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Abstract 

Recent advancements have elucidated the multifaceted roles of the Schlafen (SLFN) family, including 
SLFN5, SLFN11, SLFN12, SLFN13, and SLFN14, which are implicated in immunological responses. 
However, little is known about the roles of this gene family in relation to malignancy development. The 
current study aimed to explore the diagnostic and prognostic potential of Schlafen family genes in 
colorectal adenocarcinoma (COAD) through bioinformatics analysis. Leveraging advanced bioinformatics 
tools of bulk RNA-sequencing and single-cell sequencing, we conducted in-depth analyses of gene 
expressions, functional enrichment, and survival patterns of patients with colorectal cancer compared to 
normal tissue. Among Schlafen family genes, the transcription levels of SLFN5 in COAD tissues were 
significantly elevated and correlated with poor survival outcomes. Furthermore, SLFN5 regulated the 
immune response via Janus kinase (JAK)/signal transduction and activator of transcription 
(STAT)/interferon (IFN)-alpha/beta signaling. These chemokines in inflammation are associated with 
diabetes and metabolism, suggesting their involvement in altered cellular energetics for COAD progress. 
In addition, an immune cell deconvolution analysis indicated a correlation between SLFN5 expression and 
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immune-related cell populations, such as regulatory T cells (Tregs). These findings highlighted the 
potential clinical significance of SLFN5 in COAD and provided insights into its involvement in the tumor 
microenvironment and immune regulation. Meanwhile, the drug discovery data of SFLN5 with potential 
targeted small molecules suggested its therapeutic potential for COAD. Collectively, the current 
research demonstrated that SFLN5 play crucial roles in tumor development and serve as a prospective 
biomarker for COAD. 

Keywords: colorectal adenocarcinoma (COAD), Schlafen (SLFN) family genes, cell metabolism, immune infiltration, tumor 
microenvironment, single cell technology 

1. Introduction 
Colorectal adenocarcinoma (COAD) is the 

predominant subtype of colorectal cancer (CRC), 
which progresses slowly but ranks third among the 
leading causes of cancer-related deaths worldwide 
[1-3]. CRC is a major public health concern, and a 
deeper understanding of treatment options is crucial 
for researchers investigating novel therapeutic 
strategies in cancer immunity. Chemotherapy 
remains a mainstay of CRC treatment, particularly for 
advanced or metastatic disease, such as 5-Fluorouracil 
(5-FU) [4], Capecitabine (Xeloda) [5], Irinotecan 
(Camptosar) and oxaliplatin (Eloxatin) [6]. These 
drugs are often combined in various regimens 
depending on the specific stage and characteristics of 
the CRC. For patients with microsatellite instability 
(MSI) tumors [7-9], a subset of CRC characterized by 
high rates of mutations, immunotherapy has emerged 
as a promising treatment option [10]. MSI tumors are 
more likely to be recognized by the immune system 
due to the presence of these mutations, making them 
more susceptible to immune checkpoint inhibitors, 
such as pembrolizumab (Keytruda) and nivolumab 
(Opdivo) work by blocking molecules that normally 
dampen the immune response, this allows T cells to 
recognize and attack cancer cells more effectively [11]. 

The Schlafen (SLFN) gene family, named after 
the German word schlafen meaning sleeping, was 
initially identified as a group of growth-regulatory 
genes in mice that exhibited differential regulation 
during thymocyte development and T cell activation 
[12-14]. In humans, there are several SLFN family 
members, including SLFN1, SLFN5, SLFN11, SLFN12, 
SLFN12L, SLFN13, and SLFN14, were originally 
identified for their roles in mediating antiviral 
responses; however, they were also recently reported 
to be involved in various cellular processes including 
cell cycle regulation, cell proliferation, DNA repair, 
and protein folding [15-17]. Such diverse functions of 
SLFNs suggest their potential significance in 
malignant diseases. However, the comprehensive 
roles of SLFN family genes in pan-cancer analysis are 
yet to be fully clarified. 

Advancements in bioinformatics have 
revolutionized our ability to dissect the molecular 
intricacies of cancers [18-20]. Integrating large-scale 

omics data, including genomics, transcriptomics, and 
proteomics, has provided unprecedented insights into 
the complex landscape of genetic alterations and 
signaling pathways associated with different tumor 
stages [21-23]. The ability to identify dysregulated 
pathways, gene expression clusters, and potential 
therapeutic targets has been facilitated by 
bioinformatic tools, thus contributing to the 
development of molecular subtyping strategies and 
assisting the provision of personalized treatment 
approaches [24-29]. Bioinformatic analyses have 
revealed that among SLFN family members, SLFN5 
stands out as being uniquely overexpressed in COAD 
compared to normal tissues. Therefore, this study 
prioritized SLFN5 for further examination, given its 
significant expression differences and potential 
biological importance in COAD. 

2. Materials and Methods 
2.1 Tissue microarray and 
immunohistochemical analyses 

 To construct a Tissue microarray (TMA) and 
immunohistochemical (IHC) analyses, 
1.5-mm-diameter cores were extracted from 52 COAD 
patient-derived paraffin-embedded specimens, 
curated in the pathology archives of the Kaohsiung 
Armed Forces General Hospital, with approval by the 
Institutional Review Board (KAFGH-IRB: 111-041). 
Representative regions encompassing normal, 
neoplastic and adjacent non-neoplastic epithelial 
tissues were selected based on histological evaluation 
of hematoxylin and eosin (H&E)-stained sections. 
Sections of 4-μm thickness were prepared from 
compiled TMA blocks, followed by sequential 
deparaffinization in xylene and rehydration through 
graded ethanol solutions. The rehydrated sections 
underwent antigen retrieval in 10 mM sodium citrate 
buffer. Endogenous peroxidase activity was mitigated 
by treating sections with a 3% hydrogen peroxide 
solution in methanol for 30 min. After peroxidase 
blocking, tissue sections were incubated with a 
primary antibody that specifically targeted SLFN5 
(clone no. HPA017760, Merck, Darmstadt, Germany) 
while being maintained at 4 °C overnight. This step 
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was followed by incubation with an appropriate 
secondary antibody, following the manufacturer’s 
specifications. Antigen-antibody complexes were 
detected using the 3,3'-diaminobenzidine 
tetrahydrochloride (DAB) chromogen, while 
employing a Vectastain ABC kit (Vector Laboratories, 
Burlingame, CA, USA) for 1 min. The specificity of the 
anti-SLFN5 antibody was validated by implementing 
both negative and positive control experiments by 
Hao-Long Biotechnology-Ltd., Kaohsing City, 
Taiwan, as we previously described [30-32]. 

2.2. Bioinformatic and functional enrichment 
analyses 

 In this study, gene expression data of colorectal 
tissues were obtained from The Cancer Genome Atlas 
(TCGA) patients, paired with transcriptomic data of 
normal colon tissues obtained from the GTEx 
platform [33], to conduct a differential gene 
expression (DEG) analysis of the SLFN gene family 
among various cancer types [34]. To gain insights into 
the functional implications of SLFN5-regulated genes, 
we utilized the clusterProfiler R package [35], Omics 
Playground v.3.4.1 [36], and SRplot platform [37], 
which were powerful tools for conducting functional 
enrichment analyses. Briefly, The Cancer Genome 
Atlas Colon Adenocarcinoma (TCGA-COAD) 
patients were divided into two groups based on the 
median expression of the SLFN5 gene. Lists of 
significant DEGs from these cohorts were then input 
into an algorithm to investigate biological processes, 
molecular functions, and cellular components [38]. To 
provide a more comprehensive analysis, we ranked 
the DEG gene list and conducted a gene set 
enrichment analysis (GSEA) using the Hallmark 
database [39]. For pathway analysis, we initially 
downloaded genes co-expressed with SLFN5 in 
COAD patients from TCGA via the cbioportal 
platform. Subsequently, MetaCore was employed to 
construct networked pathways derived from an input 
gene list to explore biological processes [40-42]. 

2.3 Survival analysis 
 To investigate the association between SLFN5 

expression and the overall survival of COAD patients 
from TCGA, we utilized the Kaplan-Meier (KM) 
plotter within the UALCAN platform [43]. UALCAN 
allows us to analyze pre-computed KM survival 
curves for genes of interest across various cancer 
types, including COAD. In the current analysis, we 
focused on COAD patients and compared the survival 
of patients with high and low SLFN5 expression 
levels based on the UALCAN predefined cut-off. The 
KM plot generated by UALCAN provides hazard 
ratios (HRs) with 95% confidence intervals (CIs) and a 

log-rank p-value to assess the statistical significance of 
the observed difference in survival between the two 
groups. This approach leverages the robust and 
well-annotated TCGA data, eliminating the need for 
separate data retrieval and analysis from original 
datasets [44-46].  

2.4 DNA methylation and Cancer Cell Line 
Encyclopedia analyses 

In this study, we performed DNA methylation 
analysis to examine variations in methylation patterns 
of SLFN5 in COAD patients using data from the 
TCGA dataset. To achieve this, we utilized several 
methylation databases by MethSurv [47], which is a 
comprehensive tool for investigating the expression 
and prognostic patterns of single CpG methylation 
sites of SLFN5 in COAD [48-50]. In conjunction with 
investigating SLFN5 mRNA expression levels from 
the TMNplot database [51], we further examined its 
expression levels in different cell lines using the 
Cancer Cell Line Encyclopedia (CCLE) database. 
CCLE provides comprehensive access to 
pharmacologic and genetic characterizations of 
diverse human cancer models, while the RNA-Seq 
aligned reads tool was utilized on 60 independent 
COAD cell lines using default settings, as previously 
described [52-54]. 

2.5. Gene set signature analysis and immune 
deconvolution 

The COAD patients from TCGA were grouped 
based on the median expression level of SLFN5 into 
high and low groups. The GSEA was used to identify 
groups of genes that were more or less active 
depending on SLFN5 expression. Results were 
considered to be statistically significant if they met 
specific criteria: a false discovery rate (FDR) of 0.25, a 
normalized enrichment score (NES) of > 1.5 in 
absolute value, and a nominal p-value of < 0.05. A 
positive NES indicated that genes at the top of the list 
were more active in patients with higher SLFN5 
expression [55-59]. These comprehensive analyses 
provide valuable information for identifying potential 
biomarkers, therapeutic targets, and personalized 
treatment strategies in cancer research. 

2.6. Single-cell RNA-sequencing and 
antibody-based protein profiling using the 
Human Protein Atlas  

The Human Protein Atlas (HPA) encompasses a 
comprehensive tissue-based map of the human 
proteome [60], and single-cell type transcriptomics for 
different types of cancers [61]. Therefore, we 
leveraged the HPA to methodically evaluate the 
mRNA and protein levels pertaining to SLFN5 
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expression across both normal and malignant COAD 
tissues. Meanwhile, to investigate how SLFN family 
members contribute to the heterogeneity of COAD, 
we conducted single-cell analysis of colon tissues. 
Results are presented through a dendrogram 
illustrating relationships between different cell types, 
a gene cluster Uniform Manifold Approximation and 
Projection (UMAP) plot depicting gene relationships 
across cell types, and a summary of genes elevated in 
each cell type [62-66]. 

2.7. Drug sensitivity analysis 
 To evaluate the sensitivity of SLFN5 to various 

drugs, we utilized the Genome Set for Cancer 
Analysis (GSCA), this platform including Genomics 
of Drug Sensitivity in Cancer (GDSC) and the Cancer 
Therapeutics Response Portal (CTRP). Using GSCA, 
we identified several small-molecule compounds 
exhibiting significant sensitivity correlations with 
SLFN5, providing a robust framework for exploring 
new therapeutic avenues [67-70]. 

2.8. Statistical analysis 
In this study, all statistical analyses were 

performed using R version 4.1.3. The significance of 
differences among various phenotypic groups was 
evaluated with the Wilcoxon test, which is a 
non-parametric statistical test suitable for comparing 
two independent samples. To address multiple 
testing, p values from the Wilcoxon test were adjusted 
using the FDR method. A p-value of < 0.05 was 
considered statistically significant, as we previously 
described [71-73]. 

3. Results 
3.1. Differential expression levels of SLFN5 in 
COAD 

In this study, leveraging advanced bioinformatic 
tools using bulk sequencing and single-cell 
sequencing, we conducted in-depth analyses of gene 
expressions, functional enrichment, and survival 
patterns (Figure 1). First, expressions of SLFN family 
genes in a pan-cancer analysis were analyzed by 
comparing TCGA cancer patients to normal tissue. 
Expressions of SLFN family genes varied across 
different types of cancer and relevant normal samples 
(Figure 2A). Furthermore, we assessed transcriptional 
levels of SLFN family genes between COAD patients 
and normal tissue. The data revealed that only 
transcription levels of SLFN5 in COAD tissues were 
significantly higher than normal tissue (Figure 2B). 
Subsequently, further analysis suggested that 
methylation levels of the SLFN5 promoter were 
significantly positively associated with malignant 
stages of COAD patients (Figure 3A, B). Next, KM 

curves and log-rank test outcomes also indicated that 
elevated expression of SLFN5 was linked to a shorter 
overall survival (OS) rate in COAD patients (Figure 
3C). 

IHC analyses are a significant method in cancer 
detection as they allow visualization of 
antigen-antibody responses within tumors, which is 
particularly useful for identifying upregulated 
antigens. The HPA database provides IHC images of 
SLFN5 in COAD tissues, illustrating expression 
patterns in both normal colon and COAD tissues. 
IHC-stained images depict the intensities of 
antibodies in both COAD and adjacent normal tissues, 
with a bar chart under each IHC-stained image 
indicating the IHC staining intensity for SLFN5 (high, 
medium, low, and not detected) (Figure 3D). On the 
other hand, clinical validation results of IHC assays 
for SLFN5 protein expression by COAD patients at 
Kaohsiung Armed Forces General Hospital (Figure 4). 
Both IHC analytical results confirmed increased 
protein expression of SLFN5, consistent with the 
above mRNA differential expression analyses. 

3.2. Bulk and single-cell RNA-Seq analysis 
using the HPA 

Given the heterogeneity of COAD, we 
performed single-cell analysis to characterize the 
transcriptomic expression of SLFN5 within different 
cell clusters. A heatmap (Figure 5A) quantitatively 
displays SLFN5 expression levels in conjunction with 
established cellular markers across distinct single-cell 
clusters identified within COAD tissues. 
Accompanying the heatmap is an annotated legend 
categorizing each marker according to its 
corresponding cell type, employing a systematic 
color-coding scheme to delineate groups of cell types 
possessing analogous functional attributes. Herein, 
we comprehensively examined SLFN5 expression 
patterns across diverse cancer types to ascertain 
commonalities and distinctions in its expression 
profile. This assessment aimed to unveil the broader 
oncological significance of SLFN5, extending beyond 
its role in COAD (Figure 5B). Expression dynamics of 
SLFN5 at the single-cell level are depicted through a 
dual-modality approach, incorporating a UMAP plot 
for a distribution analysis (left) and a quantitative bar 
chart for an expression level assessment (right). These 
methodologies collectively elucidated intricate 
expression patterns of SLFN5 within the 
heterogeneous cellular landscape of the COAD tumor 
microenvironment (TME) (Figure 5C). 

 In particular, an immune cell deconvolution 
analysis indicated a correlation between SLFN5 
expression and immune-related cell populations, such 
as regulatory T cells (Tregs). A critical process in 
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tumor development is forming an immunosup-
pressive state within the TME. Tregs are an essential 
type of suppressive immune cell. Research has 
demonstrated that Tregs can inhibit the function of 
effector T cells through various mechanisms, 
including cell surface inhibitors, inhibitory cytokines, 
and direct cytotoxicity. A growing body of preclinical 
data suggests that depleting Tregs or inhibiting their 
function can promote tumor regression. Additionally, 
apoptotic Tregs may exacerbate immunosuppression, 

leading to ineffective immunotherapies targeting 
immunosuppressive pathways. Meanwhile, the 
inclusion of single-cell expression data aimed to shed 
light on potential interactive dynamics between 
SLFN5 expression and immunological constituents 
within the COAD tumor milieu, thereby enriching our 
understanding of the immunobiological under-
pinnings associated with SLFN5's presence (Figure 
5D). 

 

 
Figure 1. Overview of the workflow of the study. 
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Figure 2. Pan-cancer analysis of Schlafen (SLFN) family genes from TCGA patients. (A) Transcript levels of SLFN family genes in normal and cancer tissues from TCGA patients 
via the UALCAN platform. (B) Box plots indicate SLFN family mRNA expression in TCGA dataset, and only SLFN5 had high expression levels in COAD patients (p < 0.05 was 
considered significant). 
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Figure 3. Schlafen 5 (SLFN5) plays an oncogenic role in COAD development. (A-B) SLFN5 promoter methylation levels in COAD were determined by a patient's tumor stage 
(p < 0.05). (C) Kaplan-Meier plot of SLFN5 expression in COAD patients for an overall survival analysis from TCGA patients via the UALCAN platform. (D) Analysis of SLFN5 
in COAD specimens using the Human Protein Atlas (HPA). Protein levels of SLFN5 were examined in clinical COAD specimens from the HPA. IHC images of SLFN5 illustrate 
staining intensities. The HPA provided IHC images and patient information, including both normal and tumor samples. Bar charts present quantified IHC staining in COAD 
specimens, allowing for a comparative analysis. 

 

3.3. Methylation and CCLE analysis  
For the DNA methylation analysis, a heatmap 

was created to show locations of DNA methylation in 
SLFN5 in COAD. Methylated CpG sites were 
identified for SLFN5, among which one site had high 
expression levels. Out of all of the sites, cg05897169, 
cg13451886, cg06940925, and cg22894742 showed 
higher levels of DNA methylation (Figure 6A). On the 
other hand, the RNA-Seq analysis from the CCLE was 
employed to evaluate SLFN5 mRNA expression levels 
across different CRC cell lines. The color gradient 

within the presentation, ranging from red (indicating 
high expression) to blue (indicating low expression), 
provides a comparative view of SLFN5 transcript 
abundances in each cancer cell line, thus offering 
insights into its regulatory landscape across diverse 
cellular backgrounds (Figure 6B). 

3.4. GSEA and gene ontology (GO) analysis 
Expression levels of the SLFN5 gene were 

divided into high- and low-expression cohorts based 
on median expression values from TCGA-COAD 
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patients. A subsequent differential expression 
analysis utilized the DESeq2 computational method 
within the R/Bioconductor ecosystem. This analysis 
facilitated the identification of DEGs correlated with 
SLFN5 expression levels. The derived gene expression 
disparities provided the foundation for a subsequent 
GSEA, employing Hallmark gene sets within the fgsea 
package of R/Bioconductor. GSEA results illuminated 
statistically significant gene sets, characterized by 
their p values and NESs, thereby elucidating 
functional implications and biological relevance of 
these gene sets with SLFN5 expression disparities in 
COAD (Figure 7). 

For the GO analysis, functional and pathway 
enrichment analyses were performed on genes 
co-expressed with SLFN5 in COAD using TCGA data. 
The GO analysis was conducted to explore biological 
processes, cellular components, and molecular 
functions associated with genes co-expressed with 
SLFN5 in COAD. The graphical representation 
utilizes various circle sizes to represent the number of 
genes involved in each specific GO term and quantify 
their biological impacts. Additionally, color 
gradations within these graphical elements signify p 
values associated with GO terms, providing a 
statistical measure of the significance of enrichment. 
This analytical approach aids in decoding complex 
biological narratives underpinning the network of 
genes co-expressed with SLFN5 (Figure 8A). For the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis, an examination was 
undertaken to identify and analyze pathways 
enriched within the cohort of SLFN5 co-expressed 

genes, utilizing comprehensive datasets available 
within the KEGG database. This pathway enrichment 
analysis shed light on the broader biological 
pathways and mechanisms potentially modulated by 
the SLFN5 co-expression network, offering insights 
into systemic biological interactions and pathways 
implicated in COAD's etiology and progression 
(Figure 8B). 

3.5. Exploring biological pathways and disease 
associations through the MetaCore database 

To investigate connections between DEG lists 
and downstream SLFN5-regulated networks across 
various biological pathways and diseases, an 
enrichment analysis was conducted using MetaCore 
platform. Upon inputting co-expressed genes from 
the TCGA database into MetaCore, numerous 
pathways and networks were identified as being 
associated with metabolism, specifically "Chemokines 
in inflammation in adipose tissues and liver in 
obesity, type 2 diabetes and metabolic syndrome X", 
"Immune response_IFN-alpha/beta signaling via 
JAK/STAT networks". This summary encapsulates 
molecular intricacies involved in the regulation and 
function of the ISGF3 complex within the broader 
context of cellular signaling pathways, offering 
insights into the mechanisms by which cells 
orchestrate a multifaceted response to environmental 
challenges (Figure 9). Additional information 
regarding remaining pathways and network-related 
data are given in Supplementary data 
(Supplementary Figure S1-3, Table S1). 

 

 
Figure 4. IHC expression of Schlafen 5 (SLFN5) in patients at different stages of colorectal adenocarcinoma (COAD) at Kaohsiung Armed Forces General Hospital. (A) 
Immunohistochemical staining showing the expression of SLFN5 in normal colon tissues, and COAD tissues at different stages (I-IV). (B-C) Quantitative analysis of SLFN5 positive 
cell rates in normal and various stages of COAD. The bar graph represents the percentage of positive cells in each group: Normal (n=4), Stage I (n=13), Stage II (n=15), Stage III 
(n=14), and Stage IV (n=6). Statistical significance was noted with **p<0.001 and ***p<0.001. 
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3.6. Association between SFLN5 and drug 
sensitivity  

In our study, we assessed the correlation 
between SLFN5 expression and the sensitivity of 
various drugs using the GSCA database. The results 

revealed significant correlations for multiple drugs, 
both positive and negative, indicating how SLFN5 
expression levels could potentially influence the 
efficacy of these treatments (Figure 10).  

 

 
Figure 5. Analysis of Schlafen 5 (SLFN5) in tumor microenvironment characteristics in colorectal adenocarcinoma (COAD). (A) Heatmap shows SLFN5 expression (on top) and 
well-known cell-type markers in different single cell-type clusters of this tissue. The panel on the left shows which cell type each marker is associated with. Color coding is based 
on cell type groups, each consisting of cell types with common functional features. (B) Correlations of SLFN5 in a pan-cancer analysis. (C) RNA expressions in the single-cell type 
clusters identified in this tissue were visualized by a UMAP plot (left) and a bar chart (right). (D) Immune cell expression of SLFN5 as obtained from the Human Protein Atlas. 
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Figure 6. DNA methylation of Schlafen 5 (SLFN5), and transcript expression levels of SLFN5 in different colorectal cancer cell lines (A) Heatmap of DNA methylation expression 
levels of SLFN5 in TCGA colorectal adenocarcinoma (COAD) patients. (B) RNA-sequencing analysis of SLFN5 mRNA in different colorectal cancer cell lines from the Cancer Cell 
Line Encyclopedia (CCLE). For each cancer cell line, high SFLN5 expression is indicated in red (left), while low expression is indicated in blue (right). 
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Figure 7. Hallmark signaling pathway analysis of Schlafen 5 (SLFN5) in colorectal adenocarcinoma (COAD). TCGA colorectal cancer patients were stratified into two groups 
based on the median SLFN5 expression value. A gene set enrichment analysis (GSEA) was then performed on these two groups using the Hallmark database. Results of the 
analysis revealed relevant enriched pathways in COAD groups with elevated SLFN5 expression. 
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Figure 8. Functional and pathway enrichment analyses were performed specifically on genes co-expressed with Schlafen 5 (SLFN5) in colorectal adenocarcinoma (COAD) 
TCGA patients. (A) The analysis involved gene ontology (GO) terms, including biological processes, cellular components, and molecular functions. Circle sizes in the visual 
representation of the results indicate the number of genes associated with each function, while colors of the bubbles correspond to p values, providing information about the 
statistical significance of the enrichment. (B) Pathway analysis of SLFN5 co-expressed genes in the KEGG database. 

 
Figure 9. MetaCore pathway analysis of Schlafen 5 (SLFN5) co-expressed genes in COAD patients from TCGA. (A) The MetaCore pathway enrichment analysis was conducted 
for genes co-expressed with SLFN5 in COAD patients, revealing potential pathways involving these genes ranked by their log p values. (B) The "Immune response_IFN-alpha/beta 
signaling via JAK/STAT" is highlighted, with symbols representing proteins and arrows indicating protein interactions (green for activation and red for inhibition). 
Thermometer-like histograms visually represent microarray gene expressions, with blue indicating downregulation and red indicating upregulation. 
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Figure 10. Drug sensitivity of Schlafen 5 (SLFN5) oncogene from GSCA. (A) Correlation between Genomics of Drug Sensitivity in Cancer (GDSC) data for FDA-approved drugs 
according to the SLFN5 expression levels. (B) Correlation of Cancer Therapeutics Response Portal (CTRP) drug data and SLFN5. 

 

4. Discussion 
 Despite significant progress in developing new 

therapies and improving prognoses for COAD 
patients, a deeper understanding of the molecular 
signaling pathway underlying these therapeutic 
effects remains crucial for further treatment 
optimization. Especially, some patients are diagnosed 
with advanced stage COAD, characterized by the 
presence of malignant growth that has already spread 
to regional lymph nodes. Therefore, there is a critical 
need to develop innovative biomarker-based 

prognostic techniques to facilitate early-stage COAD 
identification [74]. Oncogenes are critical genes that 
contribute to transforming normal cells into 
malignant ones, and individual pathways 
characterize tumor genesis and progression. 
Understanding these aspects may help future 
anticancer research and prevent cancer development 
[75]. As massive datasets have become available 
globally, more advanced high-throughput analysis 
approaches are necessary to analyze these big data. 
This study sought to identify novel biomarkers, 
explore molecular pathways, and evaluate treatment 
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modalities as examples of avenues to contribute to the 
existing knowledge base and potentially improve 
patient outcomes. 

 Through SLFN5-regulated networks, the 
analysis revealed that SLFN5-regulated chemokines 
are involved in inflammation in adipose tissues and 
the liver in obesity, type 2 diabetes, and metabolic 
syndrome X as well as the immune system. These data 
are consistent with previous research [76], such as 
platelet endothelial cell adhesion molecule 
(PECAM)-1 defects being key events for enhanced 
Akt/glycogen synthase kinase (GSK)-3β signaling in 
the diabetes mellitus (DM)-associated TME [77]. 
Meanwhile, our pathway enrichment analysis 
revealed that genes co-expressed with SLFN5 were 
correlated with "Immune response IFN-alpha/beta 
signaling via JAK/STAT" in COAD patients. Type I 
IFNs, via binding to the IFN-alpha/beta receptor, 
activate the JAK/STAT pathway. STATs and their 
complexes (INF-stimulated gene factor-3 (ISGF3) or 
STAT1/STAT2 heterodimers) induce gene 
expressions required for antiviral (Mx1, adenosine 
deaminase, RNA-specific (ADAR1), and 
2'-5'-oligoadenylate synthetase-1 (OAS1)), 
anti-proliferative (such as hypoxia-inducible 
factor-1A (HIF1A)), and immune response 
(INF-inducible T-cell-alpha chemoattractant (I-TAC), 
IFN-gamma, and chemokine CC-motif ligand 2 
(CCL2)) functions of type I IFNs [78-82]. 

 It is worth mentioning that Tregs play a crucial 
role in modulating immune responses by suppressing 
excessive activation of effector T-cell subsets, 
including T-helper cell type 1 (Th1) Th2, and Th17 
cells, thus contributing to the maintenance of 
intestinal homeostasis [83-85]. However, the precise 
roles and predictive potentials of Tregs in COAD 
remain ambiguous. In particular, our immune cell 
deconvolution analysis uncovered correlations 
between SLFN5 expression and immune-related cell 
populations, including Tregs, in COAD. Nevertheless, 
the specific role of SLFN5 in COAD-infiltrating Tregs 
remains to be elucidated. Further investigation into 
this relationship may provide valuable insights into 
the immunoregulatory mechanisms underlying 
COAD pathogenesis. In detail, our immune cell 
deconvolution analysis revealed a correlation 
between SLFN5 expression and immune-related cell 
populations, such as Tregs. This cascade of events 
underscores the complexity and specificity of the 
regulatory mechanisms governing gene transcription 
in response to external and internal cues, highlighting 
the intricate interplay between various signaling 
molecules and transcription factors in cellular defense 
mechanisms [86-88]. Meanwhile, through drug 
sensitivity results of SFLN5 with potential targeted 

drugs, which may have therapeutic potential for 
COAD, and these data are also consistent with 
previous research. 

The present study had several limitations, the 
study would benefit from additional validation and 
experimental results to further support and 
strengthen the findings. We validated our data via 
IHC assays of COAD clinical patients, however, the 
limited sample size in this study may restrict the 
generalizability and statistical power of the observed 
associations. Despite these limitations, this study 
established crucial groundwork, identifying avenues 
for future research and emphasizing the necessity for 
comprehensive and multifaceted investigations into 
the involvement of SLFN5 in COAD development. 

5. Conclusions 
 This study investigated the role of SLFN5 in 

COAD. Bulk RNA-sequencing revealed significant 
overexpression of SLFN5 in COAD tissues compared 
to normal tissue. Higher SLFN5 expression correlated 
with poorer overall survival in COAD patients. 
Immunohistochemistry confirmed elevated SLFN5 
protein expression of COAD tissues s compared to 
normal tissues. Single-cell analysis identified distinct 
SLFN5 expression patterns across different cell types 
within the COAD tumor microenvironment. 
Furthermore, SLFN5 expression correlated with 
Tregs, suggesting a potential role in immune 
modulation. DNA methylation analysis revealed 
specific CpG sites associated with SLFN5 expression. 
Functional enrichment analyses identified pathways 
associated with SLFN5 co-expression, including 
immune response and metabolic regulation. In silico 
drug sensitivity analysis revealed potential 
therapeutic drugs targeting SLFN5. These findings 
highlight SLFN5 as a promising biomarker and 
therapeutic target for further investigation in COAD. 
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