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Abstract 

Lower limb ischemia is characterized by reduced arterial perfusion in the lower limbs, leading to tissue 
ischemia and cell death. It is primarily caused by thrombosis and the rupture of arterial plaques, resulting 
in damage to ischemic muscle tissues. Metabolic processes are crucial in its development. Herein we 
combined single-cell data with metabolomics data to explore the pathways and mechanisms influencing 
lower limb ischemia. We analyzed single-cell and metabolomics data. In single-cell analysis, we identified 
different cell subpopulations and key regulatory genes, and biological enrichment analysis was performed 
to understand their functions and relationships. For metabolomics, mass spectrometry and 
chromatography techniques were employed to analyze metabolites in clinical samples. We performed 
differential analysis, correlation analysis, and Mendelian randomization to determine the relationships 
between key metabolites and genes. Nebl, Dapl1, Igfbp4, Lef1, Klrd1, Ciita, Il17f, Cd8b1, Il17a, Cd180, 
Il17re, Trim7, and Slc6a19 were identified to play a crucial role in lower limb ischemia. Important 
metabolites included L-threonine and L-tryptophan. The metabolism of L-threonine and L-tryptophan is 
linked to lower limb ischemia and thrombosis. B0AT1, encoded by SLC6A19, is closely related to these 
metabolites and appears to play a key role in lower limb ischemia development. Our analysis revealed the 
roles of key genes and metabolites in lower limb ischemia. These findings enhance our understanding of 
the pathogenesis of lower limb ischemia and provide new insights into its prevention and treatment. 

Keywords: Lower limb ischemia, SLC6A19, L-threonine, and L-tryptophan. 

Introduction 
Lower limb ischemia refers to the reduction in 

arterial perfusion in the lower limbs, leading to tissue 
ischemia and cell death. It requires prompt 
intervention or surgery to restore blood flow to the 
lower limbs [1]. The incidence rate of acute lower limb 
ischemia in adults in the United States is 
approximately 0.2% [2]. Despite early intervention, 
the amputation rate remains as high as 15% [3, 4]. 
Therefore, lower limb ischemia has become an 
increasingly significant health threat. 

The primary causes of lower limb ischemia are 
thrombosis and arterial plaque rupture [5]. 

Thrombosis can result from vascular injury during 
surgery, increased risk of blood coagulation, and 
hemodynamic changes. Surgical instrument 
manipulation can cause mechanical damage to the 
vessel wall; further, stent implantation may stimulate 
and damage the vascular endothelium and vessel 
wall, activating the blood coagulation system and 
leading to thrombus formation [6, 7]. In individuals 
with predisposing factors, hypertension can damage 
the vascular intima and cause inflammation, 
increasing the risk of blood coagulation [8, 9]. High 
levels of cholesterol and triglycerides also elevate this 
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risk [10, 11], while inherited coagulation disorders, 
such as factor V Leiden mutation and prothrombin 
gene mutation, make blood more prone to clotting, 
increasing the risk of thrombus formation [12, 13].  

Hemodynamic changes are closely related to 
atherosclerosis and plaque rupture. Plaques form due 
to lipid deposition and macrophage enrichment 
within blood vessels [14, 15]. As plaques develop, the 
blood flow passage gradually narrows, altering 
hemodynamics. When a plaque ruptures, collagen is 
exposed on the vascular wall, triggering platelet 
aggregation at specific receptors for collagen and 
coagulation factors. This accelerates hemodynamic 
changes and promotes thrombus formation [16, 17].  

Lower limb ischemia also damages ischemic 
muscle tissue. Ischemia leads to a lack of oxygen and 
nutrient supply to muscle cells, affecting energy 
synthesis and metabolic processes [18]. It also causes 
hypoxia in muscle tissue, disrupting energy 
production within cells, resulting in a lack of ATP and 
an increase in intracellular calcium ion concentration. 
This damages cell membrane integrity, causes 
mitochondrial dysfunction, and impairs intracellular 
transport [19]. 

Metabolic processes play a critical role in the 
development of lower limb ischemia. Increased 
expression of 6-phosphofructo-2-kinase/fructose-2, 
6-bisphosphatase-3 in critical limb ischemia has been 
reported to enhance glycolytic metabolism, maintain 
mitochondrial function, alleviate pathological 
damage, and promote muscle tissue repair and 
recovery [20]. In addition, metabolites affect 
thrombosis. Phenylacetylglutamine reportedly 
increases platelet function, enhances responses to 
various stimuli, and releases intracellular calcium 
ions, thus increasing platelet participation in 
thrombus formation [21, 22]. The metabolism of 
precursor nutrients, such as choline and carnitine, by 
gut microbiota produces trimethylamine N-oxide. 
High levels of trimethylamine N-oxide can alter the 
function of platelets, induce the synthesis of 
coagulation factors in endothelial cells, and increase 
the incidence of vascular inflammation [23, 24], 
ultimately leading to limb thrombosis and lower limb 
ischemia. 

Herein to further explore the impact of gene 
transcription and metabolites on lower limb ischemia, 
we analyzed single-cell data combined with 
metabolomics data. We aimed to investigate the 
specific pathways and mechanisms influencing the 
occurrence and development of lower limb ischemia. 

Methods and Materials  
Ethical statement 

This study was performed in strict accordance 

with the recommendations in the Guide for the Care 
and Use of Laboratory Animals at Guangdong Second 
Provincial General Hospital. Animal procedures were 
performed according to protocols approved by the 
Animal Ethics Committee at Guangdong Second 
Provincial General Hospital (approval no.: 
2024-KY-KZ-244-01). 

Single-cell data download, calculation, and 
clustering  

We obtained the single-cell RNA sequencing 
dataset GSE150383 for lower limb ischemia from 
Meng S, Lv J, Chen K, and Cooke JP. This dataset 
includes single-cell sequencing expression profiles of 
one mouse sample at Day 0 and another one at Day 
28. GSE150383 was downloaded from the Gene 
Expression Omnibus (GEO) database (https://www. 
ncbi.nlm.nih.gov/geo/) [25, 26]. Single-cell RNA 
sequencing data were processed primarily using the 
Seurat package (v4.0) in R software. Quality control 
was performed to evaluate cell and gene expression 
quality. The NormalizeData function in Seurat was 
used for gene expression normalization, and the 
ScaleData function was used for gene expression 
scaling. Highly variable genes were identified using 
the FindVariableFeatures function. Dimensionality 
reduction, cell clustering, and visualization were 
performed using the RunPCA function [25, 27]. The 
FindNeighbors and FindClusters functions were used 
to calculate the relationship between cells, and cells 
were clustered into different subgroups. The DimPlot 
function in Seurat was used to visualize cell clustering 
results and generate UMAP plots, and the heatmap 
package was used to create cell clustering heatmaps. 
Cell subgroup reannotation was performed to further 
explore the underlying mechanisms. 

Key cell subpopulation and regulatory gene 
detection 

The FindAllMarkers function in Seurat was used 
to identify marker genes for each cell subgroup in 
GSE150383. The expression of these marker genes in 
each cell subgroup was compared using CellMarker 
2.0 (http://bio-bigdata.hrbmu.edu.cn/CellMarker/) 
to determine cell types and improve cell type 
annotation [26, 27]. To more accurately annotate cell 
subgroups, an extensive literature review was 
conducted to clarify the function and expression of 
marker genes in cells. Significant differentially 
expressed genes were identified for each cell 
subgroup and reannotated subgroups, which were 
considered key regulatory genes [15, 28]. 

Biological function enrichment analysis 
We used the clusterProfiler package to perform 

gene ontology (GO) analysis on the identified 
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differentially expressed genes, annotating them in 
different functional categories (biological processes, 
molecular functions, and cellular components) to 
identify significantly enriched functional categories 
and understand their roles in biological processes 
[29]. Moreover, the clusterProfiler package was used 
to perform Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis on the identified 
differentially expressed genes and metabolites, 
analyzing their enrichment in KEGG pathways to 
identify genes and metabolites enriched in specific 
biological pathways and their functions in biological 
pathways [26, 30]. 

Metabolite set enrichment analysis was 
conducted on differentially expressed metabolites to 
explore their biological significance [28, 31]. Four 
metabolite sets based on the KEGG database, 
including 84 human metabolism pathways, specific 
biological fluids, and disease-related pathways, were 
used to enrich the metabolome data and identify 
significantly different metabolite sets [32]. 

We also performed gene set enrichment analysis 
(GSEA) on highly variable genes and genes within 
transcriptional trajectories identified in each cell 
subpopulation. We used the clusterProfiler package in 
R software to rank these genes based on their 
expression patterns and differential expression [31]. 
The predefined gene set library from the Molecular 
Signatures Database was then used to calculate the 
enrichment of these genes in the ranked gene list. 
Finally, the enrichment score and statistical 
significance were calculated to evaluate the reliability 
of our results [33, 34]. 

Protein–protein interaction (PPI) network 
analysis  

The STRING database (https://string-db.org/) 
was used to search for PPI of proteins involved in 
metabolic pathways [13]. Only experimentally 
validated and database-analyzed confirmed PPIs with 
a confidence cutoff threshold of 0.7 were considered. 
Cytoscape v3.8.2 was used for PPI network 
construction, analysis, and visualization [34, 35]. 

Metabolomics analysis 
To further elucidate the role of metabolites, 

untargeted metabolomics analysis was performed on 
seven individuals: four patients with lower limb 
ischemia and three healthy controls. Quality control 
of metabolites was performed using the coefficient of 
variation (CV) and hierarchical clustering. The CV, 
calculated as the ratio of the standard deviation to the 
mean, reflects the degree of data dispersion [35]. The 
empirical cumulative distribution function was used 
to analyze the frequency of CV values for below 

reference thresholds, indicating data stability. 
Hierarchical clustering analysis was performed on 
different comparison group samples to generate a 
cluster tree showing sample similarity [7, 36]. 

Orthogonal partial least squares discriminant 
analysis (OPLS-DA) model validation for metabolites 
was conducted. Evaluation parameters included R2X, 
R2Y, and Q2, where R2X and R2Y represent the 
goodness of fit for the X and Y matrices, respectively, 
and Q2 represents the predictability of the model. 
Higher values close to 1 indicate a more stable and 
reliable model, with Q2 > 0.5 considered effective and 
Q2 > 0.9 indicating an excellent model. Differential 
metabolite analysis was performed. A volcano plot of 
differential metabolites was generated, along with 
scatter plots of differential metabolites showing rela-
tive content differences and radar plots of the top 10 
metabolites with the largest absolute log2FC [24, 37].  

Pearson correlation analysis was conducted to 
calculate the correlation between metabolites [36]. The 
covariance of variables was calculated to determine 
the strength and direction of their linear relationship. 
A correlation test determined the significance of the 
correlation coefficient, and a significance threshold of 
P < 0.05 was used to visualize the top 50 metabolites. 
MetaboAnalyst (https://www.metaboanalyst.ca/) 
was used to explore the relationship between 
differential metabolites and genes [9, 38]. 

Validation data acquisition and analysis 
GSE124595 provided by Wang X et al. and 

GSE152139 were downloaded from the GEO database 
(https://www.ncbi.nlm.nih.gov/geo/). The probes 
of these two datasets were processed to remove 
invalid probes and where multiple probes were used 
for the same gene, the median value was used as the 
gene expression level to generate expression profiles. 
The expression differences of SLC6A19 in these two 
datasets were then validated [38, 39]. 

Mendelian randomization (MR) analysis 
MR analysis was performed to investigate the 

relationship between differential metabolites and 
lower limb ischemia. To avoid linkage imbalance, a 
standard of kb = 10,000 and r2 = 0.001 was used when 
aggregating single nucleotide polymorphisms (SNPs). 
In addition, p < 5 × 10−8 was set as the genome-wide 
significance threshold, and palindromic SNPs were 
removed. The MR analysis mainly employed the 
classical inverse-variance weighted (IVW) method, 
which utilizes the effect sizes and inverse variances of 
each genetic variant to weight the effects, reducing 
estimation bias caused by heterogeneity and 
combining the estimated effect sizes of multiple 
variants [39]. 
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Four statistical methods were simultaneously 
used: the weighted median estimator model, 
weighted model-based method [40], MR-Egger 
regression model, and simple model. The weighted 
median estimator model calculates the median effect 
sizes of multiple genetic variant sites and combines 
them using weighted averaging to estimate the 
comprehensive effect size [4]. The MR-Egger 
regression model evaluates bias and symmetry of 
causal effect estimation using Egger regression 
concepts. The simple model extracts basic genetic 
information and association rules, providing insights 
into genotype frequency distribution and phenotype 
correlation. Harmonization was also performed to 
address incompatible allele genes SNPs and 
palindromic SNPs. Heterogeneity testing and 
MR-Egger regression testing were conducted using 
the IVW method, with p values for the correlation 
between L-threonine and lower limb ischemia (0.99) 
and L-tryptophan and lower limb ischemia (0.99) 
indicating no heterogeneity. Horizontal pleiotropy in 
the MR analysis was checked using the intercept 
value in MR-Egger, with p > 0.05 suggesting 
negligible multidirectionality. Finally, leave-one-out 
analyses were performed to assess the consistency of 

our results. 

Results 
Single-cell data analysis  

A significant improvement in data structure was 
observed after data filtering. We then identified the 
core subgroups of GSE150383 at Day 0 and Day 28, 
which represent critical time points. GSE150383 could 
be divided into seven cell subgroups both at Day 0 
and Day 28: monocytes, T cells, B cells, erythrocytes, 
natural killer (NK) cells, granulocytes, and fibroblasts 
(Figure 1A-B). The expression profiles of these cell 
subgroups differed between the time points, 
indicating changes in cell subgroups with the 
progression of lower limb ischemia. We also 
identified key regulatory genes for each of these seven 
subgroups. For monocytes, these included F13a1, 
Prss34, and Mcpt8; for T cells, Dapl1, Icos, and Cd5; 
for B cells, Vpreb1, Vpreb3, and Myl4; for 
erythrocytes, Hba-a1, Hba-a2, and Dmtn; for NK cells, 
Klra7, Klrc1, and Samd3; for granulocytes, Ltf, 
1700047M11Rik, and Fpr2; and for fibroblasts, Col5a2, 
Cilp, and Pcolce2 (Figure 1C). 

 

 
Figure 1: Single-cell analysis of GSE150383 to identify core subgroups and key regulatory genes. (A) Cell clustering at Day 0 and Day 28. (B) Quality control of 
GSE150383. (C) Key regulatory genes of the core subgroups in GSE150383. 
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Initially, we identified the key subpopulations in 
GSE150383 at Day 0 and Day 28 (Figure 1B; Figure 
2A). However, considering the overall nature of the 
data, we also identified core subpopulations in 
GSE150383 without considering time. We found that 
GSE150383 could be divided into the same seven cell 
subgroups as previously identified (Figure 2B). 
Subsequently, we observed the expression changes at 
Day 0 and Day 28 and found that T cells exhibited the 
most significant changes. Therefore, we focused on 
reannotating the T cell subpopulation (Figure 2C). 
Our analysis revealed that the T cell subpopulation 
could be further divided into two subgroups. 
Heatmaps were generated for differentially expressed 
genes in these two subgroups, and key regulatory 
genes were identified within each subgroup (Figure 
2D). The key regulatory genes in the first subgroup 
included Dapl1, Igfbp4, and Klrd1, while those in the 
second subgroup included Gm43603, Ly86, and Mef2c 

(Figure 2E). 

Transcriptional and functional features of key 
subpopulations reveal heterogeneity in lower 
limb ischemic injury 

To understand the biological enrichment 
pathways of the T cell subpopulation, we performed 
GO analysis on differentially expressed genes 
identified in this subpopulation (Figure 3A). 
Biological process enrichment analysis showed their 
involvement in processes such as B cell activation and 
lymphocyte differentiation; cellular component 
enrichment analysis showed their involvement in 
processes such as “early endosome” and 
“chromosome, centromeric region”; and molecular 
function enrichment analysis showed their 
involvement in processes such as MHC protein 
complex binding and immune receptor activity.  

 

 
Figure 2: Single-cell analysis of GSE150383, reannotation of core subpopulations, and identification of key regulatory genes. (A-B) Identification of core 
subpopulations in GSE150383, regardless of time. (C) Reannotation of the T cell subpopulation. (D) Gene heatmap of the reannotated subpopulations within the T cell 
subpopulation. (E) Identification of key regulatory genes within the reannotated subpopulations. 
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Figure 3: Functional enrichment analysis of the T cell subpopulation. (A) GO and (B) KEGG pathway enrichment analyses. (C) GSEA of metabolism-related pathways 
in the T cell subpopulation. 

 
We also performed KEGG pathway enrichment 

analysis on differentially expressed genes in the T cell 
subpopulation, which revealed that the most 
significant pathways were protein processing in 
endoplasmic reticulum, citrate cycle (TCA cycle), and 
oxidative phosphorylation (Figure 3B). Finally, we 
performed GSEA on differentially expressed genes in 
the T cell subpopulation to realize that the most 
significant pathway was “GOBP: positive regulation 
of phosphorus metabolic process.” Accordingly, we 
believe that metabolic changes play a key role in the 
development of lower limb ischemia (Figure 3C). 

Functional enrichment analysis based on 
GSEA 

To investigate the proteins involved in “GOBP: 
positive regulation of phosphorus metabolic process,” 
we plotted a scatter plot with the differential 
expression of proteins involved in this pathway 
(Figure 4A). The expression levels of all proteins 

involved in this pathway were found to be 
upregulated. We also performed PPI analysis and 
found close interactions among Nebl, Dapl1, Igfbp4, 
Lef1, Klrd1, Ciita, Il17f, Cd8b1, Il17a, Cd180, Il17re, 
Trim7, and Slc6a19 (Figure 4B). These proteins seem 
to play a key role in influencing lower limb ischemia. 
To further explore the mechanisms of metabolism in 
lower limb ischemia development, we performed 
metabolomics sequencing (four patients with lower 
limb ischemia and three healthy controls). We 
performed quality control, and the CV plot indicated 
that the experimental data were very stable (Figure 
4C-D). Hierarchical clustering analysis revealed 
significant differences between ischemic and normal 
samples (Figure 4E). 

Metabolic disorders and changes in lower limb 
ischemia progression 

To explore the role of metabolites in the 
progression of lower limb ischemia, sequenced 
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metabolites were subjected to differential analysis. A 
volcano plot was generated to visualize 300 
downregulated metabolites, 150 upregulated 
metabolites, and 1,966 metabolites with relatively 
minor differences (Figure 5A). We then performed 
Spearman correlation analysis on the top 50 
differentially expressed metabolites with the highest 
degree of difference. The results showed that there 
were more negative than positive correlations among 
these metabolites (Figure 5B). We validated the 
sequenced metabolites using an OPLS-DA model. The 
model exhibited an R2X of 0.503, R2Y of 0.991 (p = 
0.115), and Q2 of 0.761 (p = 0.05), indicative of its 
effectiveness (Figure 5C). Scatter plots displayed the 
content of differential metabolites within different 
categories, showing significant differences in amino 
acid and its metabolites, suggesting that amino acid 
metabolism plays a key role in lower limb ischemia. 
Radar plots for the top 10 metabolites with the largest 
differential multiples provided further detail on these 

differences (Figure 5D-E). 

Association between key metabolites and 
clinical phenotypes of lower limb ischemia 
based on MR analysis 

To reduce the omission of metabolites with 
important biological significance but not significant 
differential expression based on conventional 
enrichment analysis using the hypergeometric 
distribution, we performed metabolite set enrichment 
analysis to identify significantly different metabolite 
sets. Selenocompound metabolism was identified to 
be the most significantly enriched pathway (Figure 
6A). Further analysis of the differentially expressed 
metabolites involved in this pathway identified 
L-threonine and L-tryptophan as showing the most 
significant differences (Figure 6B). We explored the 
interaction between these metabolites and hub genes, 
finding a close relationship with SLC6A19 (Figure 
6D). 

 

 
Figure 4: Identification of core proteins and quality control of metabolomics sequencing data obtained on assessing samples from four patients with lower 
limb ischemia and three healthy controls. (A) Scatter plot of differential expression of proteins in the “GOBP: positive regulation of phosphorus metabolic process” 
pathway. (B) Protein–protein interaction (PPI) network of proteins in this pathway. (C) Coefficient of variation of all lipids and (D) metabolites. (E) Hierarchical clustering analysis. 
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Figure 5: Differential metabolite analysis. (A) Volcano plot of differential metabolites. (B) Heatmap of correlations between differential metabolites. (C) OPLS-DA model 
validation plot. (D) Scatter and (E) radar plots of differential metabolites. 

 
MR analysis with L-threonine and L-tryptophan 

as exposures and lower limb ischemia as outcomes 
showed that an increase in L-threonine reduces the 
risk of lower limb ischemia, indicating that 
L-threonine is a favorable factor for lower limb 
ischemia (IVW p = 0.003, MR-Egger p = 0.099, 
weighted median p = 0.009, simple model p = 0.057, 
and weighted model p = 0) (Figure 6E). To validate 
our findings, we conducted a thorough analysis of 
two transcriptomic datasets, GSE124595 and 
GSE152139. Our results revealed a significant 

enrichment of amino acid metabolism-related 
pathways in both datasets. Specifically, in GSE124595, 
the REACTOME_METABOLISM_OF_AMINO_ 
ACIDS_AND_DERIVATIVES pathway was 
significantly enriched with an Enrichment Score (ES) 
of 0.44, a Normalized Enrichment Score (NES) of 1.84, 
and an adjusted p-value of 3.63E-06. Similarly, in 
GSE152139, the REACTOME_AMINO_ACID_ 
METABOLISM pathway exhibited an ES of 0.71, an 
NES of 1.98, and an adjusted p-value of 1.70E-07 
(Figure 6F; Figure 6H).  
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Figure 6: Differential metabolite enrichment analysis, association between differential metabolites and genes, validation, and Mendelian randomization 
of metabolites. (A) Metabolite set of differential metabolites. (B) Volcano plot of differential expression of L-threonine and (C) L-tryptophan. (D) Protein–metabolite 
interaction network. (E) Forest and scatter plots of Mendelian randomization results for L-threonine and L-tryptophan. (F) GSEA enrichment pathways in GSE124595. (G) 
Differential expression of SLC6A19 in GSE124595. (H) GSEA enrichment pathways in GSE152139. (I) Differential expression of SLC6A19 in GSE152139. 
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In addition, after normalization, the SLC6A19 
gene was found to be significantly downregulated in 
the ischemic group across both datasets, with 
p-values of less than 0.05 in each case (Figure 6G; 
Figure 6J). This consistent downregulation further 
supports the involvement of amino acid metabolism 
in the observed ischemic responses.  

Discussion  
In this study, we identified 13 key proteins using 

single-cell data from mice: Nebl, Dapl1, Igfbp4, Lef1, 
Klrd1, Ciita, Il17f, Cd8b1, Il17a, Cd180, Il17re, Trim7, 
and Slc6a19. On sequencing and analyzing samples 
from four patients with lower limb ischemia and three 
healthy controls, we identified L-threonine and 
L-tryptophan as key metabolites, along with their 
associated metabolic pathways. A close relationship 
was identified between SLC6A19 and L-threonine and 
L-tryptophan. We thus believe that SLC6A19 plays a 
key role in lower limb ischemia occurrence and 
development. 

Succinic acid, a metabolite of the TCA cycle [41], 
plays a vital role in thrombus formation. It influences 
thrombus formation through multiple signaling 
pathways, including platelet aggregation, activation 
of coagulation factors, and endothelial dysfunction 
[42]. According to the literature, succinic acid 
activates platelets by binding to succinate receptor 1 
(SUCNR1), also known as GPR91. Activated SUCNR1 
initiates endogenous signaling pathways, leading to 
the release of calcium, phosphorylation of kinases, 
and release of platelet activation factors, promoting 
platelet activation and aggregation, and ultimately 
leading to thrombus formation [43]. Moreover, 
succinic acid participates in thrombus formation by 
regulating the activity of the coagulation system; it 
activates the coagulation cascade by promoting tissue 
factor expression on endothelial cells [44]. Succinic 
acid-mediated tissue factor expression activates 
various transcription factors, such as nuclear factor 
κB, facilitating core enzyme cascades in blood clot 
formation [45]. Some studies have also indicated that 
succinic acid regulates the expression of plasminogen 
activator inhibitor type 1, which plays a key role in 
balancing plasminogen and plasmin [46]. Succinic 
acid further promotes thrombus formation by 
inducing the expression of P-selectin, a 
platelet-generated oligomer [47]. Succinic acid also 
plays a crucial role in muscle injury repair caused by 
lower limb ischemia. It participates in protein 
synthesis and cell proliferation processes in muscle 
cell differentiation, aiding the synthesis of muscle 
fiber proteins and promoting muscle cell 
development and growth [48]. 

Tryptophan, an essential amino acid, plays a 
pivotal role in diverse metabolic processes. 
Tryptophan metabolism is intricately related to 
thrombus formation and development. Tryptophan 
produces key neurotransmitters, such as dopamine 
and serotonin, through its metabolic pathways, which 
play chief roles in thrombus formation [49, 50]. 
Serotonin, by activating 5-hydroxytryptamine 
receptors on platelets, increases platelet aggregation 
and thrombus formation [51], while dopamine, via 
mechanisms such as increasing cAMP levels, reducing 
calcium levels in platelets, and inhibiting platelet 
activation, reduces platelet aggregation and 
activation, thereby inhibiting thrombus formation 
[52]. Tryptophan metabolism is also closely related to 
the nitric oxide system. Nitric oxide is a potent 
vasodilator and antithrombotic agent that plays a 
significant regulatory role in thrombus formation [53]. 
Tryptophan hydroxylase is a key enzyme regulating 
the rate of tryptophan metabolism, converting 
tryptophan into tyrosine while simultaneously 
releasing nitric oxide [54]. Alterations in the 
tryptophan metabolic pathway may decrease the 
synthesis of nitric oxide, resulting in vascular 
contraction and platelet aggregation, eventually 
promoting thrombus formation [55]. Tryptophan also 
plays a key role in muscle injury caused by lower limb 
ischemia. Tyrosine causes muscle damage by 
increasing reactive oxygen species levels, reducing 
muscle fiber size, inducing structural damage, and 
promoting lipid peroxidation, leading to muscle 
atrophy and functional decline [56]. Tryptophan 
affects thrombus development by regulating the 
formation of serotonin, dopamine, and nitric oxide, 
playing a vital role in lower limb ischemia. 

SLC6A19 closely interacts with tryptophan. 
B0AT1, encoded by SLC6A19, is a major transporter 
for free tryptophan [7]. Therefore, SLC6A19 seems to 
participate in lower limb ischemia development, 
possibly by influencing tryptophan transport through 
differential expression, thereby affecting thrombus 
formation. 

Conclusion 
To summarize, succinic acid and tryptophan 

play key roles in lower limb ischemia. A close 
interaction exists between them, with B0AT1, encoded 
by SLC6A19, potentially playing a crucial role by 
regulating tryptophan transport. Our analysis of 
single-cell data and metabolomics data revealed the 
significant roles of key genes and metabolites in the 
development of lower limb ischemia, enhancing our 
understanding of the pathogenesis of this condition 
and providing new insights into its prevention and 
treatment. 
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