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Abstract 

Hyperbaric oxygen (HBO) therapy can attenuate neurological impairment after traumatic brain injury 
(TBI) and alleviate intestinal dysfunction. However, the role and mechanism of HBO therapy in intestinal 
dysfunction following TBI remain unclear. Herein, by establishing a mouse model of controlled cortical 
impact (CCI), we found that HBO therapy reduced histopathological lesions and decreased the levels of 
inflammatory and oedema proteins in the intestinal tissues of mice 10 days after TBI. We also showed 
that HBO therapy improved microbiome abundance and probiotic (particularly g_Bifidobacterium) 
colonisation in mice post-CCI. Then, we identified that the m6A level imcreased notably in injured cortical 
tissue of CCI+HBO group compared with the CCI group following CCI. Thus, our results suggested that 
HBO therapy could alleviate TBI-induced intestinal dysfunction and m6A might participate in this 
regulation process, which provides new insights for exploring the specific mechanism and targets of HBO 
in the treatment of intestinal dysfunction after TBI, thereby improving the therapeutic effect of HBO. 
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Introduction 
Traumatic brain injury (TBI) is a major public 

health concern; severe brain injury develops rapidly 
and is the leading cause of death from trauma[1]. 
Approximately 69 million TBIs occur worldwide 
annually [2, 3]. TBI can affect downstream 
communication from the brain to the gut in the 
brain-gut axis (BGA), including afferent and efferent 
signals involving crosstalk between neurones, 
hormones, and immunity, resulting in disorders of 
immune regulation, afferent nerve signals, 
blood-brain barrier, intestinal barrier function, 
digestion, and absorption[4]. Although the number of 
TBI-related deaths has decreased markedly, effective 

therapies to promote the recovery of TBI patients are 
still lacking. Therefore, there has been a major shift in 
TBI studies regarding neural recovery[5]. 

Several animal and clinical studies have shown 
that hyperbaric oxygen (HBO) can promote the 
recovery of neurological function and improve 
cognitive function and prognosis of TBI[6-8]. Other 
studies have confirmed that HBO therapy can 
improve intestinal epithelial barrier dysfunction after 
spinal cord injury in rats[9]. In addition, HBO 
treatment can ameliorate intestinal microbiota 
disorders after chronic stress[10]. However, the 
therapeutic effect of HBO on intestinal dysfunction 
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following TBI remains unclear, and the intervention 
mechanism of HBO therapy on intestinal dysfunction 
caused by TBI requires further exploration. 

N6-methyladenosine (m6A) is one of the most 
common post-transcriptional mRNA modifications in 
eukaryotes and is involved in various immune and 
inflammatory responses[11]. m6A plays an important 
role in both the brain and gut. The m6A modification 
regulates the activation of various nerve conduction 
pathways and plays a significant role in the 
development, differentiation, and regeneration of 
neurones [12,13]. Furthermore, m6A has a crucial effect 
on communication between the gut microbiome and 
the host[14, 15]. In our previous study, we confirmed 
that YTHDF1 (one of m6A reading proteins) knockout 
could reduce TBI-induced BGA dysfunction in mice, 
wherein we found that YTHDF1 knockout decreased 
the level of inflammatory proteins in brain and 
intestinal tissue after TBI[2]. However, whether m6A 
participates in HBO therapy for TBI-induced 
intestinal dysfunction remains elusive. To confirm the 
therapeutic effect of HBO on intestinal dysfunction 
post-TBI, we performed controlled cortical impact 
(CCI) in C57BL/6J mice; assigned the HBO therapy 
group to the intervention group; and compared 
differences in brain defect area and surviving neuron 
count in brain tissues, the ratio of villus height to 
crypt depth (V/C), levels of inflammation and 
oedema proteins in intestinal tissues, and composition 
of the faecal microbiome. Finally, we identified the 
differentially expressed levels of m6A to determine 
whether m6A is involved in the process of HBO 
therapy in TBI-induced intestinal dysfunction. 

Materials and Methods 
Animals and grouping 

C57BL/6J male mice, aged 8-12 weeks and 
weighing 25±4 g, were provided by the Animal Centre 
of Nanjing Agricultural University (Jiangsu, China). 
The mice were housed in a standardised SPF animal 
laboratory at a constant temperature (24 °C) and 
humidity (50%) under a 12 h light-dark cycle and 
allowed free access to food and water. They were 
randomly divided into two groups after 1 week of 
acclimation: (1) CCI group (n=9) and (2) CCI + HBO 
group (n=9). There were no marked differences 
between the two groups in terms of general health, 
locomotor activity, reactivity, or neurological reflexes. 

CCI procedure 
Before inducing CCI injury, sodium 

pentobarbital (65 mg/kg) was injected 
intraperitoneally to anaesthetise the mice, and the 
operation was initiated once pedal reflexes were no 
longer present. The core body temperature was 

maintained at 37 °C through a heating pad during 
surgery. The heads of the mice were fixed in a 
stereotaxic frame, and a 4-mm-diameter craniotomy 
was performed at 2.0 mm posterior to the bregma and 
2.0 mm lateral to the midline over the right 
hemisphere. A 3.0-mm rounded metal tip attached to 
the Pin-Point CCI device (Model PCI3000, Hatteras 
Instruments Inc., Cary, NC, USA) was angled 
vertically towards the brain surface. A severe injury 
was performed with a 2.0-mm depth, 3.0 m/s speed, 
and 180 ms procedural duration[2] (Supplemental 
figure 1). The mice were removed from the stereotaxic 
holder after surgery, and the wound was lightly 
sutured. Body temperature was maintained in heated 
cages after the operation, and the mice were returned 
to their original cages after they were fully awake. 
Hyperbaric oxygen treatment 

Mice in the CCI+HBO group began receiving 
HBO treatment in an experimental hyperbaric 
chamber 4 h after surgery. The chamber was flushed 
with 100% O2 for 5 min to avoid carbon dioxide 
accumulation. Compression to 2.5 atmospheres 
absolute pressure (ATA) was performed for 15 min, 
followed by maintaining the pressure at 2.5 ATA 
while inhaling 100% oxygen for 60 min. Subsequently, 
decompression to normobaric air was conducted for 
15 min[16,17]. In the whole process, The mice were 
allowed free access to food and water in the chamber. 
According to the above treatment regimen, mice 
received HBO treatment once daily for 10 consecutive 
days. The mice in the CCI group inhaled 21% oxygen 
at 1.0 ATA postoperatively. 

Sample collection 
One mouse died in the CCI+HBO group and 

three mice died in the CCI group. They were 
supplemented and given the same CCI and HBO 
treatments. Haematoxylin and eosin (HE) staining 
was performed on three mice in each of the two 
groups 10 days after CCI. Mice were euthanised via 
intraperitoneal injection of sodium pentobarbital (65 
mg/kg) and perfused transcardially with 
phosphate-buffered saline, followed by 50 mL of 4% 
paraformaldehyde. The brains were promptly 
removed from the mouse body and fixed in 4% 
paraformaldehyde at 4 °C for 48 h. A vibratome (Leica 
VT 1000S, Wetzlar, Germany) was used to obtain 
coronal sections containing the entire hippocampus (–
0 mm, –3.5 mm) relative to the bregma. A cryostat 
(Leica CM 1950) was used to cut serial coronal 
sections (30 μm thick) for HE staining (n = 3 per 
group). Jejunal tissue was excised, fixed in 4% 
paraformaldehyde solution, dehydrated using 
ethanol and xylene, and embedded in paraffin. In 
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addition, 5 mm-thick sections were cut for HE 
staining. Furthermore, the injured cerebral cortex 
(respective n=6) and jejunal tissue (respective n=6) 
were promptly dissected, weighed, frozen in liquid 
nitrogen, and then stored at −80 °C for enzyme-linked 
immunosorbent assay (ELISA). Moreover, the faecal 
samples (respective n=3) were promptly collected, 
weighed, frozen in liquid nitrogen, and then stored at 
−80 °C for SMRT sequencing. 

HE 
Jejunal and brain sections were rinsed with 

dH2O, stained with haematoxylin for 6 min, and then 
decolourised in acid alcohol for 1 s. Before immersion 
in LiCO3, sections were rinsed with dH2O for 3 s and 
counterstained with eosin for 15 s. The sections were 
rinsed with dH2O and dehydrated with 95% ethyl 
alcohol for 2–3 minutes and 100% ethyl alcohol for 2–3 
minutes. Subsequently, the sections were cleared with 
xylene for 2–5 min, mounted with DePeX (Thermo 
Fisher Scientific Inc., Waltham, MA, USA) in a fume 
hood, and visualized using an inverted microscope at 
100× magnification (Nikon, Tokyo, Japan). Digital 
images were captured using a SPOT microscope 
camera (Diagnostic Instruments, Sterling Heights, MI, 
USA).  

ELISA 
The purified proteins were resuspended in 

carbonate buffer pH 9.6 at a concentration of 5 μg/ml, 
dispensed into 96-well polystyrene plates at a final 
volume of 50 μl per well, and fixed overnight at 4 °C. 
The plates were then blocked with 
phosphate-buffered saline (PBS) and 5% milk for 1 h 
at 22-26 °C. Next, the sera dilution was performed in 
PBS and 1% milk at a concentration of 1/200. Serum 
samples were incubated for 1 h at 37 °C. After three 
washes with PBS-Tween 0.05%, the cells were 
incubated with a secondary antibody, anti-human 
immunoglobulin G (IgG), coupled with peroxidase 
(Invitrogen Life Technologies, Frederick, MD, USA). 
Development was carried out using 0.4 mg/mL 
O-phenylenediamine dihydrochloride (OPD) in 
citrate buffer pH 5 with 0.024% hydrogen peroxide 
(H2O2) after additional washing with PBS-Tween 
0.05%. Finally, the optical density (OD) at 450 nm was 
measured in a microplate reader (Mindray, Shenzhen, 
PR China). 

RNA isolation and RNA m6A quantification  
Total RNA was extracted using TriReagent 

(Sigma, T9424) according to the manufacturer’s 
protocol. Then, the absolute amount of m6A present in 
total RNA was measured through the ELISA-based 
EpiQuik m6A RNA Methylation Quantification Kit 
(Epigentek, P-9005) according to the manufacturer’s 

protocol. Quantification was performed via a 
Nanodrop and Bioanalyzer system (Thermo, 
Nanodrop 1000), and 200 ng of RNA was added to the 
assay wells. The m6A levels were quantified through 
measuring absorbance. Calculations were performed 
based on a standard curve.  

PCR amplification and SMRT sequencing  
Using the E.Z.N.A.® Soil DNA Kit (Omega 

Biotek, Norcross, GA, U.S.), total DNA was extracted 
from the faecal samples according to the 
manufacturer’s protocols. The V1-V9 region of the 
bacterial 16S ribosomal RNA gene was amplified via 
PCR (95 °C for 2 min, followed by 27 cycles at 95 °C 
for 30 s, 55 °C for 30 s, and 72 °C for 60 s and a final 
extension at 72 °C for 5 min) using primers 27F 
5′-AGRGTTYGATYMTGGCTCAG-3′ and 1492R 
5′-RGYTACCTTGTTACGACTT-3′, where the barcode 
is an eight-base sequence unique to each sample. 
PCRs were performed in triplicate in a 20 μL mixture 
containing 4 μL of 5 × FastPfu Buffer, 2 μL of 2.5 mM 
dNTPs, 0.8 μL of each primer (5 μM), 0.4 μL of FastPfu 
Polymerase, and 10 ng of template DNA. Amplicons 
were extracted from 2% agarose gels and purified 
using an AxyPrep DNA Gel Extraction Kit (Axygen 
Biosciences, Union City, CA, U.S.) following the 
manufacturer’s instructions. Next, SMRTbell libraries 
were prepared from the amplified DNA through 
blunt ligation according to the manufacturer’s 
instructions (Pacific Biosciences). Purified SMRTbell 
libraries from the Zymo and HMP mock communities 
were sequenced on dedicated PacBio Sequel II 8 M 
cells using the Sequencing Kit 2.0 chemistry. Finally, 
the purified SMRTbell libraries from the pooled and 
barcoded samples were sequenced on a single PacBio 
Sequel II cell. 

Statistical analyses  
All data are presented as the mean ± standard 

error (SE). Student’s t-tests were used to evaluate the 
difference between two groups, and a p value < 0.05 
was considered significant. All analyses were 
performed using SPSS version 25.0 (IBM, New York, 
NY, USA). Bar charts display the predominant 
abundant phyla and species (>1% abundance). The 
relative abundance was detected between sequencing 
technologies using a paired Student’s t-test. 
Significant differences in taxa between the CCI and 
CCI+HBO groups at 10 days post-CCI were compared 
using linear discriminant analysis effect size (LEfSe), 
which employs a nonparametric factorial Kruskal–
Wallis test with a subsequent unpaired Wilcoxon test. 
An LDA > 3 and a p value < 0.05 were considered 
significant. Alpha diversity (ACE, Chao, Simpson’s, 
and Shannon indices) was compared between CCI 
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and CCI+HBO samples using a t-test with two 
dependent means, and the significance level was set at 
p < 0.05. Principal coordinate analysis plots and 
clustering dendrograms were generated to visualise 
the beta diversity of the faecal microbiomes in the CCI 
and CCI+HBO groups. 

Results 
HBO decreases cortical tissue loss while 
increasing neuronal cell survival and jejunal 
tissue V/C ratio following CCI 

Ten days after CCI, HE staining showed a 
marked loss of cortical tissue in the CCI group 
compared with that of the CCI+HBO group (Figure 
1A) (p <0.05). Meanwhile, the CCI group showed a 
distinct decrease in the total neuron count in the 
perilesional zone to trauma compared to that in the 
CCI+HBO group (Figure 1B). In addition, villus 
height decreased, while crypt depth increased in the 
jejunal tissue, and the V/C ratio of the CCI group 
decreased markedly compared with that of the 
CCI+HBO group (Figure 1C).  

HBO decreases inflammation and oedema 
protein level of jejunal tissue post-CCI 

Ten days after CCI, ELISA analysis revealed a 
notable decrease in inflammatory proteins, including 
hypoxia-inducible factor 1-alpha (HIF-1a) and the 
oedema protein aquaporin 4 (AQP4), while regulatory 
T cells (Treg) showed a significant increase in the 
CCI+HBO group compared to that in the CCI group 
in jejunal tissue. Intriguingly, there was no marked 
difference in injured cortical tissue between the 
CCI+HBO and CCI groups (Figure 2A-C).  

HBO increases microbiome abundance, and 
changes microbiome structure and 
microbiome colonization after CCI 

The raw data from Illumina sequencing were 
processed using the QIIME2 pipeline, and their 
relative abundance was calculated and grouped 
according to mouse origin (Figure 3). The results 
indicated different profiles of communities in the 
faecal microbiomes of CCI+HBO and CCI mice 10 
days after CCI. At the class level, the most abundant 
microbiomes in the CCI+HBO group were Clostridia 
(61.5%), Bacteroidia (15.8%), Erysipelotrichia (10.3%), 
and Bacilli (6.8%), while the CCI group microbiomes 
were dominated by Clostridia (62.9%), Bacteroidia 
(17.0%), Bacilli (7.2%), and Erysipelotrichia (2.6%). At 
the family level, the most abundant microbiomes in 
the CCI+HBO group were Lachnospiraceae (39.5%), 
Muribaculaceae (14.2%), and Oscillospiraceae (12.4%), 
while the CCI group microbiomes were dominated by 
Lachnospiraceae (37.7%), Oscillospiraceae (14.8%), 

and Muribaculaceae (13.7%). At the genus level, the 
most abundant microbiomes in the CCI+HBO group 
were Kineothrix (19.5%), Allobaculum (10.1%), 
Duncaniella (7.9%), and Acetatifactor (4.9%), while the 
CCI group microbiomes were dominated by 
Kineothrix (10.9%), Acetatifactor (6.9%), Duncaniella 
(5.4%), and Allobaculum (1.7%). At the order level, the 
most abundant microbiomes in the CCI+HBO group 
were Eubacteriales (61.5%), Bacteroidales (15.8%), 
Erysipelotrichales (10.3%), and Lactobacillales (6.8%), 
while the CCI group were dominated by 
Eubacteriales (62.9%), Bacteroidales (17.0%), 
Lactobacillales (7.1%), and Erysipelotrichales 2.6%). 
At the species level, the most abundant microbiomes 
in the CCI+HBO group were Kineothrix alysoides 
(19.5%), Allobaculum stercoricanis (10.1%), Acetatifactor 
sp900066365 (4.0%), and Duncaniella freteri (3.0%), 
while the CCI group microbiomes were dominated by 
Kineothrix alysoides (10.7%), Acetatifactor sp900066365 
(5.5%), Duncaniella freteri (3.4%), and Allobaculum 
stercoricanis (1.7%). 

For alpha diversity, the Chao1 and ACE indices 
indicated the abundance of the microbiome, whereas 
Shannon’s and Simpson’s indices demonstrated the 
diversity of the microbiome. The results showed that 
the Chao1 and ACE indices of faecal microbiomes in 
CCI+HBO mice were significantly higher than those 
in CCI mice at 10 days post-CCI (p < 0.05) (Figure 
4A-B). However, Shannon’s and Simpson’s indices of 
faecal microbiomes in CCI+HBO and CCI mice were 
similar (Figure 4C-D). 

The beta diversity exhibiting the community 
distance between samples was evaluated by 
unweighted and weighted UniFrac distances (Figure 
5A-D), which indicated a marked difference (p < 0.05) 
in the microbiome profiles between the CCI+HBO 
and CCI groups at 10 days after CCI.  

Differential taxa between CCI+HBO and CCI 
mice were analysed using the LefSe method. The 
results in Figure 6A illustrate the enriched 
microbiome taxa in each group that had a >2-fold 
change and P < 0.05 (Kruskal‒Wallis test). The faecal 
microbiome of the CCI+HBO mice diverged 
significantly from that of the CCI mice 10 days after 
CCI (Figure 6B), indicating diverse microbiome 
colonisation. 

HBO increases m6A level in brain tissue 
following CCI 

ELISA analysis revealed that the total m6A level 
increased markedly in the CCI+HBO group compared 
to that in the CCI group in injured cortical tissue 10 
days after CCI. However, there was no notable 
difference between the CCI+HBO and CCI groups in 
jejunal tissue (Figure 7).  
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Figure 1. Histological images of HE coronal sections showing the brain tissue loss and neuronal survivals at 10 days post-CCI. (A) The lesion volume increased in CCI group 
compared to CCI+HBO group (n = 3 mice per group). Scale bars: 200 μm. The lesion volume was quantified (Calculation formula: lesion volume (%) = (healthy side 
volume-injured side volume) / healthy side volume × 100%). * p<0.05. (B) The neuronal survivals decreased in CCI group compared to CCI+HBO group. Scale bars: 20 μm. The 
number of neuronal survival (5 fields/ section) was quantified. Values are means ±SEs. * p<0.05. (C) The villus height decreased and the crypt depth increased in CCI group 
compared to CCI+HBO group. Scale bars: 40 μm. The V/C ratio (5 fields/ section) was quantified. Values are means ± SEs. * p<0.05. 
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Figure 2. ELISA revealed that HBO significantly affected the inflammation and edema protein level in jejunal tissue at 10 days post-CCI. (A) Compared to CCI group, the 
inflammation protein HIF-1a level of CCI+HBO group was decreased markedly in jejunal tissue while there was no notable difference in injured cortical tissue. (B) Compared to 
CCI group, the edema protein AQP4 level of CCI+HBO group was decreased significantly in jejunal tissue while there was no marked difference in injured cortical tissue. (C) 
Compared to CCI group, the Treg level of CCI+HBO group was increased s markedly in jejunal tissue while there was no significant difference in injured cortical tissue. Values 
are means ± SEs. *P < 0.05, ns = not significant. 

 

Discussion 
Several studies have focused on the role of HBO 

in the treatment of various neurological diseases such 
as stroke[18-20], intracerebral haemorrhage[21], 
glioma[22,23], Alzheimer's disease[24,25], Parkinson's 
disease[26,27], cerebral palsy[28,29], and TBI[30-33]. In 
addition, numerous studies have confirmed that HBO 
therapy can improve intestinal dysfunction after 
spinal cord injury[9,34] and chronic stress[10]. However, 
few studies have focused on the role of HBO in 
intestinal dysfunction following TBI. We observed 
that HBO therapy reduced histopathological lesions 
and decreased the levels of inflammation and oedema 
proteins in the intestinal tissues of mice 10 days after 
TBI. It also improved microbiome abundance and 
probiotic colonisation in mice post-CCI. We found 
that HBO increased the level of m6A in injured cortical 
tissue, suggesting that m6A may be involved in the 
regulation of TBI recovery after HBO treatment. 

After TBI, TBI-induced neuroinflammation 
affects gut function via BGA[35]. Our results showed 
that HBO attenuated structural lesions in both brain 
and intestinal tissues following TBI. At the protein 
level, hypoxic conditions induce HIF-1a expression, 
which regulates the releases of inflammatory 

cytokines[36]. Tregs are a special family of inhibitory 
CD4+T cells that act as key negative regulators of 
inflammation in various biological environments. 
Tregs show a strongly enhanced inhibitory function 
when exposed to inflammation[37]. HBO therapy 
boosts Treg expression while reducing HIF-1α 
expression in mice with antigen and collagen-induced 
arthritis[38]. In addition, AQP4 expression increases in 
TBI[39] and colonic inflammation[40], and 
AQP4-knockout attenuates experimental colitis in 
mice[41]. Our results revealed that HBO blocked 
intestinal inflammation and oedema in mice 10 d after 
TBI. However, the expression of inflammatory and 
oedema proteins in the brain tissue was not 
significantly different between the CCI+HBO and CCI 
groups at 10 days post-TBI. We speculated that 10 
days after CCI, although inflammation and oedema 
reactions in brain tissue had subsided without HBO 
treatment[42-44], they persisted in intestinal tissue. 

The gut microbiome is a rich and complex 
ecosystem composed of viruses, archaea, protists, 
bacteria, fungi, and (occasionally) helminths[45]. Gut 
bacteria are critical for microbiome-BGA[46], and the 
fungi equilibrium is crucial for microbiome 
stability[47]. Microbiome interactions may be involved 
in the microbiome-BGA communication through 
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immune- and nonimmune-modulated crosstalk 
systems[48]. Substantial evidence has revealed that TBI 
can affect the gut microbiome by disrupting BGA[49], 
and host m6A modifications can induce gut 
inflammatory responses to alter the gut 

microbiome[2,50]. M6A could participate in the 
interaction between the host and microbiome, along 
with noncoding RNAs, histone modifications, and 
chromatin remodelling[51].  
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Figure 3. The bar plots reveal the relative abundance of microbiomes in fecal samples of CCI+HBO mice and CCI mice at 10 days after CCI (A = class, B = family, C = genus, 
D = order, and E = species), which were detected by high throughput sequencing on Internal transcribed spacer 2 (ITS2) of ribosomal DNA and analyzed by QIIME2 pipeline. 

 
Figure 4. The comparison of alpha diversity of microbiome in in fecal samples of CCI+HBO mice and CCI mice at 10 days following CCI calculated by 4 different indices: A = 
Chao1 index, B = ACE index, C = Shannon’s index, and D = Simpson’s index. The bars show average diversity with standard error of each group and statistically significant 
difference (*P < 0.05, ns = not significant). 

 
In addition, HBO can remodel the gut 

microbiome and regulate host metabolism to improve 
depression-like behaviour in a chronic stress mouse 
model[52]. Thus, we observed alterations in the faecal 
microbiome and m6A levels following HBO treatment 
for TBI. This study results indicated that the diversity 
of the microbiome was markedly altered in CCI+HBO 

and CCI mice at 10 days after CCI. In alpha diversity, 
the Chao1 and ACE indices of the CCI+HBO mice 
were significantly higher than those of the CCI mice, 
whereas Shannon’s and Simpson’s indices were 
similar; hence, HBO enhanced the abundance of the 
microbiome but not its diversity of the microbiome 
post-CCI. Beta diversity analysis revealed the specific 
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microbiome structure identified in the group samples. 
The unweighted and weighted UniFrac distances 
showed that the faecal microbiomes of CCI+HBO and 
CCI mice had various community structures. The 
distinct characteristics of the microbiome can be 
detected from the class to the species level. The results 
of this study demonstrated that the microbiome 
composition varied between the CCI+HBO and CCI 
groups. Allobaculum, Kineothrix, Ruminococcus, 
Bifidobacterium, and Actinomycetia showed significant 
enrichment in CCI+HBO mice (Figure 6B). 
Allobaculum was one of the intestinal genera that are 
most sensitive to changes in host diet and was 
strongly inversely correlated with circulating leptin 
and expression of several genes that correlated with 
energy expenditure and inflammation[53]. Kineothrix 
produces butyrate, a metabolite that serves as energy 
source of enterocytes and has notable 
anti-inflammatory and immunomodulatory 
properties[54]. Ruminococcus serve to degrade and 
convert complex polysaccharides into a variety of 
nutrients for their hosts[55]. Bifidobacterium has long 
been regarded as a probiotic that modulates the 
microbial structure to improve gut health[56]. 
Actinomycetia play major roles in soil and plant health 

[57]. In addition, Allobaculum[58], Kineothrix[59], and 
Ruminococcus[55] are strictly-anaerobic, and 
Bifidobacterium is obligate anaerobic[60], while 
Actinomycetia is aerobic[57]. The bacterial species 
dominating the microbiota in the gut are strict 
anaerobes[61]. However, gut inflammation can induce 
dysbiosis, which is characterized by significantly 
decreased obligate anaerobic bacteria and markedly 
increased facultative anaerobic bacteria[62]. Dysbiosis 
is the result of the oxidative nature of the host 
inflammatory response[63]. In addition, the 
composition of the gut microbiota is regulated by the 
oxygen[64]. Yong Li et al. found in a study on 
hyperbaric oxygen treatment for Crohn's disease that 
the relative abundance of Bifidobacterium increased 
after HBO treatment while the anaerobic or aerobic 
nature of microbes did not represent the trend of the 
population in their host after HBO treatment[65]. HBO 
can modulate mitochondrial redox, maintain 
mitochondrial integrity, catalyze transcription factors, 
alleviate oxidative stress, and facilitate anti- 
inflammatory effects following TBI[66], which may 
improve post-TBI dysbiosis. The interactions between 
the gut microbiota and host during the process of 
HBO treatment after TBI should be further clarified. 

 

 
Figure 5. The beta diversity of faecal microbiome between samples was showed by principle coordinate analysis (PCoA) and non-metric multidimensional scaling (NMDS) plots 
of A+C unweighted and B+D weighted Unifrac distance illustrating marked difference of faecal microbiome profiles between CCI+HBO and CCI groups (tested by Permanova 
analysis with P < 0.05).  
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Figure 6. LEfSe analysis of fecal microbiome of mice at 10 days after CCI shows the significantly differential taxa between CCI+HBO and CCI mice. A Cladogram (2-fold, P < 
0.05). B LEfSe analysis for differential abundant taxa detected between CCI+HBO and CCI groups. Threshold parameters were set as P =0.05 for the Mann-Whitney U test and 
multiclass analysis=all against all. Linear discriminant analysis (LDA) score >3.0. (Green color labels demonstrate the enriched fungal taxa in CCI+HBO while the red labels 
indicate the taxa enriched in CCI group. 

 
Figure 7. ELISA showed that HBO notably affected the m6A level in injured cortical tissue while there was no marked difference in jejunal tissue at 10 days after CCI.Values are 
means ± SEs. *P < 0.05, ns = not significant. 
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Moreover, m6A RNA modification is an 
important mechanism in the interaction between the 
gut microbiota and the host[67]. Bifidobacterium and 
Lactobacillus species can synthesise folate to enhance 
gut m6A levels, which promotes normal gut 
development[56]. In this study, the results showed that 
the m6A level increased notably in the injured cortical 
tissue of the CCI+HBO group compared to that in the 
CCI group, but there was no significant difference in 
jejunal tissue between the CCI+HBO and CCI groups 
at 10 days after CCI (Figure 7). Therefore, we 
speculated that HBO therapy might alleviate 
TBI-induced intestinal dysfunction via m6A-mediated 
BGA signalling pathway. 

Conclusion 
Our study provides new insights into HBO 

treatment for TBI-induced intestinal dysfunction. 
Further studies are necessary to explore the 
mechanisms of m6A involved in HBO curing 
intestinal dysfunction following TBI. This study had 
several limitations. Firstly, the expression of 
inflammation and oedema proteins between the 
CCI+HBO and CCI groups in the brain tissue was not 
markedly different at 10 days following TBI; 
therefore, a suitable sampling time point is required. 
Secondly, we only described the alteration of total 
m6A levels between the CCI+HBO and CCI groups 
after TBI; changes in the specific gene levels of m6A 
between the CCI+HBO and CCI groups remain to be 
explored in future studies. Thirdly, our study only 
included male mice, and data from female mice 
should be collected. In summary, HBO therapy could 
alleviate TBI-induced intestinal dysfunction, and m6A 
might play a role in the regulatory mechanisms of 
HBO treatment for intestinal dysfunction following 
TBI. 
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