the biological behavior in 
mitophagy subgroups 

GSVA analysis indicated significant statistical 
differences in the main biological processes enriched 
in the two subtypes (Figure 4A; Table S4). Cluster 1 

was significantly enriched in biological processes such 
as proteasome, base excision repair, spliceosome, 
polymerase, metabolism, ribosome, cardiac muscle 
contraction, Alzheimer’s disease, Huntington’s 
disease, Parkinson’s disease and oxidative 
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phosphorylation, while cluster 2 was primarily 
enriched in the sphingolipid metabolism, TGF beta 
signaling pathway, renal cell carcinoma, colorectal 
cancer, prostate cancer, endometrial cancer, type 2 
diabetes mellitus, phosphatidylinositol signaling 
system and inositol phosphate metabolism pathway. 
Furthermore, Figure 4B illustrated the infiltration 
levels of 22 immune cells across the two clusters. We 
found statistically significant differences in the 
infiltration of most immune cells between the two 
subgroups, with NK cells, T cells follicular helper, 
Tregs and CD8+ T cells infiltrating at a significantly 
higher rate in cluster 1 compared to cluster 2. 
However, cluster 2 exhibited greater immune cell 
infiltration, such as B cells naïve, CD4+ T cell memory 
resting, M2 macrophages and resting mast cells. 
Additionally, we identified 1013 mitophagy 

subtype-related DEGs (Table S5) and performed 
functional enrichment analysis (Figure 4C, D). GO 
analysis revealed that these MRG-related DEGs are 
involved in biological processes such as axon 
development, axon genesis, neuronal cell body 
channel activity, etc. KEGG pathway analysis 
indicated that these MRG-related DEGs are primarily 
associated with Pl3K-Akt signaling pathway, 
cGMP-PKG signaling pathway, protein digestion and 
absorption, estrogen signaling pathway, salivary 
secretion, mineral absorption and ABC transporters. 

Identification of gene subtypes in BC based on 
DEGs 

We performed univariate Cox regression 
analysis on 1013 DEGs to evaluate their prognostic 
value in BC. Utilizing a cutoff criterion of a P-value 

 
Figure 4. Characteristics of the biological behavior in mitophagy subgroups. (A) GSVA analysis of two mitophagy clusters. (B) Immune cell infiltration of two 
mitophagy clusters. (C, D) GO (C) and KEGG (D) enrichment analysis of DEGs among two mitophagy clusters (t-test, *** P < 0.001; ** P < 0.01; * P < 0.05). 
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less than 0.05, we selected 112 genes for further 
detailed analysis (Table S6). Subsequently, based on 
these prognostic-relevant genes, we applied a 
consensus clustering algorithm to categorize the 
cohort into three distinct genetic subtypes (Figures 
5A-B). Furthermore, employing Kaplan-Meier 
survival analysis, we observed significant differences 

in OS among these three genetic subtypes (P＜0.0001), 
with genetic cluster B exhibiting the poorest prognosis 
(Figure 5C). Following this, we analyzed the 
expression variances of MRGs across each genetic 
cluster and discovered significant differences in MRG 
expression among these clusters (Figures 5D-E). 

 

 
Figure 5. Identification of gene subtypes in BC based on DEGs. (A, B) A consensus matrix heat map defining three gene subtypes (k=3); (C) Kaplan-Meier analysis of 
three subtypes of OS. (D, E) The MRGs expression level of three gene subtypes (t-test, **** P < 0.0001; *** P < 0.001; ** P < 0.01; * P < 0.05). 
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Figure 6. Construction of mitophagy-related prognostic risk score. (A, B) Lasso regression analysis on the prognosis-related genes; (C) Multivariate Cox regression 
analysis; (D) The sankey diagram of the sample distribution of two mitophagy clusters, three gene subtypes and two risk score groups. (E) OS analysis of two risk groups using 
Kaplan-Meier in the training cohort; (F) ROC curves to predict 1, 3, and 5-year OS according to the risk score in the training cohort; (G) OS analysis of two risk groups using 
Kaplan-Meier in the validation set (t-test, *** P < 0.001; ** P < 0.01; * P < 0.05). 

 

Construction of mitophagy-related prognostic 
risk score 

Utilizing these prognostic-relevant genes, we 
selected the most critical prognostic factors through 
Lasso regression and stepwise multivariate Cox 
analysis. Seven overall survival (OS)-related genes 
(RPLP2, PCDHGA2, PRKAA2, CLIC6, FLT3, CHI3L1, 

and IYD) were identified and retained for further 
analysis (Figures 6A-C and Table S7). Patients were 
categorized into low- and high-risk groups based on 
the median risk score. A Sankey plot illustrated the 
distribution of samples across two mitophagy 
clusters, three genetic clusters, and two risk score 
groups (Figure 6D). Kaplan-Meier survival analysis of 
the two risk groups revealed that patients in the 



Int. J. Med. Sci. 2024, Vol. 21 

 
https://www.medsci.org 

2674 

low-risk group had significantly better OS compared 
to the high-risk group (log-rank test, P<0.0001; Figure 
6E). Moreover, the 1-year, 3-year, and 5-year area 
under the curve (AUC) values for the risk score model 
were 0.747, 0.705, and 0.706, respectively (Figure 6F). 
In the validation set, the Kaplan-Meier survival 
analysis of the two risk groups also showed a 
significant difference, with patients in the low-risk 
group having significantly better OS compared to the 
high-risk group (log-rank test, P<0.0001; Figure 6G). 
Finally, we found that the risk scores among the three 
gene clusters are significantly different. Cluster B has 
the highest risk score, followed by cluster A, with 
cluster C having the lowest score. There are also 
differences in risk scores between the two MRG 
clusters (Figure S2 A-B).  
Development and validation of a prognostic 
nomogram for breast cancer 

To enhance clinical utility and improve the 
accuracy of the prognostic model, clinical and 
pathological parameters, including age and staging, 

were incorporated into the aforementioned 
prognostic risk model to construct a more 
comprehensive nomogram for predicting OS in BC 
(Figure 7A). The model was validated for its good 
discriminatory ability. In the training set, the AUC 
values for 1, 3, and 5 years were 0.895, 0.765, and 
0.728, respectively (Figure 7B), the C-index curve 
shows that the model has good consistency (Figure 
S3A), and the AUC values for 1, 3, and 5 years in the 
validation set were 0.77, 0.692, and 0.709, respectively 
(Figure 7C). The calibration curve suggested that the 
model had good correction ability (Figure S3B-C). We 
utilized the obtained nomorisk to divide the samples 
into high-risk and low-risk groups. In both the 
training and validation groups, the survival of the 
low-risk group was significantly better than that of 
the high-risk group (Figure 7D-E). As time increases, 
the cumulative hazard of the high-risk group is higher 
than that of the low-risk group both in the training set 
(Figure 7F) and validation set (Figure S3D). 

 

 
Figure 7. Development and Validation of a Prognostic Nomogram for Breast Cancer. (A) A nomogram used to predict BC OS; (B) ROC curves to predict 1-, 3-, and 
5year OS according to the nomogram in the training cohort; (C) ROC curves to predict 1-, 3-, and 5year OS according to the nomogram in the verification cohort; (D) OS 
analysis of two nomorisk groups using Kaplan-Meier in the training cohort and validation cohort; (E) Cumulative hazard of two nomorisk groups in the training cohort.  
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Figure 8. TME and immune checkpoint characteristics in both risk score groups. (A) Association of risk score with immune cell infiltration; (B) Association between 
risk score and TME score; (C) Association between immune cell infiltration and seven genes in the risk score model; (D-G) Immunotherapy effect in the low- and high-risk groups 
(t-test, *** P < 0.001; ** P < 0.01; * P < 0.05). 

 

Characteristics of the TME, mutation, CSC 
Index, and drug susceptibility analysis in the 
high and low risk groups 

Using the CIBERSORT algorithm, we conducted 

an in-depth analysis of the correlation between risk 
scores and the infiltration of various immune cells. 
Figure 8A visually presents the correlation patterns 
between risk scores and immune cell populations, 
where risk scores exhibit a negative correlation trend 
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with cell types such as macrophages M1, memory B 
cells, Tregs, CD8+ T cells, etc. A positive correlation is 
observed with cell types such as macrophages M2, 
CD4+ memory T cells, etc. Furthermore, as shown in 
Figure 8B, compared to high-risk scores, low-risk 
scores are associated with higher immune scores, 
which may reflect the degree of immune response 
activity. Subsequently, we further explored the 
relationship between the seven specific genes in the 
model and immune cell populations. Through 
detailed analysis, we found that these genes have 
significant correlations with most immune cell types, 
as shown in Figure 8C, revealing their important role 
in regulating immune cell functions. In addition to 
gene analysis, we also focused on the differences in 
immune therapy outcomes between the two risk 
groups. The results from Figures 8D-G reveal 
differences in immune therapy responses among 
different risk groups, with demonstrating higher 
therapeutic effects in low-risk groups.  

Furthermore, we explored the relationship 
between risk scores and tumor mutational burden 
(TMB). As shown in Figure 9A, there is an evident 
positive relationship between risk scores and TMB, 
which may provide new insights for future 
immunotherapy strategies. At the same time, we 
assessed the potential link between cancer stem cell 
(CSC) index values and risk scores. Figure 9B shows 
that risk scores are positively correlated with the CSC 
index, indicating that BC cells with high-risk scores 
may possess more pronounced stem cell 
characteristics, which is significant for understanding 
tumor recurrence and metastasis. Lastly, we 
evaluated the sensitivity of high-risk and low-risk 
groups of BC patients to different commonly used 
therapeutic drugs. As shown in Figures 9C-I, most 
therapeutic drugs have lower IC50 values in the 
low-risk population, including 5-fluorouacil, cisplatin, 
linsitinib, Olaparib and paclitaxel etc., providing 
important reference for the formulation of clinical 
treatment strategies. 

Single cell verification of the distribution of 
prognostic genes in breast cancer 

According to the cellular annotation results 
provided by the data contributors, cells within the 
breast cancer (BC) tissue were classified into nine 
cellular subpopulations: endothelial cells, 
cancer-associated fibroblasts (CAFs), perivascular-like 
(PVL) cells, B cells, T cells, myeloid cells, normal 
epithelial cells, plasmablasts, and cancer epithelial 
cells (Figure 10A). RPLP2 is expressed at relatively 
high levels across nearly all cell types. PCDHGA2 
exhibits low expression across all cell clusters, with 
primary expression in CAFs and epithelial cells. 

PRKAA2 is predominantly expressed in epithelial 
cells, particularly cancer epithelial cells. CLIC6 is also 
primarily expressed in cancer epithelial cells, 
followed by CAFs and normal epithelial cells. FLT3 is 
mainly observed in cancer epithelial and myeloid 
cells, with minimal expression in normal epithelial 
cells. CHI3L1 is primarily expressed in epithelial cells, 
followed by CAFs and myeloid cells, and IYD is 
specifically expressed in cancer epithelial cells, with 
minimal expression in other cells (Figure 10B). 

Verification of the expression level of seven 
mitophagy related genes in the risk model  

To further validate the expression profiles of 
these genes in BC, we employed the reverse 
transcription quantitative polymerase chain reaction 
(RT-qPCR) technique to measure their expression 
levels across five different BC cell types as well as one 
normal mammary epithelial cell line (MCF-10A). As 
shown in Figure 11, compared to the normal 
mammary epithelial cells MCF-10A, these prognostic 
genes exhibit distinct expression patterns in BC cell 
types, As shown in Figure 11, compared to MCF-10A, 
the expression levels of RPLP2, PRKAA2, CLIC6, 
FLT3, CHI3L1, etc., have decreased in most breast 
cancer (BC) cells, while the expression levels of 
PCDHGA2 and IYD have been significantly 
upregulated, especially IYD, which is expressed very 
little in normal mammary epithelial cells, consistent 
with our previous single-cell results.  

Discussion 
Despite progress in cancer research, BC 

continues to pose a global health challenge, 
necessitating further investigation and the 
development of innovative therapies(26). Due to its 
complexity, heterogeneity, and significant individual 
variability, personalized diagnostic and treatment 
approaches are required(27,28). Our study provides a 
comprehensive summary of the expression levels of 
MRGs, CNVs, immune infiltration, TME, CSCs, and 
drug sensitivity in BC. Based on 34 MRGs, we 
classified samples into two mitochondrial autophagy 
subtypes and distinguished three genetic subtypes 
using DEGs. Using GSVA and GSEA analyses, we 
examined the biological processes and immune cell 
infiltration between the two subtypes, revealing that 
cluster 1 is predominantly enriched in NK cells, T cells 
follicular helper, Tregs and CD8+ T cells, among 
others. Additionally, cluster 2 exhibits more B cells 
naïve, CD4+ T cell memory resting, M2 macrophages 
and resting mast cells. We identified three genetic 
subtypes and constructed a risk score model 
predictive of OS in BC. To enhance the clinical utility 
of the model, we incorporated clinical and 
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pathological features to build a nomogram and 
validated its predictive performance. There are 
statistically significant differences in prognosis, 
mutations, TME, CSC index, and drug sensitivity 

between patients with low and high-risk scores. Our 
findings indicate that MRGs can be used to assess the 
prognostic significance and response to 
immunotherapy in BC. 

 
 

 
Figure 9. TMB, CSC index and drug susceptibility analysis among two risk_score groups. (A) Correlation between risk score and TMB; (B) Correlation between risk 
score and CSC index; (C-I) Correlation between risk score and drug susceptibility. 
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Figure 10. Single cell verification of the distribution of prognostic genes in breast cancer. (A) tSNE and UMAP projections of breast cancer cells in GSE176078. 
Different cell types are indicated by unique colors; (B) Delineating the distribution of key genes in cell subsets. 
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Figure 11. RT-PCR was used to compare mRNA levels of seven prognostic mitophagy-related genes in breast cancer cells and normal mammary epithelial cells (t-test, *** P < 
0.001; ** P < 0.01; * P < 0.05). 

 
At present, the integration of immunotherapy 

with chemotherapy embodies an innovative 
treatment strategy. In contrast to other solid 
malignancies, breast cancer (BC) demonstrates 
reduced immunogenicity and a diminished 
mutational load. Nonetheless, certain clinical trials 
have detected indications that anti-PD1/PD-L1 
therapies may act in concert with chemotherapy(29–
31), with additional studies hinting at the possible 
advantages of immunotherapeutic interventions(32). 
Our research indicates that the cohort with a lower 
risk profile might achieve superior results from 
immunotherapy, implying that their scores could be 
instrumental in evaluating the risks inherent to such 
treatment modalities. 

Mitochondria, known as the cell's 
"powerhouses", are crucial for cell survival and death, 
primarily generating energy through the TCA cycle 
and oxidative phosphorylation. Dysfunctional 
mitochondria accumulation is linked to diseases like 
heart failure, Alzheimer's, and cancers. The 
mechanisms of mitophagy's impact on tumor growth 
and the immune environment are not fully 
understood. Mitophagy selectively targets 
mitochondrial proteins, such as those on the outer 
membrane involved in autophagy (e.g., LC3)(33). and 
clears damaged mitochondria to maintain 
homeostasis. Key mitophagy proteins like PRKN(34), 

BNIP3, BNIP3L, and FUNDC1(35) play significant 
roles in regulating the process and influencing cellular 
functions(36,37). 

In previous studies, the prognosis for many BC 
patients was predicted solely based on clinical 
information(38). For instance, staging systems are 
commonly utilized to forecast the prognosis of BC. 
However, the prognostic capacity of individual 
clinical parameters is often limited. Prior research has 
indicated a potential link between mitophagy and 
BC(39). Consequently, our study focused on exploring 
mitophagy in BC and developed a model based on 
these findings. Our model holds promise for guiding 
BC treatment. Immunological analysis revealed 
varying immune scores across different risk groups, 
with these scores correlating to immune cell 
infiltration, suggesting that immunotherapy may be 
more efficacious in the low-risk cohort. As research 
into immunotherapy for breast cancer gains 
momentum, strategies such as inducing macrophage 
polarization also show great potential in cancer 
treatment(40). 

Our study also explored TMB and CSC across 
different risk groups. Previously, TMB has been 
established as a predictive biomarker for the efficacy 
of cancer immunotherapy across various types of 
cancer(41). TMB has a strong corrective effect on the 
therapeutic outcomes and prognosis of cancer(42–44). 
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In our analysis, there were also significant differences 
in TMB and survival rates among different risk 
groups, suggesting that the mitochondrial autophagy 
pathway may be associated with tumor mutations. 
Similarly, CSC are associated with the response to 
immunotherapy. Targeting CSC may potentially 
prevent metastasis and improve survival rates in BC. 
Recent evidence suggests that mitochondrial 
autophagy is also involved in regulating cellular 
stemness and the rate of differentiation within 
tissues(45). There is evidence that a reduction in 
mitochondrial autophagy can also modulate cellular 
stemness and regulate the rate of differentiation 
within tissues. Studies have found that mitochondria 
undergo asymmetric division in immortalized human 
mammary epithelial stem cells, with the newly 
formed, healthy mitochondria in these breast stem 
cells preferentially undergoing division(46,47). In 
contrast, the mitochondria in non-stem cells are 
confined to the perinuclear region. In short, the 
senescence of mitochondria can lead to a reduction in 
cellular stemness(45). Additionally, CSC are a source 
of chemoresistance in BC. Analysis of drug sensitivity 
has shown that the IC50 values for some commonly 
used chemotherapeutic drugs are lower in the 
low-risk group compared to the high-risk group. 
Therefore, targeting CSC therapy could potentially 
prevent metastasis and thus improve the survival of 
BC(48). Finally, we explored the distribution of these 
genes in breast tissue samples through single-cell data 
analysis, which may provide indications for 
subsequent further research. This includes the 
distribution of these genes, their possible 
mechanisms, and interactions, among others. Thus, 
we believe that our research can offer assistance, 
potentially contributing to the resolution of certain 
cancer treatment strategies. This could lead to more 
effective personalized treatment plans for individuals, 
minimizing unnecessary side effects and providing 
new insights and perspectives for further 
investigation into its role in breast cancer. 

Despite the initial slow pace of biomarker 
development, which may have been due to the 
complexity of requirements for tissue samples and 
sequencing platforms, the rapid advancement of 
genetic sequencing technologies in recent years has 
significantly enhanced our understanding of the 
differences in gene expression between various types 
of tumor cells. This has transformed our 
comprehension of cancer progression, the 
development of therapeutic strategies, and the 
assessment of patient prognoses(49). The widespread 
adoption of genetic sequencing and the customization 
of immunotherapeutic approaches are ushering in an 
era of innovation, where cancer treatment will 

increasingly be tailored to individual needs, and we 
will ultimately triumph over cancer. 

Despite these advancements, our research has 
certain limitations. We utilized public databases to 
construct and validate our model framework. 
However, incomplete clinical data for some patients 
necessitated the exclusion of a significant amount of 
individual data, which may have influenced the 
results. Consequently, there is an urgent need for 
prospective studies to assess the clinical utility of this 
model for patients with breast cancer. Additionally, 
our findings were explored through single-cell 
sequencing, but limitations in sequencing depth and 
analytical conditions, coupled with the absence of 
comprehensive pre-and post-treatment control 
samples, such as single-cell data before and after 
therapy, hindered a more detailed analysis and 
classification. This includes exploring the impact of 
treatment and drug sensitivity. Lastly, the lack of a 
detailed database on immunotherapy for breast 
cancer impeded our ability to further confirm the 
prognostic significance of the model in the context of 
immunotherapy. Ultimately, the specific mechanisms 
of action of these genes, their interactions with each 
other, and potential associations with immune cells 
may require comprehensive functional experiments 
for clarification. 

Conclusion 
In our research, we identified seven new 

mitophagy genes associated with prognosis through 
an in-depth analysis of public databases. Patients with 
lower-risk profiles showed improved survival, 
leading to the development of a prognostic 
nomogram model that integrates these genes along 
with key clinical parameters like age and stage. This 
model offers robust predictability for breast cancer 
patient survival, enhancing our understanding of the 
disease's progression. It paves the way for 
personalized treatment strategies and potential 
clinical benefits through precision medicine. As our 
comprehension of mitophagy's role in breast cancer 
deepens, we anticipate the advancement of more 
accurate and effective treatment approaches, 
providing patients with better therapeutic options 
and survival prospects. 
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