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Abstract 

Uterine leiomyomas (ULM) are the most common benign tumors of the female genitalia, while uterine 
leiomyosarcomas (ULMS) are rare. The sarcoma is diffuse growth, prone to hematogenous metastasis, and has 
a poor prognosis. Due to their similar clinical symptoms and morphological features, it is sometimes difficult to 
distinguish them, and the final diagnosis depends on histological diagnosis. Misdiagnosis of ULM as ULMS will 
lead to more invasive and extensive surgery when it is not needed, while misdiagnosis of ULMS as ULM may 
lead to delayed treatment and poor prognosis. This review searched and studied the published articles on ULM 
and ULMS, and summarized the potential markers for the differential diagnosis of ULMS. These markers will 
facilitate differential diagnosis and personalized treatment, providing timely diagnosis and potentially better 
prognosis for patients. 
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Introduction 
Uterine tumors can be divided into benign and 

malignant. The most common benign uterine tumors 
are uterine leiomyomas (ULM), and the most common 
malignant uterine tumors are endometrial carcinoma 
and uterine sarcoma. Fibroids or myomas, often 
known as uterine leiomyomas, are the most prevalent 
benign tumors of the female genitalia, which occurs in 
1 out of every 4 to 5 women [1, 2]. Despite its benign 
nature, it has a high incidence. Because fibroids are 
often asymptomatic or rarely symptomatic, the 
reported incidence is much lower than the true 
incidence of fibroids [3]. Common symptoms of 
uterine leiomyomas include increased menstrual 
bleeding, anemia, lower abdominal mass, infertility, 
etc., so it also troubles most women with uterine 
leiomyomas [4]. Uterine leiomyosarcomas (ULMS) 
have similar clinical symptoms, but it is less common 
in comparison. They are the most common sarcoma of 
the uterine body. Three to nine percent of uterine 
malignancies are uterine sarcomas. ULMS have an 
extremely poor prognosis, are prone to hematogenous 
metastasis, and make up 60%–70% of all uterine 

sarcomas [5]. According to a study, 42% of individuals 
with uterine leiomyosarcomas survive for the whole 
five years [6]. 

Although uterine leiomyomas are non- 
malignant, studies have found that one in 498 uterine 
tumors has a hidden risk of undiagnosed malignant 
tumors, such as leiomyosarcomas [7, 8]. Uterine 
leiomyomas and uterine leiomyosarcomas have 
similar clinical symptoms and morphological features 
[9], and it is sometimes difficult to distinguish them, 
and the diagnosis is based on histological examination 
[10, 11]. Surgery is considered the main treatment for 
ULM and ULMS [12, 13], so preoperative diagnosis is 
very important. If the preoperative diagnosis of 
ULMS is misdiagnosed as ULM, using morcellators 
during the operation will bring the risk of sarcoma 
spread [14, 15]. As a result of a safety communication 
issued by the US Food and Drug Administration 
(FDA) in 2014, minimally invasive surgery in women 
with ULM is now severely limited due to the inability 
to use morcellators [16]. Preoperative diagnosis of 
ULMS is challenging, if the ULM is misdiagnosed as 
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ULMS, it will lead to more invasive and extensive 
surgery when it is not needed, while misdiagnosis of 
ULMS as ULM may lead to delayed treatment and 
poor prognosis [17]. 

Importantly, diagnostic methods such as 
ultrasound, CT, MRI, and CA-125 detection alone 
cannot accurately distinguish between malignant and 
benign uterine fibroids. Although CA125 is frequently 
utilized in daily practice, it is typically only markedly 
increased in advanced disease. And only 35 percent of 
cases could be diagnosed with ULMS by endometrial 
biopsy, according to Sagae et al. [18]. At present, 
markers that can differentiate between uterine 
fibroids and sarcomas have not been found [19]. 
Therefore, this study aims to find and summarize the 
potential diagnostic markers between ULM and 
ULMS by searching and studying the articles related 
to ULM and ULMS published so far. These potential 
diagnostic markers will facilitate the identification of 
ULM and ULMS, which will help to identify new 
therapeutic targets, which will not only effectively 
distinguish ULM from ULMS, but also accurately 
treat and even monitor prognosis. 

Materials and Methods 
The source that we used was the PubMed 

database. Uterine leiomyoma, leiomyosarcoma, 
marker, biomarker, and diagnostic were the search 
phrases that were employed. 421 abstracts were 
assessed by title from 1122 search results that were 
retrieved between 1983 and 2024, 249 articles were 
extensively read, and 117 papers were ultimately 
included. Studies were not restricted by design, 
publication date, or number of patients reported due 
to the rarity of uterine leiomyosarcomas. 

Potential Markers 
We searched the articles, summarized and 

described 16 potential diagnostic markers. Table 1 
presents a summary of the markers. Some of the 
markers involved in some pathways we have added 
relevant graphical representation (Figures 1-6). 

Tumor Endothelial Marker 1 (TEM1) 
TEM1 (also known as CD248 or endosialin) is a 

cell membrane protein that is mainly expressed in 
malignant tissues or during embryonic development, 
but hardly expressed in benign and normal tissues 
[20, 21]. Its expression has been detected in skin 
cancer, colorectal, breast and other malignant tumors 

[22-24]. It has been found that TEM1 is functional in 
controlling the interactions between tumor cells, 
endothelium, and stroma, and that TEM1 expression 
in tumor stroma and vascular endothelial cells may 
support tumor progression and invasion [24, 25]. In 
addition, TEM1 is highly expressed in sarcomas. One 
study found that TEM1 was expressed in 96% of 
human sarcoma tissues among 19 sarcoma subtypes 
[26]. TEM1 is an important therapeutic target for 
human sarcoma. Therefore, TEM1 may influence the 
onset and progression of uterine leiomyosarcomas 
and is anticipated to be a possible target for therapy. 

Wu et al. found that TEM1 promotes the invasion 
and migration of ULMS by promoting extracellular 
matrix (ECM) remodeling through up-regulation of 
MMP-2 [27]. MMP-2 and TEM1 are co-expressed and 
positively correlated in ULMS whereas they were not 
expressed in ULM. It was found that MMP-2 activity 
and expression were upregulated in TEM1- 
overexpressing cells, whereas the opposite was 
observed in TEM1-knockdown cells. Depletion of 
MMP-2 suppressed the invasion and migration of 
TEM1-overexpressing cells. MMP-2 has been shown 
to be associated with a number of carcinomas 
metastasis [28, 29]. For malignant tumors, cell-ECM 
adhesion is the key to their distant metastasis [30, 31]. 
Wu et al. suggested that TEM1 can promote the 
adhesion of sarcoma cells to ECM components, and 
TEM1 overexpression also promotes sarcoma 
metastasis [27]. This indicates that for the diagnosis of 
benign and malignant uterine fibroids, TEM1 is 
probably a good marker. 

 

Table 1. Potential biomarkers for differential diagnosis between 
ULMS and ULM. 

Biomarker Expression in ULMS Reference 
TEM1, MMP-2 Up  [26, 27] 
DPP6, MFAP5 Down [34] 
p53, p16, Ki67 Up [45-49, 61] 
survivin Up [71] 
GDF-15 Up [78] 
MCM2 Up [84, 85] 
STMN1 Up [60, 94] 
SMO, GLI1 Up [96, 97] 
let-7 miRNA Down [108] 
miR-191-5p, miR-1246 Down [111] 
MVP Up [114] 
LMP2/β1i Down [118, 124] 
EMMPRIN Up [133, 134] 
PLZF Down [143] 
H1.5 Up [143] 
IMP3 Up [148] 
HAI-1, HAI-2 Down [153] 
CD44V3 Down [164] 

 

 
Figure 1. Graphical representation of the pathways involved in TEM1. 
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Figure 2. Graphical representation of the pathways involved in DPP6 and MFAP5. 

 

Dipeptidyl Peptidase Like 6 (DPP6) and 
Microfibril Associated Protein 5 (MFAP5) 

DPP6, a type II transmembrane protein derived 
from the ubiquitous family of serine peptidases in 
both prokaryotes and eukaryotes, is essential for the 
normal function of cells [32]. Furthermore, MFAP5, an 
extracellular matrix (ECM) glycoprotein, is implicated 
in cell survival, elastinogenesis, and signaling during 
microfibril construction [33]. Ke et al. found that DPP6 
and MFAP5 were expressed at significantly lower 
levels in ULMS than in ULM, and the area under the 
ROC curve (AUC) determined that DPP6 and MFAP5 
had the diagnostic ability to distinguish ULMS from 
ULM (AUC values were 0.957 and 0.899, respectively) 
[34]. Studies have shown that the immune cell 
components of ULM and ULMS are different, and 
DPP6 and MFAP5 are also associated to infiltrating 
immune cells [34, 35]. DPP6 was positively correlated 
with some immune cells that were more abundant in 
ULM and negatively correlated with some immune 
cells that were more abundant in ULMS. For example, 
the proportion of macrophage M0 was notably higher 
in uterine leiomyosarcomas than in leiomyomas, and 
DPP6 was negatively related to M0 macrophages. 
Additionally, MFAP5 was positively related to resting 
mast cells, and the ratio of resting mast cells was 
significantly higher in ULM than in ULMS [34]. 
Therefore, the association of DPP6 and MFAP5 with 
immune cells can speculate that they may have an 
impact on immune-related pathways that influence 
the development and incidence of ULMS. In 
malignant tumors, more and more studies use 
immune cells as a novel research direction for 
diagnosing diseases and prognosis [36-38]. For 
example, in patients with breast cancer, low DPP6 
expression predicts unfavorable prognosis, which is 
consistent with Ke et al. 's finding that DPP6 
expression level in ULMS is significantly lower than 
that in ULM [39]. 

 KEGG analysis revealed that immune-related 
and cell cycle-related pathways, including the 
HTLV-1 infection pathway, were enriched in the 
differentially expressed genes between ULM and 
ULMS [34]. Related studies have shown that HTLV-1 
enhances genomic instability through changing host 
genes expression directly, thereby affecting 
immune-related pathways and leading to malignant 

transformation [40], which again demonstrates that 
the regulation of immune response may be closely 
related to the occurrence of ULMS. 

Tumor Protein p53, p16 and Ki67  
P53, p16 and Ki67 have been studied more in 

immunohistochemistry and are often used to 
distinguish benign and malignant lesions [41, 42]. In 
human cancers, mutations in the p53 tumor 
suppressor gene are frequently found [43]. The most 
prevalent gene mutation in solid tumors, p53 
mutations, can make cells resistant to the activation of 
intrinsic apoptotic pathways [44]. De Vos et al. first 
proposed that p53 gene mutations are more common 
in ULMS. They claim that the acquisition of p53 
mutations is a difference between leiomyomas and 
leiomyosarcomas [45]. Nordal et al. suggested that p53 
gene abnormalities possibly play an essential part in 
the development of uterine sarcoma [46]. Previous 
researches have shown that the expression of p53 
between ULMS and ULM is significantly different [47, 
48]. The immunohistochemical staining pattern of p53 
mutation is significantly higher in ULMS than in ULM 
[49]. 

The overexpression of p16 is also described in 
ULMS. P16 is a tumor inhibitory protein that plays a 
vital role in regulating the cell cycle. It acts as a 
negative regulator of the cell cycle by binding to the 
cell cycle-dependent kinase CDK4-cyclin D[47, 50, 51]. 
P16 normally promotes growth arrest, but increased 
expression in tumor cells causes protein accumulation 
in their nuclei and cytoplasms, and strong and diffuse 
p16 positivity is observed in immunohistochemistry 
[50]. In uterine leiomyosarcomas, p16 gene expression 
appears to be upregulated, and this upregulation may 
also extend to p16 protein expression, which has been 
reported by several studies in ULMS compared with 
ULM [47, 52, 53]. In uterine leiomyomas, aberrant 
expression of p53, p16 has been described as a 
hallmark of malignancy [47]. 

Abnormal cell proliferation is the main reason 
for the occurrence and development of carcinogenic 
processes. Ki67(also known as MKI67) is a 
proliferation marker and a nuclear DNA binding 
protein [54]. Ki-67 is a late marker of cell cycle entry in 
normal cells and is strongly downregulated in 
quiescent G0 phase cells, with the highest expression 
of Ki-67 mRNA in G2 phase, whereas Ki-67 protein 
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expression increases throughout the cell cycle and 
peaks in mitosis [54, 55]. Ki-67 is highly expressed in 
endometrial cancer [56], ovarian cancer [57], and 
cervical cancer [58], and high Ki-67 index generally 
indicates poor clinical prognosis [59]. Compared to 
uterine leiomyomas, uterine leiomyosarcomas express 
significantly higher Ki67 mRNA levels [60]. The 
increased expression of Ki67 is also considered as a 
diagnostic marker for the malignancy of uterine 
leiomyosarcoma [61], and high Ki67 is associated with 
poor prognosis of leiomyosarcoma [41, 42]. 

Survivin 
The survivin gene encodes an inhibitor of 

apoptosis (IAP) that is structurally unique to humans. 
Studies have shown that survivin is significantly 
expressed in many human cancers, such as lung 
carcinoma, breast carcinoma and colon carcinoma 
[62-64]. The survivin protein plays a key role in 
mitosis and programmed cell death, and a 
genome-wide search indicated that survivin 
expression differs in normal and tumor tissue [65]. It 
may be a universal characteristic of tumorigenesis 
that apoptosis is inhibited, thereby preventing normal 
homeostasis and promoting tissue tumorigenesis [66], 
and survivin inhibits apoptosis, regulates mitotic 
spindle checkpoints, promotes angiogenesis, and 
resists chemotherapy in cancer pathogenesis, 
according to studies [44, 67]. Increased expression of 
survivin is an adverse prognostic marker in patients, 
and a high expression of survivin is also linked to an 
increase in recurrences, lymphadenopathy, and 
metastasis [68, 69]. Survivin has been identified as a 
cancer-specific promoter in lots of researches [70]. 

Shalaby et al. found that survivin expressed its 
downstream reporter gene in ULMS merely but not in 
fibroids. Compared with uterine leiomyoma, the 
downstream reporter gene (Ad-SUR-LUC) of survivin 
promoter was highly expressed in uterine 
leiomyosarcoma cells [71]. Their study showed that 

survivin is a promoter that can distinguish ULMS 
from ULM. It will be possible to detect cancer cells by 
using the expression of survivin in different cells as a 
method for testing the promoter driving power of the 
downstream reporter gene, which can serve for the 
early detection of cancer cells [72]. Intravenous 
injection of Ad-SUR-LUC in the study by Shalaby et al. 
successfully differentiated preexisting human 
leiomyosarcoma from human uterine leiomyoma in a 
mouse model [71]. Therefore, survivin may be a 
promising new target for cancer therapies that are 
based on apoptosis. 

Growth Differentiation Factor-15 (GDF-15) 
GDF-15, also known as macrophage inhibitory 

cytokine-1 (MIC-1), is a secreted cytokine regulated 
by P53, which is associated with tumorigenesis and is 
a biomarker for ovarian and endometrial cancer 
[73-75]. Inflammation is considered one of the 
"hallmarks of cancer" and interleukin-1 and tumor 
necrosis factor-alpha may activate macrophages and 
induce GDF-15 production [76, 77]. Trovik et al. 
showed that uterine leiomyosarcoma patients had 
significantly higher circulating GDF-15 levels 
compared to leiomyomas patients, and the ROC curve 
analysis showed that GDF-15 has a certain accuracy in 
the diagnosis of ULMS and ULM, indicating that 
GDF-15 is an effective biomarker to distinguish ULM 
and ULMS [78]. The high expression of GDF-15 in 
ULMS may be due to the activation of cancer-related 
inflammatory processes. 

GDF-15 has a certain correlation with p53 and 
macrophages, so it is speculated that the high 
expression of GDF-15 in ULMS may be due to the 
activation of cancer-related inflammatory process 
[77], or it may be the target of downstream pathways 
regulating cell cycle arrest and apoptosis, and has an 
impact on cancer proliferation, migration, invasion, 
etc. [79]. 

 

 
Figure 3. Graphical representation of the pathways involved in survivin. 

 
Figure 4. Graphical representation of the pathways involved in GDF-15. 
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Figure 5. Graphical representation of the pathways involved in SMO. 

 

Minichromosome Maintenance Complex 
Component 2 (MCM2) 

MCM2 belongs to the family of MCM proteins. It 
plays a key role in DNA replication initiation and 
replication fork movement and is closely associated 
with cell proliferation, with its protein levels 
increasing in G1 and peaking in S1[80, 81]. MCM2 
overexpression has been found in a wide variety of 
malignant tumors in recent years, and as a promising 
proliferation marker, it is expected to become a 
marker for the identification of malignant tumors [80, 
82, 83]. 

According to Quade et al., MCM2 expression was 
18.2-fold higher in ULMS than in ULM, that is, MCM2 
expression increased significantly in ULMS compared 
to ULM [84]. The population studied by Keyhanian et 
al., ULMS patients consistently demonstrated a high 
proportion of MCM2 responses, the sensitivity and 
specificity for diagnosing ULMS with MCM2>80% 
were 92% and 94%, respectively [85]. This study 
suggests that MCM2 is valuable in identifying ULMS. 
and additionally, combining MCM2 with p16 or Ki67 
can better distinguish ULMS from ULM [85]. 

Stathmin 1 (STMN1)  
STMN1, also known as oncoprotein 18, is a 

microtubule depolymerization-related protein that is 
widely expressed in the cytoplasm. It exerts 
regulatory control over microtubule dynamics 
through the inhibition of tubulin polymerization and 
the promotion of microtubule instability, while also 
facilitating tumor cell proliferation, differentiation, 
and invasion [86-88]. STMN1 is expressed in various 
carcinomatosis such as ovarian cancer [89], 
endometrial cancer [90], cervical cancer [91], 
hepatocellular carcinoma [92], and bladder cancer 
[93], and inhibition of STMN1 can reduce cell viability 
and migration potential.  

The activation of the oncogenic phosphatidyl-
inositol 3-kinase-AKT-mammalian target of 
rapamycin pathway (PI3K-AKT-mTOR) has been 
observed in uterine smooth muscle tumors. 
Furthermore, the identification of STMN1 expression 
serves as an indicator for the activation of the 
PI3K-AKT-mTOR pathway [94]. Hwang et al. showed 
that the expression of STMN1 has some value in 
differentiating uterine fibroids from uterine sarcomas 
[95]. The research by Allen et al. found that STMN1 
expression in uterine leiomyosarcomas was mainly 

diffusely and strongly positive, while uterine 
leiomyomas was mainly weakly positive. The 
expression of STMN1 exhibited a sensitivity of 100% 
in relation to leiomyosarcomas, yet its specificity was 
merely 55% [94]. Consequently, STMN1 emerges as a 
remarkably sensitive indicator for leiomyosarcomas, 
albeit with limited specificity for diagnostic 
applications. In line with the findings of Allen et al., 
Hu et al. also discovered that STMN1 expression in 
uterine leiomyosarcomas was much higher than that 
in uterine leiomyomas [60, 94]. Therefore, STMN1 is a 
gene associated with tumors and is a possible target 
for diagnosis and treatment. 

Smoothened (SMO) and GLI Family Zinc 
Finger 1 (GLI1) 

Dysregulation of the Hedgehog (HH) pathway 
has been documented in ULMS patients, with higher 
expression levels of GLI1 and SMO in ULMS 
compared to ULM. The evidence presented suggests a 
correlation between HH pathway dysregulation and 
ULMS development [96, 97]. The HH pathway 
signaling involves three ligands: sonic hedgehog 
(SHH), Indian hedgehog (IHH), and desert hedgehog 
(DHH), two receptors: PTCH1 and SMO, and three 
transcription factors: GLI1, GLI2 and GLI3 mediate. 
When HH ligands bind and inactivate PTCH1, the 
classical HH signaling pathway is activated, releasing 
SMO protein signals to its cytoplasmic targeting [98]. 
SMO triggers the translocation of GLI proteins to the 
nucleus, which leads to their subsequent binding to 
DNA [99]. GLI members are nuclear regulators situa-
ted at the pathway's end and in charge of controlling 
the downstream target genes' expression [100].  

The HH signaling pathway has been implicated 
in tumorigenesis and cell differentiation in several 
studies [96, 101]. Analyzing the protein expression in 
components of Hedgehog signalling in uterine 
smooth muscle tumors is helpful for the diagnosis, 
prognosis or malignant risk prediction of uterine 
smooth muscle tumors [96]. Garcia et al. found 
activation of the Hedgehog pathway and increased 
GLI nuclear translocation in ULMS. SMO and GLI1 
expression in ULMS is higher than that in ULM [97]. 
PTCH1 expression is downregulated in ULMS. SMO 
or GLI inhibitors applied to ULMS cells inhibit cell 
proliferation and migration while inducing apoptosis 
[97]. In the future, GLI1 and SMO may become 
therapeutic targets for uterine smooth muscle tumors. 
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Lethal-7 (let-7) miRNA, miR-191-5p and 
miR-1246 

MicroRNAs (miRNAs) regulate the expression of 
a variety of target genes in cells, mainly through 
regulating the translation of the target genes [102]. 
Studies have shown that extracellular miRNAs have 
significant functions in cell-to-cell communication 
and various biological mechanisms [103]. Altered 
expression of miRNAs may lead to tumorigenesis, 
and gynecologic tumors such as ovarian cancer, 
endometrial cancer, cervical cancer, and uterine 
sarcoma are associated with unregulated expression 
of miRNAs [104, 105]. Blood contains miRNAs at a 
stable concentration, and it has been established that 
circulating miRNAs can be used as disease 
biomarkers [106]. 

 The let-7 family of miRNAs is a key regulator of 
eukaryotic cell apoptosis, differentiation and 
pluripotency. The let-7 family is a major family of 
miRNAs that normally function as tumor suppressors 
[107]. The study's findings demonstrated that all 
members of the let-7 family had downregulation in 
ULMS, and that a worse patient prognosis was 
correlated with a higher degree of loss of expression 
[108]. This suggests that let-7 is a potential prognostic 
biomarker for LMS. Loss of let-7 likely result from 
perturbation of the signalling network involving key 
families of proteins, leading to an acceleration of 
tumor progression [109]. Downregulation of let-7 is 
prevalent in lots of cancers, and substitution of let-7 
for normal expression has been shown to arrest tumor 
growth [110]. 

Furthermore, Yokoi et al. endeavored to ascertain 
diagnostic biomarkers that could effectively 
differentiate between ULMS and ULM through their 
investigation of circulating miRNAs. Their primary 
objective was to identify potential miRNAs that could 
be utilized in the development of a diagnostic model 
for ULMS, and seven candidate miRNAs (miR-191-5p, 
miR-1246, miR-4635, miR-4485-5p, miR-451a, 
miR-6511b-5p and miR-4430) were screened out [111]. 
These seven miRNAs were significantly 
downregulated in ULMS. The optimal model 
consisted of two miRNAs (miR-191-5p and miR-1246) 
based on the model construction, and ULMS patients 
could be accurately identified using this dual miRNA 
prediction signature [111]. Therefore, the combination 

of miR-191-5p and miR-1246 is a potential marker for 
differentiating ULMS from ULM. 

Major Vault Protein (MVP)  
MVP, also called lung resistance-related protein 

(LRP), is located on chromosome 16 and helps move 
various molecules in and out of signal transduction 
networks and toxic compounds out. Data indicate 
high MVP expression is related with resistance to 
multiple chemotherapy regimens [112]. In acute 
myeloid leukaemia, lung cancer, ovarian cancer and 
other malignant tumors, its increased expression has 
been found to be associated with the induction of 
multidrug resistance [112, 113]. By analyzing 
differentially expressed proteins between ULMS and 
ULM, Lintel et al. shown that MVP expression in 
ULMS was 3.05-fold higher than that in ULM. By 
immunohistochemistry (IHC), MVP found 50% 
sensitivity and 100% specificity when comparing 
ULMS and ULM [114]. MVP is a helpful adjunct for 
differentiating ULMS from ULM, although negative 
staining results cannot rule out malignancy, positive 
staining results are a strong indicator of malignancy 
[114]. 

Large Multifunctional Protease 2 (LMP2/β1i) 
LMP2/β1i is an immunoproteasome catalytic 

subunit [115]. Mice with LMP2/β1i gene deficiency 
were found to spontaneously develop ULMS through 
animal models [116, 117]. LMP2/β1i is not expressed 
in ULMS but is present in ULM. Thus, one of the risk 
factors for ULMS may be defective LMP2/β1i 
expression [117, 118]. Tumor rejection mediated by 
MHC class I molecules, a process influenced by the 
function of the proteasome induced by interferon-γ 
(IFN-γ) [119, 120]. The findings confirm that IFN-γ 
prevents the development of primary tumors and 
thus exhibits a tumor suppressive effect in the 
immune response [119, 121].  

The expression of LMP2 is significantly induced 
by IFN-γ, and the activation of signal transducer and 
activator of transcription (STAT) 1 by IFN-γ leads to 
the upregulation of tumor suppressors, including 
interferon regulatory factor 1 (IRF1). IRF1 functions as 
a transcriptional regulator that plays a significant role 
in the regulation of LMP2 expression [122, 123]. 
Decreased IRF1 level caused by LMP2 deficiency may 
be a risk factor for ULMS [118].  

 

 
Figure 6. Graphical representation of the pathways involved in LMP2/β1i. 
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LMP2 immunostaining is helpful in the 
differential diagnosis of ULMS and ULM, as LMP2 
protein expression is attenuated in 85% of ULMS 
samples [124]. LMP2/β1i is a promising diagnostic 
marker for ULMS and has the potential to become a 
targeted molecule for novel therapies [117]. 

Extracellular Matrix Metalloproteinase 
Inducer (EMMPRIN) 

EMMPRIN, also known as CD147, is a member 
of the human immunoglobulin superfamily and an 
inducer of extracellular matrix proteolytic enzymes 
encoded by the BSG gene [125]. EMMPRIN, which is 
abundantly expressed on the surface of tumor cells, 
assumes a pivotal function in the advancement of 
numerous cancers through its stimulation of matrix 
metalloproteinases (MMPs) and cytokine secretion 
[126, 127]. MMPs are crucial in the degradation of the 
extracellular matrix and the progression of tumors 
[128, 129]. The degradation of the extracellular matrix 
is of utmost significance in facilitating tumor invasion, 
growth, and metastasis. Consequently, EMMPRIN 
assumes a crucial role in cancer cells by governing cell 
proliferation, apoptosis, migration, metastasis, and 
differentiation, particularly in hypoxic environments 
[125]. Many tumors, particularly disseminated cancer 
cells and those with a poor prognosis, express 
EMMPRIN at high levels [130-132]. Studies have 
shown that EMMPRIN may serve as a potential early 
disease diagnostic marker. For example, EMMPRIN is 
considered a promising therapeutic target for the 
treatment of hepatocellular carcinoma, and 
monoclonal antibodies targeting EMMPRIN have 
made exciting clinical progress in the treatment of 
hepatocellular carcinoma [125].  

In the study by Kefeli et al., the degree and 
intensity of EMMPRIN staining and their combined 
score were compared between ULMS and benign 
uterine smooth muscle tumors, and the findings 
suggested that the difference was statistically 
significant, and the EMMPRIN expression in the LMS 
group was notably higher than in the ULM group 
[133]. The results of Ozler et al. are consistent with 
those of Kefeli et al., high EMMPRIN expression is 
predominantly observed in ULMS [134], indicating 
that EMMPRIN may serve as a useful 
immunohistochemical marker to distinguish LMS 
from other benign smooth muscle tumors. 

Promyelocytic Leukemia Zinc Finger (PLZF) 
and Histone H1.5 

PLZF protein is a DNA-binding transcriptional 
repressor that negatively regulates the progression of 
the cell cycle, ultimately leading to growth inhibition 
[135]. PLZF was found to be highly expressed in the 
secretory endometrium and the myometrium by IHC 

[136]. However, its expression has been observed to 
decrease in lung cancer, melanoma and hematological 
malignancies [137-139]. Histone H1.5 is a type of 
histone H1, which is a group of proteins that assist in 
organizing chromosomes into more complex 
structures [139-141]. H1.5 has been found to have an 
effect on the regulation of transcriptional, and this 
protein is strongly expressed in lung neuroendocrine 
tumors and prostate cancer and is associated with 
disease progression [139, 142].  

PLZF was under-expressed in ULMS, whereas 
H1.5 was over-expressed in ULMS. In uterine 
leiomyomas, the expression of the two proteins is 
opposite [143]. Thus, as immunohistochemical 
biomarkers for ULMS and ULM, PLZF exhibits an 
inverse relationship with H1.5. This indicates that 
PLZF or H1.5 staining may serve as a useful screening 
test. The study by Momeni et al. showed that 
combining these two immunophenotypes resulted in 
a specificity and sensitivity of 97.5% and 90.5%, 
respectively, in differentiating ULM from ULMS 
[143]. 

Insulin-like Growth Factor Ⅱ mRNA Binding 
Protein 3 (IMP3) 

IMP3 is a member of insulin-like growth factor 
RNA binding protein family. IMP3, an oncogenic fetal 
protein linked to advanced and aggressive cancers, is 
expressed only in malignant tumors and is not found 
in benign tissues. It has a role in embryogenesis and 
carcinogenesis of certain malignant tumors [144-146]. 
Research has demonstrated that IMP3 can stimulate 
the growth, invasion, and metastasis of tumor cells 
[146, 147]. The study by Cornejo et al. suggested that 
IMP3 is strongly expressed in ULMS but not in benign 
leiomyomas [148]. One extremely specific biomarker 
of leiomyosarcoma is IMP3, which may be involved in 
the pathophysiology of the disease. IMP3 is a 
cancer-specific biomarker linked to more aggressive 
tumor behavior, as demonstrated by earlier research 
on endometrial and renal cell carcinomas [144, 146, 
149]. IMP3 immunoreactivity in leiomyosarcoma also 
illustrates the more aggressive behavior of the tumor 
and predicts a worse prognosis. Therefore, to 
distinguish between benign and malignant smooth 
muscle tumors, IMP3 staining can be a helpful 
adjunct. Additionally, IMP3 expression in the uterus 
can be utilized as a positive biomarker to raise the 
degree of confidence in the final diagnosis of 
malignant smooth muscle tumors. 

Hepatocyte Growth Factor Activator 
Inhibitors (HAI)-1 and -2 

HAI-1 and HAI-2 were originally described as 
endogenous inhibitors of hepatocyte growth factor 
activator (HGFA), matriptase, hepsin and prostasin. 
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These proteolytic enzymes are primarily membrane- 
bound and may perform crucial functions in cellular 
homeostasis. Dysregulation of their activity and 
expression has been linked to the development and 
advancement of tumors [150-152]. In the study by 
Nakamura et al., HAI-1 and HAI-2 mediated cell 
invasion, migration and proliferation, leading to 
necrosis and apoptosis by reducing the expression of 
HGFA, hepsin and matriptase [153]. 

Hepatocyte growth factor (HGF) is a 
multifunctional growth factor that is secreted by liver 
mesenchymal cells and acts on the motility and 
morphogenesis of a variety of target cells, usually 
associated with the ECM [154]. Degradation of the 
ECM facilitates cell separation, leading to local and 
systemic dissemination. HAI-1 and HAI-2 regulate 
HGFA, which is in charge of the proteolytic activation 
of the precursor forms of HGF in a variety of human 
cancer tissues and serum [155, 156]. Reduced 
expression of HAI-1 and HAI-2 has been linked in the 
past to the advancement of ovarian and cervical 
cancer, according to research [157, 158]. A range of 
serine proteases that may be implicated in 
carcinogenesis, invasion, and metastasis may be 
efficiently inhibited by HAI-1 and HAI-2, and their 
overexpression decreases cell adherence and 
spreading [153]. 

The typical human uterus has high levels of 
expression of both HAI-1 and HAI-2 in its surface 
epithelium and uterine glands [159]. HAI-1 and HAI-2 
expression levels in ULMS tissues were notably lower 
than those in ULM tissues [153]. Furthermore, 
compared to high expression of HAI-1 and HAI-2, 
reduced expression of these genes was a strong 
indicator of a poor prognosis [153]. Given the 
suggestion that HAI-1 and HAI-2 may be significant 
tumor suppressor genes for the detection of ULMS, 
both may be taken into consideration as therapeutic 
options for the illness. 

CD44 variant 3 (CD44v3) 
As a transmembrane glycoprotein, CD44 is 

involved in intercellular and cell-matrix interactions 
[160]. The simplest CD44 standard (CD44s) does not 
contain any additional exon products, whereas CD44 
variants (CD44v) contain one or more additional 
exons. Studies have shown that alterations in CD44 
protein are associated with tumorigenesis, local 
invasion, metastasis, recurrence, and poor prognosis 
[161-163]. 

CD44v3 was expressed in ULM but not in 
ULMS. When using CD44v3 negative staining to 
diagnose ULMS, the specificity, sensitivity, positive 
predictive value, and negative predictive value were 
all 100% [164]. The expression of CD44s is decreased 

in ULMS relapse patients. The study by Poncelet et al. 
suggested that CD44s immunostaining in 
leiomyosarcomas may be prognostic and that loss of 
CD44v3 expression may serve as a potential 
diagnostic tool for uterine leiomyosarcomas [164]. 

Other Biomarkers 
In addition to some of the markers described 

above, there are other markers that are helpful in 
differentiating ULMS from ULM, which are briefly 
described as follows. 

The expression of B-cell lymphoma 2 (Bcl2) and 
DNA fragmentation factors 40, 45 (DFF40, 45) was 
significantly lower in ULMS compared to ULM [165, 
166], while progesterone and estrogen receptors (PR 
and ER) were either faintly positive or negative [167, 
168]. DFF40 and DFF45 are the ultimate DNA ladder 
leading to apoptosis, and Bcl2 is an inhibitor of 
apoptosis. Bcl2 expression changes in breast cancer, 
endometrial cancer, ULMS and other malignant 
tumors [169, 170]. Low or absent expression of these 
markers is associated with potentially adverse 
outcomes [166, 171]. 

Mediator complex subunit 12 (MED12) 
mutations are the first recurrent oncogenic 
mechanisms identified in smooth muscle tumors 
[172]. These somatic mutations have demonstrated 
reliability as biomarkers for uterine fibroids, with 
MED12 mutations being present in roughly 70% of 
affected women [173]. MED12 mutations are rarely 
seen in ULMS [174, 175]. The alteration of MED12 
may be related to the occurrence of smooth muscle 
tumors, and its expression may be inhibited in 
malignant tumors [176]. Furthermore, the Wilms’ 
tumor 1 (WT1) that is expressed in various 
gynecologic tumors, such as endometrial stromal 
tumors and ovarian cancer [177, 178]. It has been 
found that uterine leiomyosarcomas is more likely to 
have a loss of WT1 expression, and WT1 is expressed 
in most uterine leiomyomas, so WT1 may also have a 
certain value in distinguishing benign and malignant 
uterine leiomyosarcomas [49, 178]. 

Besides, immunohistochemistry showed that the 
expression of hyperthermia inhibited histone 
acetyltransferase 1 (HAT1) in ULMS was higher than 
that in ULM, and was associated with poor prognosis. 
Studies suggest that further preclinical investigation 
of HAT1 as a promising drug target for treating 
ULMS is warranted, particularly when combined with 
hyperthermia [179]. And there was a notable contrast 
in lactate dehydrogenase (LDH) levels observed 
among patients with benign uterine masses and 
sarcomas. Serum LDH levels may be elevated in 
patients with ULMS, but the sensitivity is low, and it 
is difficult to identify ULMS by LDH detection alone 
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[180, 181]. Di Cello et al. found that LDH3, LDH4, and 
LDH5 isoenzymes were notably higher in uterine 
sarcoma patients compared to those with uterine 
fibroids, while LDH1 and LDH2 were significantly 
lower [182]. It has been found that in addition to LDH, 
D-dimer may be elevated in ULMS and C-reactive 
protein is highly positive, and the combined detection 
of these three is useful in the differential diagnosis of 
ULMS and ULM [183]. 

 Studies have demonstrated the involvement of 
carbonic anhydrases (CAs) in relation to different 
types of cancer, whereby they aid in regulating pH 
homeostasis in the microenvironment of tumor cells 
[184]. CA isoenzymes can be used as a 
histopathological biomarker for the differential 
diagnosis of ULMS and ULM. CA isoenzymes are 
absent in most fibroids, whereas all uterine 
leiomyosarcomas show positive staining [185]. 

Discussion  
ULMS is a disease that exhibits a high mortality 

rate, a high recurrence rate, and the prognosis is poor. 
The pathogenesis of ULMS is still unclear, and there is 
no specific biomarker that can be used for 
differentiating it from other analogues. Consequently, 
the preoperative detection of ULM and ULMS 
presents significant challenges. ULM are diagnosed 
by means of pelvic examination, ultrasonography, 
and, if necessary, enhanced magnetic resonance 
imaging (MRI), but it is not straightforward to use 
contrast-enhanced magnetic resonance imaging or 
other clinical tests to determine the degree of 
malignancy of uterine smooth muscle tissue or to 
diagnose a mass [9]. If the above examination is not 
very definite as ULM, or if the patient's mass is 
rapidly growing or is postmenopausal, then the 
possibility of a malignant uterine tumor such as 
ULMS should also be considered [186]. Clinically, 
ULMS may be found more incidentally by performing 
histopathological examination of specimens [10]. 
Therefore, ULMS and ULM cannot be reliably 
differentiated due to the absence of specific symptoms 
or diagnostic imaging studies. Currently, surgery 
remains the sole viable approach for diagnosis and 
treatment. Myomectomy is usually performed with 
minimally invasive procedures such as laparoscopic 
surgery [10, 11]. Minimally invasive surgery for a 
presumed benign uterine leiomyoma may result in 
unexpected intra-abdominal spread of sarcoma, 
resulting in poor survival [13, 187]. For the safety of 
the patient with regard to tumors, alternative invasive 
methods, including procedures based on open 
surgery, lead to higher morbidity, mortality, and costs 
for both the patient and the healthcare system [187]. 
Given these challenges, it is crucial to prioritize the 

development of highly accurate biomarkers and 
non-invasive diagnostic methods in fields like 
gynecology and oncology. The purpose of this review 
is to analyze the available literature on the genes or 
proteins that differ between ULM and ULMS to 
provide valuable insights for the differential diagnosis 
of ULM and ULMS. It aims to aid in identifying 
specific diagnostic markers and therapeutic targets for 
ULMS and ULM, with the potential to establish a 
foundational basis for future assessment of malignant 
risk. 

 The search for a reliable and easily accessible 
method to distinguish ULMS from ULM has been the 
subject of much research. By summarizing the 
previous literature, we found many candidate 
molecules for the differential diagnosis between 
ULMS and ULM, and we selected some of them to 
describe. Compared with ULM, TEM1, MMP-2, p53, 
p16, Ki67, survivin, GDF-15, MCM2, STMN1, SMO, 
GLI1, MVP, EMMPRIN, H1.5 and IMP3 were 
up-regulated in ULMS. DPP6, MFAP5, let-7 miRNA, 
miR-191-5p, miR-1246, LMP2, PLZF, HAI-1, HAI-2 
and CD44V3 were down-regulated in ULMS. Table 1 
shows an overview of the biomarkers. In total, 489 
genes with differential expression between ULMS and 
ULM were identified, wherein 416 were notably 
upregulated while 73 were notably downregulated. 
These discrepancies primarily participate in the 
mechanism of genes related to the cell cycle [188]. For 
instance, ULMS has been linked to numerous 
rearrangements that target the chromatin remodeling 
protein ATRX [188]. ATRX expression loss is linked to 
a telomere phenotype that is selectively prolonged, 
enabling tumor cells to evade planned cell death. 
ULMS has a correlation between this mechanism and 
poor prognosis and overall survival [189, 190]. In 
addition, the cyclin AURKA also appears to be critical 
for ULMS pathogenesis, as it inhibits cell-cycle 
arresting and apoptosis of ULMS cell lines [191]. 
AURKA is also overexpressed in ovarian and cervical 
cancer [192, 193]. 

PD-L1 expression and cytotoxic T-cell infiltration 
were significantly higher in ULMS compared to ULM, 
suggesting a possible role for PD-1/PD-L1 checkpoint 
inhibition in the leiomyosarcoma patient population 
[194]. The expression of TOP2A, which is significantly 
elevated in ULMS but not in nonmalignant smooth 
muscle diseases, may also be an important diagnostic 
tool for difficult cases in which the diagnosis of ULMS 
is not clear [195]. The expression of cellular retinol 
binding protein-1 (CRBP-1) in ULMS is higher than 
that in ULM, and CRBP-1 overexpression is linked to 
alterations in signaling molecules for cell proliferation 
and apoptosis [196]. It has also been suggested that 
methylation level can be used to distinguish ULMS 
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from ULM. Brany et al. reported that methylation 
events in benign fibroids and sarcomas should have 
different patterns, and the KLF4 and DLEC1 genes 
can be considered as potential methylation 
biomarkers for uterine fibroids [197]. 

In recent years, more studies tend to combine 
multiple indicators to distinguish uterine leiomyoma 
and uterine leiomyosarcoma. The detection of LDH, 
D-dimer, and C-reactive protein in combination is 
beneficial for distinguishing between ULMS and 
benign lesions. Specificity and positive predictive 
value were found to be 100% when all three of these 
markers were combined. In addition, applying these 
three markers in combination with MRI will allow 
more accurate diagnosis of ULMS, and prospective 
studies of these markers and MRI results are 
warranted in the future [183]. The combined detection 
of MCM2, Ki67 and p16 immunohistochemistry has 
good diagnostic value in the differential diagnosis of 
ULMS [85]. Furthermore, the study of collagen in 
ULM may also help to distinguish ULM from ULMS. 
In ULM, there is excessive deposition of ECM, the 
major component being collagen, which is involved in 
keeping the tissue's structural integrity [198]. 
Collagens have the ability to alone or in conjunction 
with integrins and growth factor-mediated mitogenic 
pathways to modify the behavior and function of cells 
[199]. It has been proposed that aberrant collagen fiber 
orientation and structure are present in ULM, and that 
changes in collagen genes may contribute to the 
pathophysiology of leiomyomas [200]. Thus, the 
microstructure collagen properties of ULM can be 
characterized using an inventive multidisciplinary 
method based on Phase-Contrast MicroComputed 
Tomography, Transmission Electron Microscopy, and 
Fourier Transform Infrared Imaging Spectroscopy 
[198]. 

The treatment and prognosis of ULM and ULMS 
are different. Accurate differentiation of ULM and 
ULMS is of great significance for formulating 
appropriate treatment plans, evaluating prognosis 
and improving patients' quality of life. While some 
studies can serve as a basis for future research on the 
pathophysiology and diagnosis of ULMS, the findings 
of studies on candidate molecules for the differential 
diagnosis of ULM and ULMS cannot yet be applied 
clinically. Based on the molecular properties of ULMS 
tissue, differentiated diagnosis and tailored treatment 
can result in an earlier diagnosis and a better 
prognosis. 
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