
Int. J. Med. Sci. 2024, Vol. 21 
 

 
https://www.medsci.org 

404 

International Journal of Medical Sciences 
2024; 21(2): 404-412. doi: 10.7150/ijms.90012 

Review 

Research progress of absorbable stents 
Ying Song 1, Bingwei Li2, Hao Chen2, Zhuyuan Yu1 

1. Department of Neurovascular oncology Surgery, First Hospital of Jilin University, 1 Xinmin Avenue Changchun 130021, Jilin Province, China. 
2. Department of Neurovascular Surgery, First Hospital of Jilin University, 1 Xinmin Avenue Changchun 130021, Jilin Province, China. 

 Corresponding author: Zhuyuan Yu; Email: 1113826630@qq.com. 

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). 
See http://ivyspring.com/terms for full terms and conditions. 

Received: 2023.09.10; Accepted: 2023.12.02; Published: 2024.01.01 

Abstract 

Atherosclerosis, a chronic inflammation of blood vessel walls, is a progressive pathophysiological process 
characterized by lipid deposition and innate adaptive immune responses. Arteriosclerosis often leads to 
narrowing of blood vessels. At present, interventional stent therapy is the main treatment method for vascular 
stenosis, which has the advantages of less trauma, less risk and faster recovery. However, atherosclerosis 
occurs in a complex pathophysiological environment. Stenting inevitably causes local tissue damage, leading to 
complications such as inflammation, intimal hyperplasia, late thrombosis, stent restenosis and other 
complications. It is urgent to optimize interventional therapy program. This article summarizes the advantages 
and disadvantages of absorbable metal scaffolds and the research progress of absorbable polymer scaffolds. The 
optimization strategy of stent is proposed. The status quo of drug coating was summarized. The prospect of 
new stent. To improve the therapeutic effect of arteriosclerosis. 
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1. Introduction 
Atherosclerosis, the chronic inflammation of 

blood vessel walls, is a progressive pathophysio-
logical process characterised by lipid deposition and 
innate adaptive immune responses. In response to 
blood flow disturbances, endothelial cells shift from a 
resting phenotype to a pro-atherosclerotic phenotype, 
which is often described as the starting point of 
atherosclerosis. It also causes excessive activation of 
the oxidative system, thrombosis, foam cell formation, 
inflammatory release, and sensitisation of SMC [1], 
gradually forming arteriosclerotic plaques and 
leading to stroke, coronary heart disease, and other 
diseases. It is a major cause of death in developed 
countries [2, 3]. 

Currently, interventional stenting is the most 
commonly used treatment for atherosclerotic stenosis. 
This method has the advantages of low trauma, low 
risk, and fast recovery and is clinically effective [4-6]. 
However, atherosclerosis is characterised by a 
complex pathophysiological environment that 
includes low pH, high oxidative stress, and chronic 
inflammation. Stenting therapy inevitably causes local 
tissue damage, leading to complications such as 
inflammation, intimal hyperplasia, late thrombosis, 

and intrastent restenosis [7-9]. Therefore, researchers 
continue to explore whether the implanted stent not 
only inhibits thrombus formation and promotes 
endothelialisation in the early stage but also inhibits 
cell proliferation in the later stage of treatment. 
Therefore, new stent technologies are being 
continuously developed. In this paper, we summarize 
the current research progress of absorbable stents and 
propose a scheme for material optimization. At the 
same time, the development of coating technology has 
also increased the effect of stent therapy. There are 
great expectations for bioabsorbable scaffolds. 

2. Absorbable stent 
2.1. Degradable metal stent 

In recent decades, the use of bare-metal stents in 
clinical practice has improved the efficacy of arterial 
interventions [10, 11]. However, the long-term 
presence of traditional permanent metal stents in 
patients can cause chronic inflammation, leading to 
intrastent restenosis and stent thrombosis [12]. 
Moreover, long-term dual antiplatelet therapy after 
stent implantation may increase the risk of bleeding 
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[13]. Developing and improving a new generation of 
absorbable metal scaffolds (AMS) can replace 
permanent scaffolds and mitigate the associated risks. 
Ideal AMS can induce an appropriate host reaction 
and gradual corrosion, and its material and 
degradation products have sufficient safety and 
suitable biocompatibility [14-17] and can provide 
adequate mechanical integrity with appropriate 
elastic modulus, radial support strength, and ductility 
[18-20]. Recently, magnesium, iron, and zinc, essential 
elements of the human body, have been considered 
candidates for making AMS. Stents made of these 
three materials are safe for implantation in the body 
[15, 20, 21]. In addition, each of these three metals has 
unique characteristics. Magnesium stents release 
negligible amounts of magnesium ion (Mg2+) during 
degradation, which may inhibit abnormal nerve 
excitation and reduce the risk of atherosclerosis [22]. 
Iron does not cause an excessive release of H+ or a 
sharp increase in pH; therefore, it has little impact on 
the local microenvironment [23]. Zinc plays an 
important role in cell proliferation [20] and has 
demonstrated potential antibacterial and anti-athero-
sclerotic effects [24, 25].  

However, in studies on biodegradable metal 
stents, differences in mechanical properties in vivo 
have limited their development. The radial strength 
and degradation rate of magnesium-based scaffolds 
are extremely high, and a large amount of H2 is 
generated during the degradation process, which 
creates an acidic environment in the local part of the 
scaffold and increases the corrosion rate [26]. In 
addition, the mechanical properties of the support are 
reduced during corrosion. However, the degradation 
rate of iron-based scaffolds is extremely slow, 
resulting in the accumulation of corrosion products 
[15] (mainly iron oxide [Fe-O]) that remain in the 
encased neointima and inhibit vascular tissue 
regeneration [27]. In addition, the magnetic properties 
of iron cannot be detected using magnetic resonance 
imaging [28]. Moreover, the direct interaction 
between blood vessel cells and iron can generate 
harmful free radicals during corrosion [29], which can 
promote the oxidation and modification of nucleic 
acids and proteins, leading to oxidative stress and a 
range of harmful systemic events, such as ischaemia, 
inflammation, and neurodegeneration [30]. In 
addition, the mechanical strength of zinc-based stents 
is insufficient, and alloying also leads to ductility and 
low strength of the zinc-based alloy [31]. 

2.2. Degradable polymer scaffold 
Polylactic acid (PLA) is widely used in many 

biomedical applications owing to its biocompatibility, 

biodegradability, and nontoxic degradation products, 
especially in the fields of biodegradable stents and 
drug-carrying coatings. PLA, or polylactide, is a 
thermoplastic polyester with the main chain formula 
(C3H4O2)n, which is formed by the dehydration and 
condensation of lactic acid C(CH3)(OH)HCOOH. 
PLA has become a popular material; several different 
forms of polylactide exist: polyl-lactide (PLLA) is the 
product of the polymerisation of L, L-lactide [32, 33], 
poly (L-lactide-co-D, L-lactide) (PLD LLA) is used as a 
PLDLLA/TCP scaffold for bone engineering [34]; 
poly (lactic acid-co-glycolic acid) (PLGA) is produced 
by random polymerisation of lactic acid and glycolic 
acid. PLGA is a functional, high-molecular-weight, 
degradable organic compound. PLA has good 
biocompatibility, non-toxicity, good encapsulation, 
and film-forming properties and is widely used in the 
pharmaceutical, medical engineering, and modern 
industrial fields [35, 36]. 

Biodegradable polymers are currently being 
studied in several clinical trials, including Absorb BVS 
(PLLA), Elixir Medical's DESolve (PLLA) stent, ART 
(PLDA) stent, and REVA's Fantom (PTD-PC) stent. 
These stents improve allergic reactions, athero-
sclerosis progression, and impaired vasomotor 
function after implantation of other stents [37]. 

However, some challenges exist in research on 
absorbable polymer scaffolds [38, 39], such as the 
mechanical properties of the device (thicker strut, 
lower radial strength, higher fracture sensitivity), 
longer than expected absorption time during 
absorption, stent removal due to uncovered strut 
discontinuity, demanding implantation procedures, 
high stent delivery failure rates, and stent expansion 
and misalignment. The incidence of acute and late 
stent thrombosis has increased [40]. 

Absorbable stents provide hope for treating 
vascular diseases by reducing the duration of oral 
dual antibody drugs and solving chronic inflamma-
tion caused by the long-term retention of stents in the 
body. However, metal scaffolds and polymer- 
absorbable scaffolds have mechanical properties such 
as degradation of metal scaffolds, corrosion rate, and 
radial strength of absorbable polymers. Therefore, 
new materials and designs are required to address 
this problem. 

3. Optimisation of absorbable stent 
3.1. Optimisation of metal support 

Researchers have attempted to improve the 
performance of metal scaffolds by exploring new 
alloys, surface modifications, and manufacturing 
strategies. 
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Table 1. The main preclinical research of stent in arteriosclerosis 

 Materials Coating Drugs Outcome 
[105] 316L stainless steel Hyaluronic acid and chitosan ACS14 Inhibit platelet adhesion and activation 

Inhibition of smooth muscle cells and macrophages proliferation 
Reduced inflammation at the site of intervention and promoted 
the formation of new blood vessels 

[115] 316L stainless steel PLCL Atorvastatin 
Fenofibrate 

Excellent biocompatibility No inflammatory reaction. 

[104] 316L stainless steel zein (the active layer) and cross-linked 
alginate (the sacrificial layer) 

rutin Sustained drug release 
High biocompatibility 

[116] 316L stainless steel PLLA SZ-21、VEGF、RAPA Reendothelialization and inhibition of thrombosis, 
inflammation, and intrastent restenosis 

[85] 316L stainless steel PGMA Hep/NONOates nanoparticle Endothelial cell regeneration 
Anticoagulant activity 

[86] 316L stainless steel EGCG Pivastatin calcium Reactive oxygen species 
[117] 316L stainless steel Avidin biotin-modified endothelial cells Promotes cell bonding to scaffold struts 

Reduce intrastent restenosis 
[118] 316L stainless steel PDA-HD Multifunctional coating of 

flavonoids baicalin 
Anti-ISR, anti-inflammation 
Promote endothelialization 

[119] cobalt-chromium 
alloy 

Polylysine layer and hyaluronic 
acid-dopamine conjugate 

NO Optimize the release rate and therapeutic dose of NO 

[120] cobalt-chromium 
alloy 

Hyaluronic acid/chitosan Binding siRNA nanocomplexes Good blood compatibility 

[96] cobalt-chromium 
alloy 

silicone nanofilament (SiNf) CD146- Antibody Promote reendothelialization 
Preventive restenosis 

[121] Mg-Zn alloy TiO2 TiO2 nanocoating 
 

Stimulate endothelial cell adhesion and proliferation 
Inhibit the release of harmful products from zinc-magnesium 
coated scaffolds 

[122] Mg-Zn alloy MF2-PA-PLGA Rare-earth free Complete biodegradation 
No foreign body residue 
Promote reendothelialization 

[123] Fe base PDLLA Sirolimus Promote reendothelialization 
Reasonable corrosion 

[124] Zn base Mixed coating of polycarbonate, tannic acid 
and copper ions 

Copper 
 

Corrosion resistance 
Reduces inflammation 
Promote endothelial cell adhesion and proliferation 

[125] PLLA PLLA 4-octyl itaconate (OI) Decreased inflammation 
Inhibition of SMC proliferation 
Endothelial regeneration integrity 

[98] PLLA PLGA Rapamycin, VEGF Promotes endothelial regeneration 
Reduce intrastent restenosis 

[126] PLLA PCL-PEG-PCL, PCEC miR-22 Reduce inflammation 
Phenotypic transformation of SMC was low 
IRS suppression 

[106] PU zein ZnO nanoparticles Cytocompatibility 
Anticoagulant reaction 
Antibiosis 

 
 

3.1.1. Alloying 
Alloying can increase the mechanical strength, 

plasticity, and corrosion resistance of metal scaffolds 
[41, 42]. In addition, rare earth elements can 
significantly improve the mechanical properties and 
degradation behaviour of biodegradable metals, such 
as (Y, Nd, Ho, Dy, and Gd) [43]. Some alloying 
elements have been demonstrated to improve the 
degradation behavior of magnesium alloys, such as 
zinc, aluminum, manganese, calcium, lithium, 
strontium, and tin [44-46]. However, to improve the 
degradation rate and biocompatibility of iron-based 
scaffolds, additives should have lower electro-
chemical potential or be more valuable than iron [18]. 
For example, palladium or platinum can improve the 
mechanical properties, increase the corrosion rate of 
iron, and stabilise iron in the austenitic form [47]. 
Iron-gold and iron-silver alloys have faster 
degradation rates without increased cytotoxicity, 
platelet adhesion, or thrombogenic effects [48]. Iron 

nitride exhibits a high degradation rate and good 
mechanical properties [49]. The mechanical strength 
of zinc is insufficient for stent implantation; however, 
the zinc-based scaffold is optimised for its degrada-
tion rate and biocompatible, mainly through alloying, 
to improve tensile strength [31]. For example, copper, 
magnesium, calcium, and strontium can further 
improve the mechanical properties and degradation 
of zinc-aluminum alloys [50]. Zinc-silver alloys can 
reduce stent-associated infections and adjust 
mechanical strength by adjusting the silver content 
[51]. 

3.1.2. Surface modification 
Micro-arc oxidation, phosphating treatment, 

electrodeposition, and basic heat treatment can 
change the surface chemistry and metallurgical 
microstructure of magnesium-based scaffolds and 
improve the degradation behaviour of magnesium 
scaffolds [52]. Using plasma immersion ion implanta-
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tion and deposition, Fe-O films can be constructed to 
cover iron-based scaffolds, thereby improving the 
biocompatibility and mechanical activation of 
platelets [53]. Surface modifications can help improve 
the corrosion rate of iron-based scaffolders, such as 
lithography and electron beam evaporation of 
platinum disks, sandblasting, phosphating, alkaline 
heating, micro-arc oxidation, and electrodeposition 
[54]. However, these technologies need to be explored 
further. 

3.1.3. Improving the manufacturing strategy 
New manufacturing strategies to achieve grain 

refinement can also improve the mechanical proper-
ties and degradation behaviour of magnesium-based 
scaffolds. For example, AZ31 exhibits a lower 
degradation rate due to grain refinement from 
mechanical processing [55]. The small ZM21 has a 
higher mechanical strength [56]. In addition, 3D 
printing technology, particularly selective laser 
melting, can be used to process magnesium alloys to 
optimise the machine structure and better control 
corrosion [57, 58]. Equal-channel angular pressure can 
produce nanocrystalline iron, which inhibits VSCM 
proliferation but promotes ECs growth [59]. Owing to 
micrograin and microstructural defects, electroform-
ing processes increase the degradation rate of 
iron-based scaffolds, resulting in the increased release 
of iron [60]. Simultaneously, iron-based scaffolds 
produced by powder metallurgy (PM) have faster 
corrosion rates because PM creates more pores [61]. 
Several new manufacturing methods, including inkjet 
3D printing and power spraying of cold air [62], may 
also improve the degradation rate of iron-based 
scaffolds. In addition, the mechanical properties of 
cast zinc alloys can be further improved by grain 
refinement induced by deformation heat treatment 
[63]. Severe plastic deformation techniques may alter 
the mechanical properties of zinc alloys [64]. 

3.2. Optimisation of polymer scaffolds 
Various methods have proved effective for 

strengthening absorbable polymer scaffolds, 
including fabrication techniques, geometric parameter 
optimisation, and scaffold thickness enhancement 
[65]. High molecular weight polymers can increase 
the entanglement and length of covalently bonded 
molecular chains, thereby improving the fracture 
strain and wear resistance of scaffolds [66]. Increasing 
the crystallinity of semi-crystalline polymers can 
increase the hardness and heat or chemical resistance 
of BDPS [67]. Modifying the molecular structure by 
controlling the internal structure of the polymer chain 
orientation can improve the mechanical strength of 
the scaffold [68]. Simultaneously, changing the 

geometric parameters can improve the radial strength 
of the support. For example, the IGaki-Tamai stent 
has a thick strut in the shape of a zigzag spiral coil; 
therefore, it has high vascular coverage [69]. 
Biodegradable, nontoxic lignocellulosic fibres from 
renewable resources such as wood have been studied 
as potential augments for biodegradable polymers 
because of their high strength and more economical 
performance than traditional synthetic fibers [70-73]. 
In addition, fabricating absorbable polymer scaffolds 
with CO2 lasers or adopting new sliding lock 
mechanisms can improve the mechanical properties 
of scaffolds [74]. The shape memory PCLAU 
combined with Fe3O4 nanoparticles can provide 
sufficient strength for stent implantation [75]. The 
biocompatibility of BDPS can be improved by plasma 
surface treatment and the use of high-molecular- 
weight PLLA [69]. In addition, the degradation of 
BDPS can be improved by changing the crystallinity, 
molecular weight, and hydrophilicity of the polymer 
[76-78]. 

4. Stent coating 
    Coating technologies for biomaterials include 

metal-metal coating, chemical vapour deposition, ion 
beam assisted deposition, atomic layer deposition, 
and pulsed laser deposition [79-81]. Using these 
technologies, targeted drugs, bio-based coatings, 
polymer coatings, and inorganic coatings can be 
delivered to the target location. Polymer coatings and 
inorganic coatings can also be used to produce porous 
coatings. 

4.1. Drug coating 
In recent years, research has been increasingly 

conducted on new drugs for drug-eluting stents. 
Currently, drug-eluting stents commonly used in 
clinics mainly use drugs such as rapamycin, 
paclitaxel, sirolimus, and everolimus to inhibit 
endothelial and smooth muscle proliferation, and 
their short-term therapeutic effects have been 
confirmed. However, the incidence of long-term stent 
thrombosis and restenosis remains a challenge [82-84]. 
Therefore, scientists are constantly exploring new 
drugs and drug combinations to optimise drug 
coatings. Heparin induces and accelerates endothelial 
cell regeneration and maintains anticoagulant activity 
[85]. Statin drug-eluting stents eliminate athero-
sclerotic plaque [86]. They induce autophagy at 
atherosclerotic sites and exert anti-inflammatory 
effects [87]. In addition to synthetic drugs, gene 
mediators are also of interest because they integrate 
smoothly during physiological regulation. Nitric 
oxide (NO) is an endogenous gas signalling molecule 
that regulates vasodilation, controls smooth muscle 
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cell proliferation, inhibits platelet aggregation, and 
has antibacterial and anti-inflammatory functions 
[88]. Researchers have prepared a catalyst on the 
scaffold [89] that catalyses the release of NO to 
improve anticoagulation and prevent scaffold 
restenosis. H2S is another gas-signalling molecule that 
plays an important role in maintaining cerebro-
vascular homeostasis and protecting and regulating 
the central nervous system. H2S promotes angio-
genesis and anti-inflammatory mediators [90-93]. The 
aspirin derivative ACS14 and its metabolite ADTOH 
are potential H2S donors [94]. ACS14 releases H2S 
while maintaining the antithrombotic effects of 
aspirin. 

4.2. Bio-based coatings 

Special biological material-based scaffold 
coatings are desirable. They allow endothelial cells on 
scaffold surfaces to proliferate, differentiate, release, 
and grow, inhibit thrombosis and neointimal 
hyperplasia, and alleviate restenosis. Endoglin 
antiboil-coated scaffolds significantly reduced 
restenosis by enhancing reendothelialisation in pig 
models [95]. Coating with anti-CD146 antibody (Ab) 
-fixed silicon nanofilaments for the efficient and 
specific capture of late rather than early EPCs 
demonstrated an approximately two-fold increase in 
endothelial coverage [96]. In addition, endothelial 
progenitor cell-capture scaffolds with surface-immo-
bilised antibodies have demonstrated clinically 
significant improvements in endothelialisation. How-
ever, most current antibody-based scaffold surface 
modification strategies rely on antibody adsorption or 
direct coupling via amino or carboxyl groups, which 
results in poor control of the antibody surface 
concentration and/or molecular orientation and 
eventual cell capture bioavailability. Cell capture is 
enhanced by the covalent transplantation of protein G 
polypeptides to immobilise IgG antibodies [97]. The 
effect of angiogenic factors (VEGF) on endothelial 
regeneration and the prevention of restenosis after 
stenting is expected, especially when combined with a 
drug-eluting coating, which exhibits significant 
endothelial regeneration and maintains a very low 
level of intrastent restenosis [98]. In addition, cell 
coating is promising, and stents coated with 
VEGF/HGF-secreting UCB-MSCs reduce the 
restenosis side effects of cardiac stent implantation 
and improve reendothelialisation [99]. 

4.3. Polymer coating 

Polymer materials have been used as stent 
coatings with or without drug elution with mixed 
success rates. These materials include polyethylene, 

polyurethane, polyvinyl ester, and polylactide. They 
can be used as nanomaterials and drug carriers to 
control drug release rates [14, 100-103]. However, 
frequently used biodegradable synthetic polymers 
such as PLGA and PLLA produce acidic degradation 
products that cause local inflammation and delay 
tissue healing due to local acidification [104, 105]. 
Naturally derived biopolymers, such as zein (from 
corn) and alginate (from seaweed), have been used to 
replace synthetic biodegradable polymers with less 
inflammation in long-term applications [106]. 

4.4. Inorganic coatings 
Several inorganic materials can potentially 

improve the performance of implant surfaces. The 
inorganic materials used to manufacture scaffold 
coatings include oxides, nitrides, silicides and 
carbides, precious metals, hydroxyapatite-based 
materials, and diamond and diamond-like carbon 
[107-110]. Titanium oxide-based coatings are the most 
promising inorganic materials for cardiovascular 
stents. The stainless steel bioactive scaffold Titan2 
(Hexacath, Paris, France), coated with plasma- 
enhanced titanium vapour deposition in a 
nitrogen-oxygen mixed atmosphere, inhibits platelet 
aggregation, minimises fibrin deposition, reduces 
inflammation, and promotes healing. In recent clinical 
trials [111-113], the new generation of titanium 
NO-coated stents, TiOxNy and TITAX-AMI, have 
been proven safe, successfully reduced in-stent 
restenosis, and marketed. NO is one of the most 
important molecules in biological systems and plays a 
key role in pathophysiology and disease by pro-
moting endothelialisation and activating endothelial 
cell growth. This has led to the development of novel 
therapeutic strategies and NO donors [114]. 

5. Outlook 
Given the high mortality rates worldwide from 

cardiovascular and cerebrovascular diseases caused 
by arteriosclerosis and the potential of stent 
technology, researchers and clinicians are focused on 
developing new materials, methods, and solutions to 
improve clinical outcomes for the available types of 
stents. The goal is patient safety and to achieve a 
higher success rate for cardiovascular therapy. Deve-
loping and optimising new categories of scaffolds, 
including membrane-coated and bioabsorbable 
scaffolds, can achieve the desired release of bioactive 
agents for adhesion, cell differentiation, and tissue 
development with appropriate physicochemical 
properties and degradation rates. Stents for 
personalised treatment are expected to become 
available in the near future. 
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6. Conclusion 
Cardiovascular and cerebrovascular diseases 

caused by atherosclerosis have high mortality rates in 
developed countries. Interventional stenting is the 
most common treatment for atherosclerosis. This 
method involves less trauma, less risk, and faster 
recovery, and is clinically effective. Shortcomings 
exist in the current study of stents; however, the 
continuous exploration of new stent materials and the 
optimisation of structural design, the continuous 
development of reasonable drug release and 
biotechnology, the realisation of targeted therapy for 
arteriosclerosis, and the concept of intervention-free 
implantation are needed. 
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